_shrunk_covariance.py
20 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
"""
Covariance estimators using shrinkage.
Shrinkage corresponds to regularising `cov` using a convex combination:
shrunk_cov = (1-shrinkage)*cov + shrinkage*structured_estimate.
"""
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Virgile Fritsch <virgile.fritsch@inria.fr>
#
# License: BSD 3 clause
# avoid division truncation
import warnings
import numpy as np
from . import empirical_covariance, EmpiricalCovariance
from ..utils import check_array
from ..utils.validation import _deprecate_positional_args
# ShrunkCovariance estimator
def shrunk_covariance(emp_cov, shrinkage=0.1):
"""Calculates a covariance matrix shrunk on the diagonal
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
emp_cov : array-like of shape (n_features, n_features)
Covariance matrix to be shrunk
shrinkage : float, default=0.1
Coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].
Returns
-------
shrunk_cov : ndarray of shape (n_features, n_features)
Shrunk covariance.
Notes
-----
The regularized (shrunk) covariance is given by:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
emp_cov = check_array(emp_cov)
n_features = emp_cov.shape[0]
mu = np.trace(emp_cov) / n_features
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov
class ShrunkCovariance(EmpiricalCovariance):
"""Covariance estimator with shrinkage
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
store_precision : bool, default=True
Specify if the estimated precision is stored
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data will be centered before computation.
shrinkage : float, default=0.1
Coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].
Attributes
----------
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import ShrunkCovariance
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> cov = ShrunkCovariance().fit(X)
>>> cov.covariance_
array([[0.7387..., 0.2536...],
[0.2536..., 0.4110...]])
>>> cov.location_
array([0.0622..., 0.0193...])
Notes
-----
The regularized covariance is given by:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
@_deprecate_positional_args
def __init__(self, *, store_precision=True, assume_centered=False,
shrinkage=0.1):
super().__init__(store_precision=store_precision,
assume_centered=assume_centered)
self.shrinkage = shrinkage
def fit(self, X, y=None):
"""Fit the shrunk covariance model according to the given training data
and parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
y: Ignored
not used, present for API consistence purpose.
Returns
-------
self : object
"""
X = self._validate_data(X)
# Not calling the parent object to fit, to avoid a potential
# matrix inversion when setting the precision
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance = empirical_covariance(
X, assume_centered=self.assume_centered)
covariance = shrunk_covariance(covariance, self.shrinkage)
self._set_covariance(covariance)
return self
# Ledoit-Wolf estimator
def ledoit_wolf_shrinkage(X, assume_centered=False, block_size=1000):
"""Estimates the shrunk Ledoit-Wolf covariance matrix.
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the Ledoit-Wolf shrunk covariance shrinkage.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data will be centered before computation.
block_size : int, default=1000
Size of the blocks into which the covariance matrix will be split.
Returns
-------
shrinkage : float
Coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularized (shrunk) covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
X = np.asarray(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
return 0.
