_graph_lasso.py 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
"""GraphicalLasso: sparse inverse covariance estimation with an l1-penalized
estimator.
"""

# Author: Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause
# Copyright: INRIA
from collections.abc import Sequence
import warnings
import operator
import sys
import time

import numpy as np
from scipy import linalg
from joblib import Parallel, delayed

from . import empirical_covariance, EmpiricalCovariance, log_likelihood

from ..exceptions import ConvergenceWarning
from ..utils.validation import check_random_state
from ..utils.validation import _deprecate_positional_args
# mypy error: Module 'sklearn.linear_model' has no attribute '_cd_fast'
from ..linear_model import _cd_fast as cd_fast  # type: ignore
from ..linear_model import lars_path_gram
from ..model_selection import check_cv, cross_val_score


# Helper functions to compute the objective and dual objective functions
# of the l1-penalized estimator
def _objective(mle, precision_, alpha):
    """Evaluation of the graphical-lasso objective function

    the objective function is made of a shifted scaled version of the
    normalized log-likelihood (i.e. its empirical mean over the samples) and a
    penalisation term to promote sparsity
    """
    p = precision_.shape[0]
    cost = - 2. * log_likelihood(mle, precision_) + p * np.log(2 * np.pi)
    cost += alpha * (np.abs(precision_).sum()
                     - np.abs(np.diag(precision_)).sum())
    return cost


def _dual_gap(emp_cov, precision_, alpha):
    """Expression of the dual gap convergence criterion

    The specific definition is given in Duchi "Projected Subgradient Methods
    for Learning Sparse Gaussians".
    """
    gap = np.sum(emp_cov * precision_)
    gap -= precision_.shape[0]
    gap += alpha * (np.abs(precision_).sum()
                    - np.abs(np.diag(precision_)).sum())
    return gap


def alpha_max(emp_cov):
    """Find the maximum alpha for which there are some non-zeros off-diagonal.

    Parameters
    ----------
    emp_cov : ndarray of shape (n_features, n_features)
        The sample covariance matrix.

    Notes
    -----
    This results from the bound for the all the Lasso that are solved
    in GraphicalLasso: each time, the row of cov corresponds to Xy. As the
    bound for alpha is given by `max(abs(Xy))`, the result follows.
    """
    A = np.copy(emp_cov)
    A.flat[::A.shape[0] + 1] = 0
    return np.max(np.abs(A))


# The g-lasso algorithm
@_deprecate_positional_args
def graphical_lasso(emp_cov, alpha, *, cov_init=None, mode='cd', tol=1e-4,
                    enet_tol=1e-4, max_iter=100, verbose=False,
                    return_costs=False, eps=np.finfo(np.float64).eps,
                    return_n_iter=False):
    """l1-penalized covariance estimator

    Read more in the :ref:`User Guide <sparse_inverse_covariance>`.

    .. versionchanged:: v0.20
        graph_lasso has been renamed to graphical_lasso

    Parameters
    ----------
    emp_cov : ndarray of shape (n_features, n_features)
        Empirical covariance from which to compute the covariance estimate.

    alpha : float
        The regularization parameter: the higher alpha, the more
        regularization, the sparser the inverse covariance.
        Range is (0, inf].

    cov_init : array of shape (n_features, n_features), default=None
        The initial guess for the covariance.

    mode : {'cd', 'lars'}, default='cd'
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.

    tol : float, default=1e-4
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped. Range is (0, inf].

    enet_tol : float, default=1e-4
        The tolerance for the elastic net solver used to calculate the descent
        direction. This parameter controls the accuracy of the search direction
        for a given column update, not of the overall parameter estimate. Only
        used for mode='cd'. Range is (0, inf].

    max_iter : int, default=100
        The maximum number of iterations.

    verbose : bool, default=False
        If verbose is True, the objective function and dual gap are
        printed at each iteration.

    return_costs : bool, default=Flase
        If return_costs is True, the objective function and dual gap
        at each iteration are returned.

    eps : float, default=eps
        The machine-precision regularization in the computation of the
        Cholesky diagonal factors. Increase this for very ill-conditioned
        systems. Default is `np.finfo(np.float64).eps`.

    return_n_iter : bool, default=False
        Whether or not to return the number of iterations.

