_graph_lasso.py
30.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
"""GraphicalLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""
# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause
# Copyright: INRIA
from collections.abc import Sequence
import warnings
import operator
import sys
import time
import numpy as np
from scipy import linalg
from joblib import Parallel, delayed
from . import empirical_covariance, EmpiricalCovariance, log_likelihood
from ..exceptions import ConvergenceWarning
from ..utils.validation import check_random_state
from ..utils.validation import _deprecate_positional_args
# mypy error: Module 'sklearn.linear_model' has no attribute '_cd_fast'
from ..linear_model import _cd_fast as cd_fast # type: ignore
from ..linear_model import lars_path_gram
from ..model_selection import check_cv, cross_val_score
# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
"""Evaluation of the graphical-lasso objective function
the objective function is made of a shifted scaled version of the
normalized log-likelihood (i.e. its empirical mean over the samples) and a
penalisation term to promote sparsity
"""
p = precision_.shape[0]
cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi)
cost += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return cost
def _dual_gap(emp_cov, precision_, alpha):
"""Expression of the dual gap convergence criterion
The specific definition is given in Duchi "Projected Subgradient Methods
for Learning Sparse Gaussians".
"""
gap = np.sum(emp_cov * precision_)
gap -= precision_.shape[0]
gap += alpha * (np.abs(precision_).sum()
- np.abs(np.diag(precision_)).sum())
return gap
def alpha_max(emp_cov):
"""Find the maximum alpha for which there are some non-zeros off-diagonal.
Parameters
----------
emp_cov : ndarray of shape (n_features, n_features)
The sample covariance matrix.
Notes
-----
This results from the bound for the all the Lasso that are solved
in GraphicalLasso: each time, the row of cov corresponds to Xy. As the
bound for alpha is given by `max(abs(Xy))`, the result follows.
"""
A = np.copy(emp_cov)
A.flat[::A.shape[0] + 1] = 0
return np.max(np.abs(A))
# The g-lasso algorithm
@_deprecate_positional_args
def graphical_lasso(emp_cov, alpha, *, cov_init=None, mode='cd', tol=1e-4,
enet_tol=1e-4, max_iter=100, verbose=False,
return_costs=False, eps=np.finfo(np.float64).eps,
return_n_iter=False):
"""l1-penalized covariance estimator
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
graph_lasso has been renamed to graphical_lasso
Parameters
----------
emp_cov : ndarray of shape (n_features, n_features)
Empirical covariance from which to compute the covariance estimate.
alpha : float
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
Range is (0, inf].
cov_init : array of shape (n_features, n_features), default=None
The initial guess for the covariance.
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
The maximum number of iterations.
verbose : bool, default=False
If verbose is True, the objective function and dual gap are
printed at each iteration.
return_costs : bool, default=Flase
If return_costs is True, the objective function and dual gap
at each iteration are returned.
eps : float, default=eps
The machine-precision regularization in the computation of the
Cholesky diagonal factors. Increase this for very ill-conditioned
systems. Default is `np.finfo(np.float64).eps`.
return_n_iter : bool, default=False
Whether or not to return the number of iterations.
Returns
-------
covariance : ndarray of shape (n_features, n_features)
The estimated covariance matrix.
precision : ndarray of shape (n_features, n_features)
The estimated (sparse) precision matrix.
costs : list of (objective, dual_gap) pairs
The list of values of the objective function and the dual gap at
each iteration. Returned only if return_costs is True.
n_iter : int
Number of iterations. Returned only if `return_n_iter` is set to True.
See Also
--------
GraphicalLasso, GraphicalLassoCV
Notes
-----
The algorithm employed to solve this problem is the GLasso algorithm,
from the Friedman 2008 Biostatistics paper. It is the same algorithm
as in the R `glasso` package.
One possible difference with the `glasso` R package is that the
diagonal coefficients are not penalized.
