_base.py 39.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
"""
Base IO code for all datasets
"""

# Copyright (c) 2007 David Cournapeau <cournape@gmail.com>
#               2010 Fabian Pedregosa <fabian.pedregosa@inria.fr>
#               2010 Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
import os
import csv
import shutil
from collections import namedtuple
from os import environ, listdir, makedirs
from os.path import dirname, exists, expanduser, isdir, join, splitext
import hashlib

from ..utils import Bunch
from ..utils import check_random_state
from ..utils import check_pandas_support
from ..utils.validation import _deprecate_positional_args

import numpy as np

from urllib.request import urlretrieve

RemoteFileMetadata = namedtuple('RemoteFileMetadata',
                                ['filename', 'url', 'checksum'])


def get_data_home(data_home=None):
    """Return the path of the scikit-learn data dir.

    This folder is used by some large dataset loaders to avoid downloading the
    data several times.

    By default the data dir is set to a folder named 'scikit_learn_data' in the
    user home folder.

    Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment
    variable or programmatically by giving an explicit folder path. The '~'
    symbol is expanded to the user home folder.

    If the folder does not already exist, it is automatically created.

    Parameters
    ----------
    data_home : str | None
        The path to scikit-learn data dir.
    """
    if data_home is None:
        data_home = environ.get('SCIKIT_LEARN_DATA',
                                join('~', 'scikit_learn_data'))
    data_home = expanduser(data_home)
    if not exists(data_home):
        makedirs(data_home)
    return data_home


def clear_data_home(data_home=None):
    """Delete all the content of the data home cache.

    Parameters
    ----------
    data_home : str | None
        The path to scikit-learn data dir.
    """
    data_home = get_data_home(data_home)
    shutil.rmtree(data_home)


def _convert_data_dataframe(caller_name, data, target,
                            feature_names, target_names):
    pd = check_pandas_support('{} with as_frame=True'.format(caller_name))
    data_df = pd.DataFrame(data, columns=feature_names)
    target_df = pd.DataFrame(target, columns=target_names)
    combined_df = pd.concat([data_df, target_df], axis=1)
    X = combined_df[feature_names]
    y = combined_df[target_names]
    if y.shape[1] == 1:
        y = y.iloc[:, 0]
    return combined_df, X, y


@_deprecate_positional_args
def load_files(container_path, *, description=None, categories=None,
               load_content=True, shuffle=True, encoding=None,
               decode_error='strict', random_state=0):
    """Load text files with categories as subfolder names.

    Individual samples are assumed to be files stored a two levels folder
    structure such as the following:

        container_folder/
            category_1_folder/
                file_1.txt
                file_2.txt
                ...
                file_42.txt
            category_2_folder/
                file_43.txt
                file_44.txt
                ...

    The folder names are used as supervised signal label names. The individual
    file names are not important.

    This function does not try to extract features into a numpy array or scipy
    sparse matrix. In addition, if load_content is false it does not try to
    load the files in memory.

    To use text files in a scikit-learn classification or clustering algorithm,
    you will need to use the :mod`~sklearn.feature_extraction.text` module to
    build a feature extraction transformer that suits your problem.

    If you set load_content=True, you should also specify the encoding of the
    text using the 'encoding' parameter. For many modern text files, 'utf-8'
    will be the correct encoding. If you leave encoding equal to None, then the
    content will be made of bytes instead of Unicode, and you will not be able
    to use most functions in :mod:`~sklearn.feature_extraction.text`.

    Similar feature extractors should be built for other kind of unstructured
    data input such as images, audio, video, ...

    Read more in the :ref:`User Guide <datasets>`.