    Returns
    -------
    covariance : ndarray of shape (n_features, n_features)
        The estimated covariance matrix.

    precision : ndarray of shape (n_features, n_features)
        The estimated (sparse) precision matrix.

    costs : list of (objective, dual_gap) pairs
        The list of values of the objective function and the dual gap at
        each iteration. Returned only if return_costs is True.

    n_iter : int
        Number of iterations. Returned only if `return_n_iter` is set to True.

    See Also
    --------
    GraphicalLasso, GraphicalLassoCV

    Notes
    -----
    The algorithm employed to solve this problem is the GLasso algorithm,
    from the Friedman 2008 Biostatistics paper. It is the same algorithm
    as in the R `glasso` package.

    One possible difference with the `glasso` R package is that the
    diagonal coefficients are not penalized.
    """
    _, n_features = emp_cov.shape
    if alpha == 0:
        if return_costs:
            precision_ = linalg.inv(emp_cov)
            cost = - 2. * log_likelihood(emp_cov, precision_)
            cost += n_features * np.log(2 * np.pi)
            d_gap = np.sum(emp_cov * precision_) - n_features
            if return_n_iter:
                return emp_cov, precision_, (cost, d_gap), 0
            else:
                return emp_cov, precision_, (cost, d_gap)
        else:
            if return_n_iter:
                return emp_cov, linalg.inv(emp_cov), 0
            else:
                return emp_cov, linalg.inv(emp_cov)
    if cov_init is None:
        covariance_ = emp_cov.copy()
    else:
        covariance_ = cov_init.copy()
    # As a trivial regularization (Tikhonov like), we scale down the
    # off-diagonal coefficients of our starting point: This is needed, as
    # in the cross-validation the cov_init can easily be
    # ill-conditioned, and the CV loop blows. Beside, this takes
    # conservative stand-point on the initial conditions, and it tends to
    # make the convergence go faster.
    covariance_ *= 0.95
    diagonal = emp_cov.flat[::n_features + 1]
    covariance_.flat[::n_features + 1] = diagonal
    precision_ = linalg.pinvh(covariance_)