"""
_, n_features = emp_cov.shape
if alpha == 0:
if return_costs:
precision_ = linalg.inv(emp_cov)
cost = - 2. * log_likelihood(emp_cov, precision_)
cost += n_features * np.log(2 * np.pi)
d_gap = np.sum(emp_cov * precision_) - n_features
if return_n_iter:
return emp_cov, precision_, (cost, d_gap), 0
else:
return emp_cov, precision_, (cost, d_gap)
else:
if return_n_iter:
return emp_cov, linalg.inv(emp_cov), 0
else:
return emp_cov, linalg.inv(emp_cov)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init.copy()
# As a trivial regularization (Tikhonov like), we scale down the
# off-diagonal coefficients of our starting point: This is needed, as
# in the cross-validation the cov_init can easily be
# ill-conditioned, and the CV loop blows. Beside, this takes
# conservative stand-point on the initial conditions, and it tends to
# make the convergence go faster.
covariance_ *= 0.95
diagonal = emp_cov.flat[::n_features + 1]
covariance_.flat[::n_features + 1] = diagonal
precision_ = linalg.pinvh(covariance_)
indices = np.arange(n_features)
costs = list()
# The different l1 regression solver have different numerical errors
if mode == 'cd':
errors = dict(over='raise', invalid='ignore')
else:
errors = dict(invalid='raise')
try:
# be robust to the max_iter=0 edge case, see:
# https://github.com/scikit-learn/scikit-learn/issues/4134
d_gap = np.inf
# set a sub_covariance buffer
sub_covariance = np.copy(covariance_[1:, 1:], order='C')
for i in range(max_iter):
for idx in range(n_features):
# To keep the contiguous matrix `sub_covariance` equal to
# covariance_[indices != idx].T[indices != idx]
# we only need to update 1 column and 1 line when idx changes
if idx > 0:
di = idx - 1
sub_covariance[di] = covariance_[di][indices != idx]
sub_covariance[:, di] = covariance_[:, di][indices != idx]
else:
sub_covariance[:] = covariance_[1:, 1:]
row = emp_cov[idx, indices != idx]
with np.errstate(**errors):
if mode == 'cd':
# Use coordinate descent
coefs = -(precision_[indices != idx, idx]
/ (precision_[idx, idx] + 1000 * eps))
coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram(
coefs, alpha, 0, sub_covariance,
row, row, max_iter, enet_tol,
check_random_state(None), False)
else:
# Use LARS
_, _, coefs = lars_path_gram(
Xy=row, Gram=sub_covariance, n_samples=row.size,
alpha_min=alpha / (n_features - 1), copy_Gram=True,
eps=eps, method='lars', return_path=False)
# Update the precision matrix
precision_[idx, idx] = (
1. / (covariance_[idx, idx]
- np.dot(covariance_[indices != idx, idx], coefs)))
precision_[indices != idx, idx] = (- precision_[idx, idx]
* coefs)
precision_[idx, indices != idx] = (- precision_[idx, idx]
* coefs)
coefs = np.dot(sub_covariance, coefs)
covariance_[idx, indices != idx] = coefs
covariance_[indices != idx, idx] = coefs
if not np.isfinite(precision_.sum()):
raise FloatingPointError('The system is too ill-conditioned '
'for this solver')
d_gap = _dual_gap(emp_cov, precision_, alpha)
cost = _objective(emp_cov, precision_, alpha)
if verbose:
print('[graphical_lasso] Iteration '
'% 3i, cost % 3.2e, dual gap %.3e'
% (i, cost, d_gap))
if return_costs:
costs.append((cost, d_gap))
if np.abs(d_gap) < tol:
break
if not np.isfinite(cost) and i > 0:
raise FloatingPointError('Non SPD result: the system is '
'too ill-conditioned for this solver')
else:
warnings.warn('graphical_lasso: did not converge after '
'%i iteration: dual gap: %.3e'
% (max_iter, d_gap), ConvergenceWarning)
except FloatingPointError as e:
e.args = (e.args[0]
+ '. The system is too ill-conditioned for this solver',)
raise e
if return_costs:
if return_n_iter:
return covariance_, precision_, costs, i + 1
else:
return covariance_, precision_, costs
else:
if return_n_iter:
return covariance_, precision_, i + 1
else:
return covariance_, precision_
class GraphicalLasso(EmpiricalCovariance):
"""Sparse inverse covariance estimation with an l1-penalized estimator.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
GraphLasso has been renamed to GraphicalLasso
Parameters
----------
alpha : float, default=0.01
The regularization parameter: the higher alpha, the more
regularization, the sparser the inverse covariance.
