_shrunk_covariance.py 20 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
"""
Covariance estimators using shrinkage.

Shrinkage corresponds to regularising `cov` using a convex combination:
shrunk_cov = (1-shrinkage)*cov + shrinkage*structured_estimate.

"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Gael Varoquaux <gael.varoquaux@normalesup.org>
#         Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause

# avoid division truncation
import warnings
import numpy as np

from . import empirical_covariance, EmpiricalCovariance
from ..utils import check_array
from ..utils.validation import _deprecate_positional_args


# ShrunkCovariance estimator

def shrunk_covariance(emp_cov, shrinkage=0.1):
    """Calculates a covariance matrix shrunk on the diagonal

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    Parameters
    ----------
    emp_cov : array-like of shape (n_features, n_features)
        Covariance matrix to be shrunk

    shrinkage : float, default=0.1
        Coefficient in the convex combination used for the computation
        of the shrunk estimate. Range is [0, 1].

    Returns
    -------
    shrunk_cov : ndarray of shape (n_features, n_features)
        Shrunk covariance.

    Notes
    -----
    The regularized (shrunk) covariance is given by:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    """
    emp_cov = check_array(emp_cov)
    n_features = emp_cov.shape[0]

    mu = np.trace(emp_cov) / n_features
    shrunk_cov = (1. - shrinkage) * emp_cov
    shrunk_cov.flat[::n_features + 1] += shrinkage * mu

    return shrunk_cov


class ShrunkCovariance(EmpiricalCovariance):
    """Covariance estimator with shrinkage

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    Parameters
    ----------
    store_precision : bool, default=True
        Specify if the estimated precision is stored

    assume_centered : bool, default=False
        If True, data will not be centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data will be centered before computation.

    shrinkage : float, default=0.1
        Coefficient in the convex combination used for the computation
        of the shrunk estimate. Range is [0, 1].

    Attributes
    ----------
    covariance_ : ndarray of shape (n_features, n_features)
        Estimated covariance matrix

    location_ : ndarray of shape (n_features,)
        Estimated location, i.e. the estimated mean.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.
        (stored only if store_precision is True)

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import ShrunkCovariance
    >>> from sklearn.datasets import make_gaussian_quantiles
    >>> real_cov = np.array([[.8, .3],
    ...                      [.3, .4]])
    >>> rng = np.random.RandomState(0)
    >>> X = rng.multivariate_normal(mean=[0, 0],
    ...                                   cov=real_cov,
    ...                                   size=500)
    >>> cov = ShrunkCovariance().fit(X)
    >>> cov.covariance_
    array([[0.7387..., 0.2536...],
           [0.2536..., 0.4110...]])
    >>> cov.location_
    array([0.0622..., 0.0193...])

    Notes
    -----
    The regularized covariance is given by:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    """
    @_deprecate_positional_args
    def __init__(self, *, store_precision=True, assume_centered=False,
                 shrinkage=0.1):
        super().__init__(store_precision=store_precision,
                         assume_centered=assume_centered)
        self.shrinkage = shrinkage

    def fit(self, X, y=None):
        """Fit the shrunk covariance model according to the given training data
        and parameters.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where n_samples is the number of samples
            and n_features is the number of features.

        y: Ignored
            not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        X = self._validate_data(X)
        # Not calling the parent object to fit, to avoid a potential
        # matrix inversion when setting the precision
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance = empirical_covariance(
            X, assume_centered=self.assume_centered)
        covariance = shrunk_covariance(covariance, self.shrinkage)
        self._set_covariance(covariance)

        return self


# Ledoit-Wolf estimator

def ledoit_wolf_shrinkage(X, assume_centered=False, block_size=1000):
    """Estimates the shrunk Ledoit-Wolf covariance matrix.

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data from which to compute the Ledoit-Wolf shrunk covariance shrinkage.

    assume_centered : bool, default=False
        If True, data will not be centered before computation.
        Useful to work with data whose mean is significantly equal to
        zero but is not exactly zero.
        If False, data will be centered before computation.

    block_size : int, default=1000
        Size of the blocks into which the covariance matrix will be split.