    indices = np.arange(n_features)
    costs = list()
    # The different l1 regression solver have different numerical errors
    if mode == 'cd':
        errors = dict(over='raise', invalid='ignore')
    else:
        errors = dict(invalid='raise')
    try:
        # be robust to the max_iter=0 edge case, see:
        # https://github.com/scikit-learn/scikit-learn/issues/4134
        d_gap = np.inf
        # set a sub_covariance buffer
        sub_covariance = np.copy(covariance_[1:, 1:], order='C')
        for i in range(max_iter):
            for idx in range(n_features):
                # To keep the contiguous matrix `sub_covariance` equal to
                # covariance_[indices != idx].T[indices != idx]
                # we only need to update 1 column and 1 line when idx changes
                if idx > 0:
                    di = idx - 1
                    sub_covariance[di] = covariance_[di][indices != idx]
                    sub_covariance[:, di] = covariance_[:, di][indices != idx]
                else:
                    sub_covariance[:] = covariance_[1:, 1:]
                row = emp_cov[idx, indices != idx]
                with np.errstate(**errors):
                    if mode == 'cd':
                        # Use coordinate descent
                        coefs = -(precision_[indices != idx, idx]
                                  / (precision_[idx, idx] + 1000 * eps))
                        coefs, _, _, _ = cd_fast.enet_coordinate_descent_gram(
                            coefs, alpha, 0, sub_covariance,
                            row, row, max_iter, enet_tol,
                            check_random_state(None), False)
                    else:
                        # Use LARS
                        _, _, coefs = lars_path_gram(
                            Xy=row, Gram=sub_covariance, n_samples=row.size,
                            alpha_min=alpha / (n_features - 1), copy_Gram=True,
                            eps=eps, method='lars', return_path=False)
                # Update the precision matrix
                precision_[idx, idx] = (
                    1. / (covariance_[idx, idx]
                          - np.dot(covariance_[indices != idx, idx], coefs)))
                precision_[indices != idx, idx] = (- precision_[idx, idx]
                                                   * coefs)
                precision_[idx, indices != idx] = (- precision_[idx, idx]
                                                   * coefs)
                coefs = np.dot(sub_covariance, coefs)
                covariance_[idx, indices != idx] = coefs
                covariance_[indices != idx, idx] = coefs
            if not np.isfinite(precision_.sum()):
                raise FloatingPointError('The system is too ill-conditioned '
                                         'for this solver')
            d_gap = _dual_gap(emp_cov, precision_, alpha)
            cost = _objective(emp_cov, precision_, alpha)
            if verbose:
                print('[graphical_lasso] Iteration '
                      '% 3i, cost % 3.2e, dual gap %.3e'
                      % (i, cost, d_gap))
            if return_costs:
                costs.append((cost, d_gap))
            if np.abs(d_gap) < tol:
                break
            if not np.isfinite(cost) and i > 0:
                raise FloatingPointError('Non SPD result: the system is '
                                         'too ill-conditioned for this solver')
        else:
            warnings.warn('graphical_lasso: did not converge after '
                          '%i iteration: dual gap: %.3e'
                          % (max_iter, d_gap), ConvergenceWarning)
    except FloatingPointError as e:
        e.args = (e.args[0]
                  + '. The system is too ill-conditioned for this solver',)
        raise e

    if return_costs:
        if return_n_iter:
            return covariance_, precision_, costs, i + 1
        else:
            return covariance_, precision_, costs
    else:
        if return_n_iter:
            return covariance_, precision_, i + 1
        else:
            return covariance_, precision_


class GraphicalLasso(EmpiricalCovariance):
    """Sparse inverse covariance estimation with an l1-penalized estimator.

    Read more in the :ref:`User Guide <sparse_inverse_covariance>`.

    .. versionchanged:: v0.20
        GraphLasso has been renamed to GraphicalLasso

    Parameters
    ----------
    alpha : float, default=0.01
        The regularization parameter: the higher alpha, the more
        regularization, the sparser the inverse covariance.
        Range is (0, inf].

    mode : {'cd', 'lars'}, default='cd'
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.

    tol : float, default=1e-4
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped. Range is (0, inf].

    enet_tol : float, default=1e-4
        The tolerance for the elastic net solver used to calculate the descent
        direction. This parameter controls the accuracy of the search direction
        for a given column update, not of the overall parameter estimate. Only
        used for mode='cd'. Range is (0, inf].

    max_iter : int, default=100
        The maximum number of iterations.

    verbose : bool, default=False
        If verbose is True, the objective function and dual gap are
        plotted at each iteration.

    assume_centered : bool, default=False
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Attributes
    ----------
    location_ : ndarray of shape (n_features,)
        Estimated location, i.e. the estimated mean.

    covariance_ : ndarray of shape (n_features, n_features)
        Estimated covariance matrix

    precision_ : ndarray of shape (n_features, n_features)
        Estimated pseudo inverse matrix.

    n_iter_ : int
        Number of iterations run.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import GraphicalLasso
    >>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
    ...                      [0.0, 0.4, 0.0, 0.0],
    ...                      [0.2, 0.0, 0.3, 0.1],
    ...                      [0.0, 0.0, 0.1, 0.7]])
    >>> np.random.seed(0)
    >>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
    ...                                   cov=true_cov,
    ...                                   size=200)
    >>> cov = GraphicalLasso().fit(X)
    >>> np.around(cov.covariance_, decimals=3)
    array([[0.816, 0.049, 0.218, 0.019],
           [0.049, 0.364, 0.017, 0.034],
           [0.218, 0.017, 0.322, 0.093],
           [0.019, 0.034, 0.093, 0.69 ]])
    >>> np.around(cov.location_, decimals=3)
    array([0.073, 0.04 , 0.038, 0.143])