Range is (0, inf].
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
The maximum number of iterations.
verbose : bool, default=False
If verbose is True, the objective function and dual gap are
plotted at each iteration.
assume_centered : bool, default=False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix
precision_ : ndarray of shape (n_features, n_features)
Estimated pseudo inverse matrix.
n_iter_ : int
Number of iterations run.
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import GraphicalLasso
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLasso().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.049, 0.218, 0.019],
[0.049, 0.364, 0.017, 0.034],
[0.218, 0.017, 0.322, 0.093],
[0.019, 0.034, 0.093, 0.69 ]])
>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])
See Also
--------
graphical_lasso, GraphicalLassoCV
"""
@_deprecate_positional_args
def __init__(self, alpha=.01, *, mode='cd', tol=1e-4, enet_tol=1e-4,
max_iter=100, verbose=False, assume_centered=False):
super().__init__(assume_centered=assume_centered)
self.alpha = alpha
self.mode = mode
self.tol = tol
self.enet_tol = enet_tol
self.max_iter = max_iter
self.verbose = verbose
def fit(self, X, y=None):
"""Fits the GraphicalLasso model to X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate
y : Ignored
Not used, present for API consistence purpose.
Returns
-------
self : object
"""
# Covariance does not make sense for a single feature
X = self._validate_data(X, ensure_min_features=2, ensure_min_samples=2,
estimator=self)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
emp_cov = empirical_covariance(
X, assume_centered=self.assume_centered)
self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol,
enet_tol=self.enet_tol, max_iter=self.max_iter,
verbose=self.verbose, return_n_iter=True)
return self
# Cross-validation with GraphicalLasso
def graphical_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd',
tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False):
"""l1-penalized covariance estimator along a path of decreasing alphas
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Data from which to compute the covariance estimate.
alphas : array-like of shape (n_alphas,)
The list of regularization parameters, decreasing order.
cov_init : array of shape (n_features, n_features), default=None
The initial guess for the covariance.
X_test : array of shape (n_test_samples, n_features), default=None
Optional test matrix to measure generalisation error.
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where p > n. Elsewhere prefer cd
which is more numerically stable.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. The tolerance must be a positive
number.
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. The tolerance must be a positive number.
max_iter : int, default=100
The maximum number of iterations. This parameter should be a strictly
positive integer.
verbose : int or bool, default=False
The higher the verbosity flag, the more information is printed
during the fitting.
Returns
-------
covariances_ : list of shape (n_alphas,) of ndarray of shape \
(n_features, n_features)
The estimated covariance matrices.
precisions_ : list of shape (n_alphas,) of ndarray of shape \
(n_features, n_features)
The estimated (sparse) precision matrices.
scores_ : list of shape (n_alphas,), dtype=float
The generalisation error (log-likelihood) on the test data.
Returned only if test data is passed.
"""
inner_verbose = max(0, verbose - 1)
emp_cov = empirical_covariance(X)
if cov_init is None:
covariance_ = emp_cov.copy()
else:
covariance_ = cov_init
covariances_ = list()
precisions_ = list()
scores_ = list()
if X_test is not None:
test_emp_cov = empirical_covariance(X_test)
for alpha in alphas:
try:
# Capture the errors, and move on
covariance_, precision_ = graphical_lasso(
emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol,
enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose)
covariances_.append(covariance_)
precisions_.append(precision_)
if X_test is not None:
this_score = log_likelihood(test_emp_cov, precision_)
except FloatingPointError:
this_score = -np.inf
covariances_.append(np.nan)
precisions_.append(np.nan)
if X_test is not None:
if not np.isfinite(this_score):
this_score = -np.inf
scores_.append(this_score)
if verbose == 1:
sys.stderr.write('.')
elif verbose > 1:
if X_test is not None:
print('[graphical_lasso_path] alpha: %.2e, score: %.2e'
% (alpha, this_score))
else:
print('[graphical_lasso_path] alpha: %.2e' % alpha)
if X_test is not None:
return covariances_, precisions_, scores_
return covariances_, precisions_
class GraphicalLassoCV(GraphicalLasso):
"""Sparse inverse covariance w/ cross-validated choice of the l1 penalty.