    Returns
    -------
    shrinkage : float
        Coefficient in the convex combination used for the computation
        of the shrunk estimate.

    Notes
    -----
    The regularized (shrunk) covariance is:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    """
    X = np.asarray(X)
    # for only one feature, the result is the same whatever the shrinkage
    if len(X.shape) == 2 and X.shape[1] == 1:
        return 0.
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))

    if X.shape[0] == 1:
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")
    n_samples, n_features = X.shape

    # optionally center data
    if not assume_centered:
        X = X - X.mean(0)

    # A non-blocked version of the computation is present in the tests
    # in tests/test_covariance.py

    # number of blocks to split the covariance matrix into
    n_splits = int(n_features / block_size)
    X2 = X ** 2
    emp_cov_trace = np.sum(X2, axis=0) / n_samples
    mu = np.sum(emp_cov_trace) / n_features
    beta_ = 0.  # sum of the coefficients of <X2.T, X2>
    delta_ = 0.  # sum of the *squared* coefficients of <X.T, X>
    # starting block computation
    for i in range(n_splits):
        for j in range(n_splits):
            rows = slice(block_size * i, block_size * (i + 1))
            cols = slice(block_size * j, block_size * (j + 1))
            beta_ += np.sum(np.dot(X2.T[rows], X2[:, cols]))
            delta_ += np.sum(np.dot(X.T[rows], X[:, cols]) ** 2)
        rows = slice(block_size * i, block_size * (i + 1))
        beta_ += np.sum(np.dot(X2.T[rows], X2[:, block_size * n_splits:]))
        delta_ += np.sum(
            np.dot(X.T[rows], X[:, block_size * n_splits:]) ** 2)
    for j in range(n_splits):
        cols = slice(block_size * j, block_size * (j + 1))
        beta_ += np.sum(np.dot(X2.T[block_size * n_splits:], X2[:, cols]))
        delta_ += np.sum(
            np.dot(X.T[block_size * n_splits:], X[:, cols]) ** 2)
    delta_ += np.sum(np.dot(X.T[block_size * n_splits:],
                            X[:, block_size * n_splits:]) ** 2)
    delta_ /= n_samples ** 2
    beta_ += np.sum(np.dot(X2.T[block_size * n_splits:],
                           X2[:, block_size * n_splits:]))
    # use delta_ to compute beta
    beta = 1. / (n_features * n_samples) * (beta_ / n_samples - delta_)
    # delta is the sum of the squared coefficients of (<X.T,X> - mu*Id) / p
    delta = delta_ - 2. * mu * emp_cov_trace.sum() + n_features * mu ** 2
    delta /= n_features
    # get final beta as the min between beta and delta
    # We do this to prevent shrinking more than "1", which whould invert
    # the value of covariances
    beta = min(beta, delta)
    # finally get shrinkage
    shrinkage = 0 if beta == 0 else beta / delta
    return shrinkage


@_deprecate_positional_args
def ledoit_wolf(X, *, assume_centered=False, block_size=1000):
    """Estimates the shrunk Ledoit-Wolf covariance matrix.

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data from which to compute the covariance estimate

    assume_centered : bool, default=False
        If True, data will not be centered before computation.
        Useful to work with data whose mean is significantly equal to
        zero but is not exactly zero.
        If False, data will be centered before computation.

    block_size : int, default=1000
        Size of the blocks into which the covariance matrix will be split.
        This is purely a memory optimization and does not affect results.

    Returns
    -------
    shrunk_cov : ndarray of shape (n_features, n_features)
        Shrunk covariance.

    shrinkage : float
        Coefficient in the convex combination used for the computation
        of the shrunk estimate.