    See Also
    --------
    graphical_lasso, GraphicalLassoCV
    """
    @_deprecate_positional_args
    def __init__(self, alpha=.01, *, mode='cd', tol=1e-4, enet_tol=1e-4,
                 max_iter=100, verbose=False, assume_centered=False):
        super().__init__(assume_centered=assume_centered)
        self.alpha = alpha
        self.mode = mode
        self.tol = tol
        self.enet_tol = enet_tol
        self.max_iter = max_iter
        self.verbose = verbose

    def fit(self, X, y=None):
        """Fits the GraphicalLasso model to X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data from which to compute the covariance estimate

        y : Ignored
            Not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        # Covariance does not make sense for a single feature
        X = self._validate_data(X, ensure_min_features=2, ensure_min_samples=2,
                                estimator=self)

        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        emp_cov = empirical_covariance(
            X, assume_centered=self.assume_centered)
        self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
            emp_cov, alpha=self.alpha, mode=self.mode, tol=self.tol,
            enet_tol=self.enet_tol, max_iter=self.max_iter,
            verbose=self.verbose, return_n_iter=True)
        return self


# Cross-validation with GraphicalLasso
def graphical_lasso_path(X, alphas, cov_init=None, X_test=None, mode='cd',
                         tol=1e-4, enet_tol=1e-4, max_iter=100, verbose=False):
    """l1-penalized covariance estimator along a path of decreasing alphas

    Read more in the :ref:`User Guide <sparse_inverse_covariance>`.

    Parameters
    ----------
    X : ndarray of shape (n_samples, n_features)
        Data from which to compute the covariance estimate.

    alphas : array-like of shape (n_alphas,)
        The list of regularization parameters, decreasing order.

    cov_init : array of shape (n_features, n_features), default=None
        The initial guess for the covariance.

    X_test : array of shape (n_test_samples, n_features), default=None
        Optional test matrix to measure generalisation error.

    mode : {'cd', 'lars'}, default='cd'
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where p > n. Elsewhere prefer cd
        which is more numerically stable.

    tol : float, default=1e-4
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped. The tolerance must be a positive
        number.

    enet_tol : float, default=1e-4
        The tolerance for the elastic net solver used to calculate the descent
        direction. This parameter controls the accuracy of the search direction
        for a given column update, not of the overall parameter estimate. Only
        used for mode='cd'. The tolerance must be a positive number.

    max_iter : int, default=100
        The maximum number of iterations. This parameter should be a strictly
        positive integer.

    verbose : int or bool, default=False
        The higher the verbosity flag, the more information is printed
        during the fitting.

    Returns
    -------
    covariances_ : list of shape (n_alphas,) of ndarray of shape \
            (n_features, n_features)
        The estimated covariance matrices.

    precisions_ : list of shape (n_alphas,) of ndarray of shape \
            (n_features, n_features)
        The estimated (sparse) precision matrices.

    scores_ : list of shape (n_alphas,), dtype=float
        The generalisation error (log-likelihood) on the test data.
        Returned only if test data is passed.
    """
    inner_verbose = max(0, verbose - 1)
    emp_cov = empirical_covariance(X)
    if cov_init is None:
        covariance_ = emp_cov.copy()
    else:
        covariance_ = cov_init
    covariances_ = list()
    precisions_ = list()
    scores_ = list()
    if X_test is not None:
        test_emp_cov = empirical_covariance(X_test)