See glossary entry for :term:`cross-validation estimator`.
Read more in the :ref:`User Guide <sparse_inverse_covariance>`.
.. versionchanged:: v0.20
GraphLassoCV has been renamed to GraphicalLassoCV
Parameters
----------
alphas : int or array-like of shape (n_alphas,), dtype=float, default=4
If an integer is given, it fixes the number of points on the
grids of alpha to be used. If a list is given, it gives the
grid to be used. See the notes in the class docstring for
more details. Range is (0, inf] when floats given.
n_refinements : int, default=4
The number of times the grid is refined. Not used if explicit
values of alphas are passed. Range is [1, inf).
cv : int, cross-validation generator or iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross-validation,
- integer, to specify the number of folds.
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For integer/None inputs :class:`KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
.. versionchanged:: 0.20
``cv`` default value if None changed from 3-fold to 5-fold.
tol : float, default=1e-4
The tolerance to declare convergence: if the dual gap goes below
this value, iterations are stopped. Range is (0, inf].
enet_tol : float, default=1e-4
The tolerance for the elastic net solver used to calculate the descent
direction. This parameter controls the accuracy of the search direction
for a given column update, not of the overall parameter estimate. Only
used for mode='cd'. Range is (0, inf].
max_iter : int, default=100
Maximum number of iterations.
mode : {'cd', 'lars'}, default='cd'
The Lasso solver to use: coordinate descent or LARS. Use LARS for
very sparse underlying graphs, where number of features is greater
than number of samples. Elsewhere prefer cd which is more numerically
stable.
n_jobs : int, default=None
number of jobs to run in parallel.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
.. versionchanged:: v0.20
`n_jobs` default changed from 1 to None
verbose : bool, default=False
If verbose is True, the objective function and duality gap are
printed at each iteration.
assume_centered : bool, default=False
If True, data are not centered before computation.
Useful when working with data whose mean is almost, but not exactly
zero.
If False, data are centered before computation.
Attributes
----------
location_ : ndarray of shape (n_features,)
Estimated location, i.e. the estimated mean.
covariance_ : ndarray of shape (n_features, n_features)
Estimated covariance matrix.
precision_ : ndarray of shape (n_features, n_features)
Estimated precision matrix (inverse covariance).
alpha_ : float
Penalization parameter selected.
cv_alphas_ : list of shape (n_alphas,), dtype=float
All penalization parameters explored.
grid_scores_ : ndarray of shape (n_alphas, n_folds)
Log-likelihood score on left-out data across folds.
n_iter_ : int
Number of iterations run for the optimal alpha.
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import GraphicalLassoCV
>>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
... [0.0, 0.4, 0.0, 0.0],
... [0.2, 0.0, 0.3, 0.1],
... [0.0, 0.0, 0.1, 0.7]])
>>> np.random.seed(0)
>>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
... cov=true_cov,
... size=200)
>>> cov = GraphicalLassoCV().fit(X)
>>> np.around(cov.covariance_, decimals=3)
array([[0.816, 0.051, 0.22 , 0.017],
[0.051, 0.364, 0.018, 0.036],
[0.22 , 0.018, 0.322, 0.094],
[0.017, 0.036, 0.094, 0.69 ]])
>>> np.around(cov.location_, decimals=3)
array([0.073, 0.04 , 0.038, 0.143])
See Also
--------
graphical_lasso, GraphicalLasso
Notes
-----
The search for the optimal penalization parameter (alpha) is done on an
iteratively refined grid: first the cross-validated scores on a grid are
computed, then a new refined grid is centered around the maximum, and so
on.
One of the challenges which is faced here is that the solvers can
fail to converge to a well-conditioned estimate. The corresponding
values of alpha then come out as missing values, but the optimum may
be close to these missing values.
"""
@_deprecate_positional_args
def __init__(self, *, alphas=4, n_refinements=4, cv=None, tol=1e-4,
enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=None,
verbose=False, assume_centered=False):
super().__init__(
mode=mode, tol=tol, verbose=verbose, enet_tol=enet_tol,
max_iter=max_iter, assume_centered=assume_centered)
self.alphas = alphas
self.n_refinements = n_refinements
self.cv = cv
self.n_jobs = n_jobs
def fit(self, X, y=None):
"""Fits the GraphicalLasso covariance model to X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the covariance estimate
y : Ignored
Not used, present for API consistence purpose.