if X.ndim == 1:
X = np.reshape(X, (1, -1))
if X.shape[0] == 1:
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
n_samples, n_features = X.shape
# optionally center data
if not assume_centered:
X = X - X.mean(0)
# A non-blocked version of the computation is present in the tests
# in tests/test_covariance.py
# number of blocks to split the covariance matrix into
n_splits = int(n_features / block_size)
X2 = X ** 2
emp_cov_trace = np.sum(X2, axis=0) / n_samples
mu = np.sum(emp_cov_trace) / n_features
beta_ = 0. # sum of the coefficients of <X2.T, X2>
delta_ = 0. # sum of the *squared* coefficients of <X.T, X>
# starting block computation
for i in range(n_splits):
for j in range(n_splits):
rows = slice(block_size * i, block_size * (i + 1))
cols = slice(block_size * j, block_size * (j + 1))
beta_ += np.sum(np.dot(X2.T[rows], X2[:, cols]))
delta_ += np.sum(np.dot(X.T[rows], X[:, cols]) ** 2)
rows = slice(block_size * i, block_size * (i + 1))
beta_ += np.sum(np.dot(X2.T[rows], X2[:, block_size * n_splits:]))
delta_ += np.sum(
np.dot(X.T[rows], X[:, block_size * n_splits:]) ** 2)
for j in range(n_splits):
cols = slice(block_size * j, block_size * (j + 1))
beta_ += np.sum(np.dot(X2.T[block_size * n_splits:], X2[:, cols]))
delta_ += np.sum(
np.dot(X.T[block_size * n_splits:], X[:, cols]) ** 2)
delta_ += np.sum(np.dot(X.T[block_size * n_splits:],
X[:, block_size * n_splits:]) ** 2)
delta_ /= n_samples ** 2
beta_ += np.sum(np.dot(X2.T[block_size * n_splits:],
X2[:, block_size * n_splits:]))
# use delta_ to compute beta
beta = 1. / (n_features * n_samples) * (beta_ / n_samples - delta_)
# delta is the sum of the squared coefficients of (<X.T,X> - mu*Id) / p
delta = delta_ - 2. * mu * emp_cov_trace.sum() + n_features * mu ** 2
delta /= n_features
# get final beta as the min between beta and delta
# We do this to prevent shrinking more than "1", which whould invert
# the value of covariances
beta = min(beta, delta)
# finally get shrinkage
shrinkage = 0 if beta == 0 else beta / delta
return shrinkage
@_deprecate_positional_args
def ledoit_wolf(X, *, assume_centered=False, block_size=1000):
"""Estimates the shrunk Ledoit-Wolf covariance matrix.
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data will be centered before computation.
block_size : int, default=1000
Size of the blocks into which the covariance matrix will be split.
This is purely a memory optimization and does not affect results.
Returns
-------
shrunk_cov : ndarray of shape (n_features, n_features)
Shrunk covariance.
shrinkage : float
Coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularized (shrunk) covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
"""
X = np.asarray(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X ** 2).mean()), 0.
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
n_features = X.size
else:
_, n_features = X.shape
# get Ledoit-Wolf shrinkage
shrinkage = ledoit_wolf_shrinkage(
X, assume_centered=assume_centered, block_size=block_size)
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.sum(np.trace(emp_cov)) / n_features
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
class LedoitWolf(EmpiricalCovariance):
"""LedoitWolf Estimator
Ledoit-Wolf is a particular form of shrinkage, where the shrinkage
coefficient is computed using O. Ledoit and M. Wolf's formula as
described in "A Well-Conditioned Estimator for Large-Dimensional
Covariance Matrices", Ledoit and Wolf, Journal of Multivariate
Analysis, Volume 88, Issue 2, February 2004, pages 365-411.
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
store_precision : bool, default=True
Specify if the estimated precision is stored.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data will be centered before computation.
block_size : int, default=1000
Size of the blocks into which the covariance matrix will be split
during its Ledoit-Wolf estimation. This is purely a memory
optimization and does not affect results.
Attributes
----------
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
shrinkage_ : float
Coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import LedoitWolf
>>> real_cov = np.array([[.4, .2],
... [.2, .8]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=50)
>>> cov = LedoitWolf().fit(X)
>>> cov.covariance_
array([[0.4406..., 0.1616...],
[0.1616..., 0.8022...]])
>>> cov.location_
array([ 0.0595... , -0.0075...])
Notes
-----
The regularised covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
and shrinkage is given by the Ledoit and Wolf formula (see References)
References
----------
"A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices",
Ledoit and Wolf, Journal of Multivariate Analysis, Volume 88, Issue 2,
February 2004, pages 365-411.