    Parameters
    ----------
    container_path : string or unicode
        Path to the main folder holding one subfolder per category

    description : string or unicode, optional (default=None)
        A paragraph describing the characteristic of the dataset: its source,
        reference, etc.

    categories : A collection of strings or None, optional (default=None)
        If None (default), load all the categories. If not None, list of
        category names to load (other categories ignored).

    load_content : bool, optional (default=True)
        Whether to load or not the content of the different files. If true a
        'data' attribute containing the text information is present in the data
        structure returned. If not, a filenames attribute gives the path to the
        files.

    shuffle : bool, optional (default=True)
        Whether or not to shuffle the data: might be important for models that
        make the assumption that the samples are independent and identically
        distributed (i.i.d.), such as stochastic gradient descent.

    encoding : string or None (default is None)
        If None, do not try to decode the content of the files (e.g. for images
        or other non-text content). If not None, encoding to use to decode text
        files to Unicode if load_content is True.

    decode_error : {'strict', 'ignore', 'replace'}, optional
        Instruction on what to do if a byte sequence is given to analyze that
        contains characters not of the given `encoding`. Passed as keyword
        argument 'errors' to bytes.decode.

    random_state : int, RandomState instance or None, default=0
        Determines random number generation for dataset shuffling. Pass an int
        for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : list of str
            Only present when `load_content=True`.
            The raw text data to learn.
        target : ndarray
            The target labels (integer index).
        target_names : list
            The names of target classes.
        DESCR : str
            The full description of the dataset.
        filenames: ndarray
            The filenames holding the dataset.
    """
    target = []
    target_names = []
    filenames = []

    folders = [f for f in sorted(listdir(container_path))
               if isdir(join(container_path, f))]

    if categories is not None:
        folders = [f for f in folders if f in categories]

    for label, folder in enumerate(folders):
        target_names.append(folder)
        folder_path = join(container_path, folder)
        documents = [join(folder_path, d)
                     for d in sorted(listdir(folder_path))]
        target.extend(len(documents) * [label])
        filenames.extend(documents)

    # convert to array for fancy indexing
    filenames = np.array(filenames)
    target = np.array(target)

    if shuffle:
        random_state = check_random_state(random_state)
        indices = np.arange(filenames.shape[0])
        random_state.shuffle(indices)
        filenames = filenames[indices]
        target = target[indices]

    if load_content:
        data = []
        for filename in filenames:
            with open(filename, 'rb') as f:
                data.append(f.read())
        if encoding is not None:
            data = [d.decode(encoding, decode_error) for d in data]
        return Bunch(data=data,
                     filenames=filenames,
                     target_names=target_names,
                     target=target,
                     DESCR=description)

    return Bunch(filenames=filenames,
                 target_names=target_names,
                 target=target,
                 DESCR=description)


def load_data(module_path, data_file_name):
    """Loads data from module_path/data/data_file_name.

    Parameters
    ----------
    module_path : string
        The module path.

    data_file_name : string
        Name of csv file to be loaded from
        module_path/data/data_file_name. For example 'wine_data.csv'.

    Returns
    -------
    data : Numpy array
        A 2D array with each row representing one sample and each column
        representing the features of a given sample.

    target : Numpy array
        A 1D array holding target variables for all the samples in `data.
        For example target[0] is the target varible for data[0].

    target_names : Numpy array
        A 1D array containing the names of the classifications. For example
        target_names[0] is the name of the target[0] class.
    """
    with open(join(module_path, 'data', data_file_name)) as csv_file:
        data_file = csv.reader(csv_file)
        temp = next(data_file)
        n_samples = int(temp[0])
        n_features = int(temp[1])
        target_names = np.array(temp[2:])
        data = np.empty((n_samples, n_features))
        target = np.empty((n_samples,), dtype=np.int)

        for i, ir in enumerate(data_file):
            data[i] = np.asarray(ir[:-1], dtype=np.float64)
            target[i] = np.asarray(ir[-1], dtype=np.int)

    return data, target, target_names


@_deprecate_positional_args
def load_wine(*, return_X_y=False, as_frame=False):
    """Load and return the wine dataset (classification).