Returns
-------
self : object
"""
# Covariance does not make sense for a single feature
X = self._validate_data(X, ensure_min_features=2, estimator=self)
if self.assume_centered:
self.location_ = np.zeros(X.shape[1])
else:
self.location_ = X.mean(0)
emp_cov = empirical_covariance(
X, assume_centered=self.assume_centered)
cv = check_cv(self.cv, y, classifier=False)
# List of (alpha, scores, covs)
path = list()
n_alphas = self.alphas
inner_verbose = max(0, self.verbose - 1)
if isinstance(n_alphas, Sequence):
alphas = self.alphas
n_refinements = 1
else:
n_refinements = self.n_refinements
alpha_1 = alpha_max(emp_cov)
alpha_0 = 1e-2 * alpha_1
alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1),
n_alphas)[::-1]
t0 = time.time()
for i in range(n_refinements):
with warnings.catch_warnings():
# No need to see the convergence warnings on this grid:
# they will always be points that will not converge
# during the cross-validation
warnings.simplefilter('ignore', ConvergenceWarning)
# Compute the cross-validated loss on the current grid
# NOTE: Warm-restarting graphical_lasso_path has been tried,
# and this did not allow to gain anything
# (same execution time with or without).
this_path = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose
)(delayed(graphical_lasso_path)(X[train], alphas=alphas,
X_test=X[test], mode=self.mode,
tol=self.tol,
enet_tol=self.enet_tol,
max_iter=int(.1 *
self.max_iter),
verbose=inner_verbose)
for train, test in cv.split(X, y))
# Little danse to transform the list in what we need
covs, _, scores = zip(*this_path)
covs = zip(*covs)
scores = zip(*scores)
path.extend(zip(alphas, scores, covs))
path = sorted(path, key=operator.itemgetter(0), reverse=True)
# Find the maximum (avoid using built in 'max' function to
# have a fully-reproducible selection of the smallest alpha
# in case of equality)
best_score = -np.inf
last_finite_idx = 0
for index, (alpha, scores, _) in enumerate(path):
this_score = np.mean(scores)
if this_score >= .1 / np.finfo(np.float64).eps:
this_score = np.nan
if np.isfinite(this_score):
last_finite_idx = index
if this_score >= best_score:
best_score = this_score
best_index = index
# Refine the grid
if best_index == 0:
# We do not need to go back: we have chosen
# the highest value of alpha for which there are
# non-zero coefficients
alpha_1 = path[0][0]
alpha_0 = path[1][0]
elif (best_index == last_finite_idx
and not best_index == len(path) - 1):
# We have non-converged models on the upper bound of the
# grid, we need to refine the grid there
alpha_1 = path[best_index][0]
alpha_0 = path[best_index + 1][0]
elif best_index == len(path) - 1:
alpha_1 = path[best_index][0]
alpha_0 = 0.01 * path[best_index][0]
else:
alpha_1 = path[best_index - 1][0]
alpha_0 = path[best_index + 1][0]
if not isinstance(n_alphas, Sequence):
alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0),
n_alphas + 2)
alphas = alphas[1:-1]
if self.verbose and n_refinements > 1:
print('[GraphicalLassoCV] Done refinement % 2i out of'
' %i: % 3is' % (i + 1, n_refinements, time.time() - t0))
path = list(zip(*path))
grid_scores = list(path[1])
alphas = list(path[0])
# Finally, compute the score with alpha = 0
alphas.append(0)
grid_scores.append(cross_val_score(EmpiricalCovariance(), X,
cv=cv, n_jobs=self.n_jobs,
verbose=inner_verbose))
self.grid_scores_ = np.array(grid_scores)
best_alpha = alphas[best_index]
self.alpha_ = best_alpha
self.cv_alphas_ = alphas
# Finally fit the model with the selected alpha
self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol,
enet_tol=self.enet_tol, max_iter=self.max_iter,
verbose=inner_verbose, return_n_iter=True)
return self