    Notes
    -----
    The regularized (shrunk) covariance is:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    """
    X = np.asarray(X)
    # for only one feature, the result is the same whatever the shrinkage
    if len(X.shape) == 2 and X.shape[1] == 1:
        if not assume_centered:
            X = X - X.mean()
        return np.atleast_2d((X ** 2).mean()), 0.
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")
        n_features = X.size
    else:
        _, n_features = X.shape

    # get Ledoit-Wolf shrinkage
    shrinkage = ledoit_wolf_shrinkage(
        X, assume_centered=assume_centered, block_size=block_size)
    emp_cov = empirical_covariance(X, assume_centered=assume_centered)
    mu = np.sum(np.trace(emp_cov)) / n_features
    shrunk_cov = (1. - shrinkage) * emp_cov
    shrunk_cov.flat[::n_features + 1] += shrinkage * mu

    return shrunk_cov, shrinkage


class LedoitWolf(EmpiricalCovariance):
    """LedoitWolf Estimator

    Ledoit-Wolf is a particular form of shrinkage, where the shrinkage
    coefficient is computed using O. Ledoit and M. Wolf's formula as
    described in "A Well-Conditioned Estimator for Large-Dimensional
    Covariance Matrices", Ledoit and Wolf, Journal of Multivariate
    Analysis, Volume 88, Issue 2, February 2004, pages 365-411.

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    Parameters
    ----------
    store_precision : bool, default=True
        Specify if the estimated precision is stored.

    assume_centered : bool, default=False
        If True, data will not be centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data will be centered before computation.

    block_size : int, default=1000
        Size of the blocks into which the covariance matrix will be split
        during its Ledoit-Wolf estimation. This is purely a memory
        optimization and does not affect results.

    Attributes
    ----------
    covariance_ : ndarray of shape (n_features, n_features)
        Estimated covariance matrix.

    location_ : ndarray of shape (n_features,)
        Estimated location, i.e. the estimated mean.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.
        (stored only if store_precision is True)

    shrinkage_ : float
        Coefficient in the convex combination used for the computation
        of the shrunk estimate. Range is [0, 1].

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import LedoitWolf
    >>> real_cov = np.array([[.4, .2],
    ...                      [.2, .8]])
    >>> np.random.seed(0)
    >>> X = np.random.multivariate_normal(mean=[0, 0],
    ...                                   cov=real_cov,
    ...                                   size=50)
    >>> cov = LedoitWolf().fit(X)
    >>> cov.covariance_
    array([[0.4406..., 0.1616...],
           [0.1616..., 0.8022...]])
    >>> cov.location_
    array([ 0.0595... , -0.0075...])

    Notes
    -----
    The regularised covariance is:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    and shrinkage is given by the Ledoit and Wolf formula (see References)

    References
    ----------
    "A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices",
    Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2,
    February 2004, pages 365-411.
    """
    @_deprecate_positional_args
    def __init__(self, *, store_precision=True, assume_centered=False,
                 block_size=1000):
        super().__init__(store_precision=store_precision,
                         assume_centered=assume_centered)
        self.block_size = block_size

    def fit(self, X, y=None):
        """Fit the Ledoit-Wolf shrunk covariance model according to the given
        training data and parameters.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.
        y : Ignored
            not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        # Not calling the parent object to fit, to avoid computing the
        # covariance matrix (and potentially the precision)
        X = self._validate_data(X)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        covariance, shrinkage = ledoit_wolf(X - self.location_,
                                            assume_centered=True,
                                            block_size=self.block_size)
        self.shrinkage_ = shrinkage
        self._set_covariance(covariance)

        return self


# OAS estimator
@_deprecate_positional_args
def oas(X, *, assume_centered=False):
    """Estimate covariance with the Oracle Approximating Shrinkage algorithm.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features)
        Data from which to compute the covariance estimate.

    assume_centered : bool, default=False
      If True, data will not be centered before computation.
      Useful to work with data whose mean is significantly equal to
      zero but is not exactly zero.
      If False, data will be centered before computation.

    Returns
    -------
    shrunk_cov : array-like of shape (n_features, n_features)
        Shrunk covariance.

    shrinkage : float
        Coefficient in the convex combination used for the computation
        of the shrunk estimate.