    .. versionadded:: 0.18

    The wine dataset is a classic and very easy multi-class classification
    dataset.

    =================   ==============
    Classes                          3
    Samples per class        [59,71,48]
    Samples total                  178
    Dimensionality                  13
    Features            real, positive
    =================   ==============

    Read more in the :ref:`User Guide <wine_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (178, 13)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (178,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.
        frame: DataFrame of shape (178, 14)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True

    The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit
    standard format from:
    https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

    Examples
    --------
    Let's say you are interested in the samples 10, 80, and 140, and want to
    know their class name.

    >>> from sklearn.datasets import load_wine
    >>> data = load_wine()
    >>> data.target[[10, 80, 140]]
    array([0, 1, 2])
    >>> list(data.target_names)
    ['class_0', 'class_1', 'class_2']
    """
    module_path = dirname(__file__)
    data, target, target_names = load_data(module_path, 'wine_data.csv')

    with open(join(module_path, 'descr', 'wine_data.rst')) as rst_file:
        fdescr = rst_file.read()

    feature_names = ['alcohol',
                     'malic_acid',
                     'ash',
                     'alcalinity_of_ash',
                     'magnesium',
                     'total_phenols',
                     'flavanoids',
                     'nonflavanoid_phenols',
                     'proanthocyanins',
                     'color_intensity',
                     'hue',
                     'od280/od315_of_diluted_wines',
                     'proline']

    frame = None
    target_columns = ['target', ]
    if as_frame:
        frame, data, target = _convert_data_dataframe("load_wine",
                                                      data,
                                                      target,
                                                      feature_names,
                                                      target_columns)

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 frame=frame,
                 target_names=target_names,
                 DESCR=fdescr,
                 feature_names=feature_names)


@_deprecate_positional_args
def load_iris(*, return_X_y=False, as_frame=False):
    """Load and return the iris dataset (classification).

    The iris dataset is a classic and very easy multi-class classification
    dataset.

    =================   ==============
    Classes                          3
    Samples per class               50
    Samples total                  150
    Dimensionality                   4
    Features            real, positive
    =================   ==============

    Read more in the :ref:`User Guide <iris_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object. See
        below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (150, 4)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (150,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.
        frame: DataFrame of shape (150, 5)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        filename: str
            The path to the location of the data.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18

    Notes
    -----
        .. versionchanged:: 0.20
            Fixed two wrong data points according to Fisher's paper.
            The new version is the same as in R, but not as in the UCI
            Machine Learning Repository.

    Examples
    --------
    Let's say you are interested in the samples 10, 25, and 50, and want to
    know their class name.

    >>> from sklearn.datasets import load_iris
    >>> data = load_iris()
    >>> data.target[[10, 25, 50]]
    array([0, 0, 1])
    >>> list(data.target_names)
    ['setosa', 'versicolor', 'virginica']
    """
    module_path = dirname(__file__)
    data, target, target_names = load_data(module_path, 'iris.csv')
    iris_csv_filename = join(module_path, 'data', 'iris.csv')

    with open(join(module_path, 'descr', 'iris.rst')) as rst_file:
        fdescr = rst_file.read()

    feature_names = ['sepal length (cm)', 'sepal width (cm)',
                     'petal length (cm)', 'petal width (cm)']

    frame = None
    target_columns = ['target', ]
    if as_frame:
        frame, data, target = _convert_data_dataframe("load_iris",
                                                      data,
                                                      target,
                                                      feature_names,
                                                      target_columns)

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 frame=frame,
                 target_names=target_names,
                 DESCR=fdescr,
                 feature_names=feature_names,
                 filename=iris_csv_filename)


@_deprecate_positional_args
def load_breast_cancer(*, return_X_y=False, as_frame=False):
    """Load and return the breast cancer wisconsin dataset (classification).

    The breast cancer dataset is a classic and very easy binary classification
    dataset.