"""
@_deprecate_positional_args
def __init__(self, *, store_precision=True, assume_centered=False,
block_size=1000):
super().__init__(store_precision=store_precision,
assume_centered=assume_centered)
self.block_size = block_size
def fit(self, X, y=None):
"""Fit the Ledoit-Wolf shrunk covariance model according to the given
training data and parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
not used, present for API consistence purpose.
Returns
-------
self : object
"""
# Not calling the parent object to fit, to avoid computing the
# covariance matrix (and potentially the precision)
X = self._validate_data(X)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance, shrinkage = ledoit_wolf(X - self.location_,
assume_centered=True,
block_size=self.block_size)
self.shrinkage_ = shrinkage
self._set_covariance(covariance)
return self
# OAS estimator
@_deprecate_positional_args
def oas(X, *, assume_centered=False):
"""Estimate covariance with the Oracle Approximating Shrinkage algorithm.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data will be centered before computation.
Returns
-------
shrunk_cov : array-like of shape (n_features, n_features)
Shrunk covariance.
shrinkage : float
Coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularised (shrunk) covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
The formula we used to implement the OAS is slightly modified compared
to the one given in the article. See :class:`OAS` for more details.
"""
X = np.asarray(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
if not assume_centered:
X = X - X.mean()
return np.atleast_2d((X ** 2).mean()), 0.
if X.ndim == 1:
X = np.reshape(X, (1, -1))
warnings.warn("Only one sample available. "
"You may want to reshape your data array")
n_samples = 1
n_features = X.size
else:
n_samples, n_features = X.shape
emp_cov = empirical_covariance(X, assume_centered=assume_centered)
mu = np.trace(emp_cov) / n_features
# formula from Chen et al.'s **implementation**
alpha = np.mean(emp_cov ** 2)
num = alpha + mu ** 2
den = (n_samples + 1.) * (alpha - (mu ** 2) / n_features)
shrinkage = 1. if den == 0 else min(num / den, 1.)
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
return shrunk_cov, shrinkage
class OAS(EmpiricalCovariance):
"""Oracle Approximating Shrinkage Estimator
Read more in the :ref:`User Guide <shrunk_covariance>`.
OAS is a particular form of shrinkage described in
"Shrinkage Algorithms for MMSE Covariance Estimation"
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
The formula used here does not correspond to the one given in the
article. In the original article, formula (23) states that 2/p is
multiplied by Trace(cov*cov) in both the numerator and denominator, but
this operation is omitted because for a large p, the value of 2/p is
so small that it doesn't affect the value of the estimator.
Parameters
----------
store_precision : bool, default=True
Specify if the estimated precision is stored.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False (default), data will be centered before computation.
Attributes
----------
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
(stored only if store_precision is True)
shrinkage_ : float
coefficient in the convex combination used for the computation
of the shrunk estimate. Range is [0, 1].
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import OAS
>>> from sklearn.datasets import make_gaussian_quantiles
>>> real_cov = np.array([[.8, .3],
... [.3, .4]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0],
... cov=real_cov,
... size=500)
>>> oas = OAS().fit(X)
>>> oas.covariance_
array([[0.7533..., 0.2763...],
[0.2763..., 0.3964...]])
>>> oas.precision_
array([[ 1.7833..., -1.2431... ],
[-1.2431..., 3.3889...]])
>>> oas.shrinkage_
0.0195...
Notes
-----
The regularised covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
and shrinkage is given by the OAS formula (see References)
References
----------
"Shrinkage Algorithms for MMSE Covariance Estimation"
Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
"""
def fit(self, X, y=None):
"""Fit the Oracle Approximating Shrinkage covariance model
according to the given training data and parameters.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : Ignored
not used, present for API consistence purpose.
Returns
-------
self : object
"""
X = self._validate_data(X)
# Not calling the parent object to fit, to avoid computing the
# covariance matrix (and potentially the precision)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
covariance, shrinkage = oas(X - self.location_, assume_centered=True)
self.shrinkage_ = shrinkage
self._set_covariance(covariance)
return self