    Notes
    -----
    The regularised (shrunk) covariance is:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features

    The formula we used to implement the OAS is slightly modified compared
    to the one given in the article. See :class:`OAS` for more details.
    """
    X = np.asarray(X)
    # for only one feature, the result is the same whatever the shrinkage
    if len(X.shape) == 2 and X.shape[1] == 1:
        if not assume_centered:
            X = X - X.mean()
        return np.atleast_2d((X ** 2).mean()), 0.
    if X.ndim == 1:
        X = np.reshape(X, (1, -1))
        warnings.warn("Only one sample available. "
                      "You may want to reshape your data array")
        n_samples = 1
        n_features = X.size
    else:
        n_samples, n_features = X.shape

    emp_cov = empirical_covariance(X, assume_centered=assume_centered)
    mu = np.trace(emp_cov) / n_features

    # formula from Chen et al.'s **implementation**
    alpha = np.mean(emp_cov ** 2)
    num = alpha + mu ** 2
    den = (n_samples + 1.) * (alpha - (mu ** 2) / n_features)

    shrinkage = 1. if den == 0 else min(num / den, 1.)
    shrunk_cov = (1. - shrinkage) * emp_cov
    shrunk_cov.flat[::n_features + 1] += shrinkage * mu

    return shrunk_cov, shrinkage


class OAS(EmpiricalCovariance):
    """Oracle Approximating Shrinkage Estimator

    Read more in the :ref:`User Guide <shrunk_covariance>`.

    OAS is a particular form of shrinkage described in
    "Shrinkage Algorithms for MMSE Covariance Estimation"
    Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

    The formula used here does not correspond to the one given in the
    article. In the original article, formula (23) states that 2/p is
    multiplied by Trace(cov*cov) in both the numerator and denominator, but
    this operation is omitted because for a large p, the value of 2/p is
    so small that it doesn't affect the value of the estimator.

    Parameters
    ----------
    store_precision : bool, default=True
        Specify if the estimated precision is stored.

    assume_centered : bool, default=False
        If True, data will not be centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False (default), data will be centered before computation.

    Attributes
    ----------
    covariance_ : ndarray of shape (n_features, n_features)
        Estimated covariance matrix.

    location_ : ndarray of shape (n_features,)
        Estimated location, i.e. the estimated mean.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.
        (stored only if store_precision is True)

    shrinkage_ : float
      coefficient in the convex combination used for the computation
      of the shrunk estimate. Range is [0, 1].

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import OAS
    >>> from sklearn.datasets import make_gaussian_quantiles
    >>> real_cov = np.array([[.8, .3],
    ...                      [.3, .4]])
    >>> rng = np.random.RandomState(0)
    >>> X = rng.multivariate_normal(mean=[0, 0],
    ...                             cov=real_cov,
    ...                             size=500)
    >>> oas = OAS().fit(X)
    >>> oas.covariance_
    array([[0.7533..., 0.2763...],
           [0.2763..., 0.3964...]])
    >>> oas.precision_
    array([[ 1.7833..., -1.2431... ],
           [-1.2431...,  3.3889...]])
    >>> oas.shrinkage_
    0.0195...

    Notes
    -----
    The regularised covariance is:

    (1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)

    where mu = trace(cov) / n_features
    and shrinkage is given by the OAS formula (see References)

    References
    ----------
    "Shrinkage Algorithms for MMSE Covariance Estimation"
    Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
    """

    def fit(self, X, y=None):
        """Fit the Oracle Approximating Shrinkage covariance model
        according to the given training data and parameters.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.
        y : Ignored
            not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        X = self._validate_data(X)
        # Not calling the parent object to fit, to avoid computing the
        # covariance matrix (and potentially the precision)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)

        covariance, shrinkage = oas(X - self.location_, assume_centered=True)
        self.shrinkage_ = shrinkage
        self._set_covariance(covariance)

        return self