    =================   ==============
    Classes                          2
    Samples per class    212(M),357(B)
    Samples total                  569
    Dimensionality                  30
    Features            real, positive
    =================   ==============

    Read more in the :ref:`User Guide <breast_cancer_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (569, 30)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (569,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.
        frame: DataFrame of shape (569, 31)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        filename: str
            The path to the location of the data.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18

    The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
    downloaded from:
    https://goo.gl/U2Uwz2

    Examples
    --------
    Let's say you are interested in the samples 10, 50, and 85, and want to
    know their class name.

    >>> from sklearn.datasets import load_breast_cancer
    >>> data = load_breast_cancer()
    >>> data.target[[10, 50, 85]]
    array([0, 1, 0])
    >>> list(data.target_names)
    ['malignant', 'benign']
    """
    module_path = dirname(__file__)
    data, target, target_names = load_data(module_path, 'breast_cancer.csv')
    csv_filename = join(module_path, 'data', 'breast_cancer.csv')

    with open(join(module_path, 'descr', 'breast_cancer.rst')) as rst_file:
        fdescr = rst_file.read()

    feature_names = np.array(['mean radius', 'mean texture',
                              'mean perimeter', 'mean area',
                              'mean smoothness', 'mean compactness',
                              'mean concavity', 'mean concave points',
                              'mean symmetry', 'mean fractal dimension',
                              'radius error', 'texture error',
                              'perimeter error', 'area error',
                              'smoothness error', 'compactness error',
                              'concavity error', 'concave points error',
                              'symmetry error', 'fractal dimension error',
                              'worst radius', 'worst texture',
                              'worst perimeter', 'worst area',
                              'worst smoothness', 'worst compactness',
                              'worst concavity', 'worst concave points',
                              'worst symmetry', 'worst fractal dimension'])

    frame = None
    target_columns = ['target', ]
    if as_frame:
        frame, data, target = _convert_data_dataframe("load_breast_cancer",
                                                      data,
                                                      target,
                                                      feature_names,
                                                      target_columns)

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 frame=frame,
                 target_names=target_names,
                 DESCR=fdescr,
                 feature_names=feature_names,
                 filename=csv_filename)


@_deprecate_positional_args
def load_digits(*, n_class=10, return_X_y=False, as_frame=False):
    """Load and return the digits dataset (classification).

    Each datapoint is a 8x8 image of a digit.

    =================   ==============
    Classes                         10
    Samples per class             ~180
    Samples total                 1797
    Dimensionality                  64
    Features             integers 0-16
    =================   ==============

    Read more in the :ref:`User Guide <digits_dataset>`.

    Parameters
    ----------
    n_class : integer, between 0 and 10, optional (default=10)
        The number of classes to return.

    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (1797, 64)
            The flattened data matrix. If `as_frame=True`, `data` will be
            a pandas DataFrame.
        target: {ndarray, Series} of shape (1797,)
            The classification target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of target classes.

            .. versionadded:: 0.20

        frame: DataFrame of shape (1797, 65)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        images: {ndarray} of shape (1797, 8, 8)
            The raw image data.
        DESCR: str
            The full description of the dataset.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18

    This is a copy of the test set of the UCI ML hand-written digits datasets
    https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

    Examples
    --------
    To load the data and visualize the images::

        >>> from sklearn.datasets import load_digits
        >>> digits = load_digits()
        >>> print(digits.data.shape)
        (1797, 64)
        >>> import matplotlib.pyplot as plt #doctest: +SKIP
        >>> plt.gray() #doctest: +SKIP
        >>> plt.matshow(digits.images[0]) #doctest: +SKIP
        >>> plt.show() #doctest: +SKIP
    """
    module_path = dirname(__file__)
    data = np.loadtxt(join(module_path, 'data', 'digits.csv.gz'),
                      delimiter=',')
    with open(join(module_path, 'descr', 'digits.rst')) as f:
        descr = f.read()
    target = data[:, -1].astype(np.int, copy=False)
    flat_data = data[:, :-1]
    images = flat_data.view()
    images.shape = (-1, 8, 8)

    if n_class < 10:
        idx = target < n_class
        flat_data, target = flat_data[idx], target[idx]
        images = images[idx]

    feature_names = ['pixel_{}_{}'.format(row_idx, col_idx)
                     for row_idx in range(8)
                     for col_idx in range(8)]

    frame = None
    target_columns = ['target', ]
    if as_frame:
        frame, flat_data, target = _convert_data_dataframe("load_digits",
                                                           flat_data,
                                                           target,
                                                           feature_names,
                                                           target_columns)

    if return_X_y:
        return flat_data, target

    return Bunch(data=flat_data,
                 target=target,
                 frame=frame,
                 feature_names=feature_names,
                 target_names=np.arange(10),
                 images=images,
                 DESCR=descr)


@_deprecate_positional_args
def load_diabetes(*, return_X_y=False, as_frame=False):
    """Load and return the diabetes dataset (regression).

    ==============   ==================
    Samples total    442
    Dimensionality   10
    Features         real, -.2 < x < .2
    Targets          integer 25 - 346
    ==============   ==================

    Read more in the :ref:`User Guide <diabetes_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (442, 10)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, Series} of shape (442,)
            The regression target. If `as_frame=True`, `target` will be
            a pandas Series.
        feature_names: list
            The names of the dataset columns.
        frame: DataFrame of shape (442, 11)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        data_filename: str
            The path to the location of the data.
        target_filename: str
            The path to the location of the target.

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18
    """
    module_path = dirname(__file__)
    base_dir = join(module_path, 'data')
    data_filename = join(base_dir, 'diabetes_data.csv.gz')
    data = np.loadtxt(data_filename)
    target_filename = join(base_dir, 'diabetes_target.csv.gz')
    target = np.loadtxt(target_filename)

    with open(join(module_path, 'descr', 'diabetes.rst')) as rst_file:
        fdescr = rst_file.read()

    feature_names = ['age', 'sex', 'bmi', 'bp',
                     's1', 's2', 's3', 's4', 's5', 's6']

    frame = None
    target_columns = ['target', ]
    if as_frame:
        frame, data, target = _convert_data_dataframe("load_diabetes",
                                                      data,
                                                      target,
                                                      feature_names,
                                                      target_columns)

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 frame=frame,
                 DESCR=fdescr,
                 feature_names=feature_names,
                 data_filename=data_filename,
                 target_filename=target_filename)


@_deprecate_positional_args
def load_linnerud(*, return_X_y=False, as_frame=False):
    """Load and return the physical excercise linnerud dataset.

    This dataset is suitable for multi-ouput regression tasks.

    ==============   ============================
    Samples total    20
    Dimensionality   3 (for both data and target)
    Features         integer
    Targets          integer
    ==============   ============================

    Read more in the :ref:`User Guide <linnerrud_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string or categorical). The target is
        a pandas DataFrame or Series depending on the number of target columns.
        If `return_X_y` is True, then (`data`, `target`) will be pandas
        DataFrames or Series as described below.

        .. versionadded:: 0.23

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : {ndarray, dataframe} of shape (20, 3)
            The data matrix. If `as_frame=True`, `data` will be a pandas
            DataFrame.
        target: {ndarray, dataframe} of shape (20, 3)
            The regression targets. If `as_frame=True`, `target` will be
            a pandas DataFrame.
        feature_names: list
            The names of the dataset columns.
        target_names: list
            The names of the target columns.
        frame: DataFrame of shape (20, 6)
            Only present when `as_frame=True`. DataFrame with `data` and
            `target`.

            .. versionadded:: 0.23
        DESCR: str
            The full description of the dataset.
        data_filename: str
            The path to the location of the data.
        target_filename: str
            The path to the location of the target.

            .. versionadded:: 0.20

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18
    """
    base_dir = join(dirname(__file__), 'data/')
    data_filename = join(base_dir, 'linnerud_exercise.csv')
    target_filename = join(base_dir, 'linnerud_physiological.csv')

    # Read data
    data_exercise = np.loadtxt(data_filename, skiprows=1)
    data_physiological = np.loadtxt(target_filename, skiprows=1)

    # Read header
    with open(data_filename) as f:
        header_exercise = f.readline().split()
    with open(target_filename) as f:
        header_physiological = f.readline().split()

    with open(dirname(__file__) + '/descr/linnerud.rst') as f:
        descr = f.read()

    frame = None
    if as_frame:
        (frame,
         data_exercise,
         data_physiological) = _convert_data_dataframe("load_linnerud",
                                                       data_exercise,
                                                       data_physiological,
                                                       header_exercise,
                                                       header_physiological)
    if return_X_y:
        return data_exercise, data_physiological

    return Bunch(data=data_exercise,
                 feature_names=header_exercise,
                 target=data_physiological,
                 target_names=header_physiological,
                 frame=frame,
                 DESCR=descr,
                 data_filename=data_filename,
                 target_filename=target_filename)


@_deprecate_positional_args
def load_boston(*, return_X_y=False):
    """Load and return the boston house-prices dataset (regression).

    ==============   ==============
    Samples total               506
    Dimensionality               13
    Features         real, positive
    Targets           real 5. - 50.
    ==============   ==============

    Read more in the :ref:`User Guide <boston_dataset>`.

    Parameters
    ----------
    return_X_y : bool, default=False.
        If True, returns ``(data, target)`` instead of a Bunch object.
        See below for more information about the `data` and `target` object.

        .. versionadded:: 0.18

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray of shape (506, 13)
            The data matrix.
        target : ndarray of shape (506, )
            The regression target.
        filename : str
            The physical location of boston csv dataset.

            .. versionadded:: 0.20

        DESCR : str
            The full description of the dataset.
        feature_names : ndarray
            The names of features

    (data, target) : tuple if ``return_X_y`` is True

        .. versionadded:: 0.18

    Notes
    -----
        .. versionchanged:: 0.20
            Fixed a wrong data point at [445, 0].

    Examples
    --------
    >>> from sklearn.datasets import load_boston
    >>> X, y = load_boston(return_X_y=True)
    >>> print(X.shape)
    (506, 13)
    """
    module_path = dirname(__file__)

    fdescr_name = join(module_path, 'descr', 'boston_house_prices.rst')
    with open(fdescr_name) as f:
        descr_text = f.read()

    data_file_name = join(module_path, 'data', 'boston_house_prices.csv')
    with open(data_file_name) as f:
        data_file = csv.reader(f)
        temp = next(data_file)
        n_samples = int(temp[0])
        n_features = int(temp[1])
        data = np.empty((n_samples, n_features))
        target = np.empty((n_samples,))
        temp = next(data_file)  # names of features
        feature_names = np.array(temp)

        for i, d in enumerate(data_file):
            data[i] = np.asarray(d[:-1], dtype=np.float64)
            target[i] = np.asarray(d[-1], dtype=np.float64)

    if return_X_y:
        return data, target

    return Bunch(data=data,
                 target=target,
                 # last column is target value
                 feature_names=feature_names[:-1],
                 DESCR=descr_text,
                 filename=data_file_name)


def load_sample_images():
    """Load sample images for image manipulation.

    Loads both, ``china`` and ``flower``.

    Read more in the :ref:`User Guide <sample_images>`.

    Returns
    -------
    data : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        images : list of ndarray of shape (427, 640, 3)
            The two sample image.
        filenames : list
            The filenames for the images.
        DESCR : str
            The full description of the dataset.

    Examples
    --------
    To load the data and visualize the images:

    >>> from sklearn.datasets import load_sample_images
    >>> dataset = load_sample_images()     #doctest: +SKIP
    >>> len(dataset.images)                #doctest: +SKIP
    2
    >>> first_img_data = dataset.images[0] #doctest: +SKIP
    >>> first_img_data.shape               #doctest: +SKIP
    (427, 640, 3)
    >>> first_img_data.dtype               #doctest: +SKIP
    dtype('uint8')
    """
    # import PIL only when needed
    from ..externals._pilutil import imread

    module_path = join(dirname(__file__), "images")
    with open(join(module_path, 'README.txt')) as f:
        descr = f.read()
    filenames = [join(module_path, filename)
                 for filename in sorted(os.listdir(module_path))
                 if filename.endswith(".jpg")]
    # Load image data for each image in the source folder.
    images = [imread(filename) for filename in filenames]

    return Bunch(images=images,
                 filenames=filenames,
                 DESCR=descr)


def load_sample_image(image_name):
    """Load the numpy array of a single sample image

    Read more in the :ref:`User Guide <sample_images>`.

    Parameters
    ----------
    image_name : {`china.jpg`, `flower.jpg`}
        The name of the sample image loaded

    Returns
    -------
    img : 3D array
        The image as a numpy array: height x width x color

    Examples
    --------

    >>> from sklearn.datasets import load_sample_image
    >>> china = load_sample_image('china.jpg')   # doctest: +SKIP
    >>> china.dtype                              # doctest: +SKIP
    dtype('uint8')
    >>> china.shape                              # doctest: +SKIP
    (427, 640, 3)
    >>> flower = load_sample_image('flower.jpg') # doctest: +SKIP
    >>> flower.dtype                             # doctest: +SKIP
    dtype('uint8')
    >>> flower.shape                             # doctest: +SKIP
    (427, 640, 3)
    """
    images = load_sample_images()
    index = None
    for i, filename in enumerate(images.filenames):
        if filename.endswith(image_name):
            index = i
            break
    if index is None:
        raise AttributeError("Cannot find sample image: %s" % image_name)
    return images.images[index]


def _pkl_filepath(*args, **kwargs):
    """Return filename for Python 3 pickles

    args[-1] is expected to be the ".pkl" filename. For compatibility with
    older scikit-learn versions, a suffix is inserted before the extension.

    _pkl_filepath('/path/to/folder', 'filename.pkl') returns
    '/path/to/folder/filename_py3.pkl'

    """
    py3_suffix = kwargs.get("py3_suffix", "_py3")
    basename, ext = splitext(args[-1])
    basename += py3_suffix
    new_args = args[:-1] + (basename + ext,)
    return join(*new_args)


def _sha256(path):
    """Calculate the sha256 hash of the file at path."""
    sha256hash = hashlib.sha256()
    chunk_size = 8192
    with open(path, "rb") as f:
        while True:
            buffer = f.read(chunk_size)
            if not buffer:
                break
            sha256hash.update(buffer)
    return sha256hash.hexdigest()


def _fetch_remote(remote, dirname=None):
    """Helper function to download a remote dataset into path

    Fetch a dataset pointed by remote's url, save into path using remote's
    filename and ensure its integrity based on the SHA256 Checksum of the
    downloaded file.

    Parameters
    ----------
    remote : RemoteFileMetadata
        Named tuple containing remote dataset meta information: url, filename
        and checksum

    dirname : string
        Directory to save the file to.

    Returns
    -------
    file_path: string
        Full path of the created file.
    """

    file_path = (remote.filename if dirname is None
                 else join(dirname, remote.filename))
    urlretrieve(remote.url, file_path)
    checksum = _sha256(file_path)
    if remote.checksum != checksum:
        raise IOError("{} has an SHA256 checksum ({}) "
                      "differing from expected ({}), "
                      "file may be corrupted.".format(file_path, checksum,
                                                      remote.checksum))
    return file_path