    for alpha in alphas:
        try:
            # Capture the errors, and move on
            covariance_, precision_ = graphical_lasso(
                emp_cov, alpha=alpha, cov_init=covariance_, mode=mode, tol=tol,
                enet_tol=enet_tol, max_iter=max_iter, verbose=inner_verbose)
            covariances_.append(covariance_)
            precisions_.append(precision_)
            if X_test is not None:
                this_score = log_likelihood(test_emp_cov, precision_)
        except FloatingPointError:
            this_score = -np.inf
            covariances_.append(np.nan)
            precisions_.append(np.nan)
        if X_test is not None:
            if not np.isfinite(this_score):
                this_score = -np.inf
            scores_.append(this_score)
        if verbose == 1:
            sys.stderr.write('.')
        elif verbose > 1:
            if X_test is not None:
                print('[graphical_lasso_path] alpha: %.2e, score: %.2e'
                      % (alpha, this_score))
            else:
                print('[graphical_lasso_path] alpha: %.2e' % alpha)
    if X_test is not None:
        return covariances_, precisions_, scores_
    return covariances_, precisions_


class GraphicalLassoCV(GraphicalLasso):
    """Sparse inverse covariance w/ cross-validated choice of the l1 penalty.

    See glossary entry for :term:`cross-validation estimator`.

    Read more in the :ref:`User Guide <sparse_inverse_covariance>`.

    .. versionchanged:: v0.20
        GraphLassoCV has been renamed to GraphicalLassoCV

    Parameters
    ----------
    alphas : int or array-like of shape (n_alphas,), dtype=float, default=4
        If an integer is given, it fixes the number of points on the
        grids of alpha to be used. If a list is given, it gives the
        grid to be used. See the notes in the class docstring for
        more details. Range is (0, inf] when floats given.

    n_refinements : int, default=4
        The number of times the grid is refined. Not used if explicit
        values of alphas are passed. Range is [1, inf).

    cv : int, cross-validation generator or iterable, default=None
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.20
            ``cv`` default value if None changed from 3-fold to 5-fold.

    tol : float, default=1e-4
        The tolerance to declare convergence: if the dual gap goes below
        this value, iterations are stopped. Range is (0, inf].

    enet_tol : float, default=1e-4
        The tolerance for the elastic net solver used to calculate the descent
        direction. This parameter controls the accuracy of the search direction
        for a given column update, not of the overall parameter estimate. Only
        used for mode='cd'. Range is (0, inf].

    max_iter : int, default=100
        Maximum number of iterations.

    mode : {'cd', 'lars'}, default='cd'
        The Lasso solver to use: coordinate descent or LARS. Use LARS for
        very sparse underlying graphs, where number of features is greater
        than number of samples. Elsewhere prefer cd which is more numerically
        stable.

    n_jobs : int, default=None
        number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    verbose : bool, default=False
        If verbose is True, the objective function and duality gap are
        printed at each iteration.

    assume_centered : bool, default=False
        If True, data are not centered before computation.
        Useful when working with data whose mean is almost, but not exactly
        zero.
        If False, data are centered before computation.

    Attributes
    ----------
    location_ : ndarray of shape (n_features,)
        Estimated location, i.e. the estimated mean.

    covariance_ : ndarray of shape (n_features, n_features)
        Estimated covariance matrix.

    precision_ : ndarray of shape (n_features, n_features)
        Estimated precision matrix (inverse covariance).

    alpha_ : float
        Penalization parameter selected.

    cv_alphas_ : list of shape (n_alphas,), dtype=float
        All penalization parameters explored.

    grid_scores_ : ndarray of shape (n_alphas, n_folds)
        Log-likelihood score on left-out data across folds.

    n_iter_ : int
        Number of iterations run for the optimal alpha.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.covariance import GraphicalLassoCV
    >>> true_cov = np.array([[0.8, 0.0, 0.2, 0.0],
    ...                      [0.0, 0.4, 0.0, 0.0],
    ...                      [0.2, 0.0, 0.3, 0.1],
    ...                      [0.0, 0.0, 0.1, 0.7]])
    >>> np.random.seed(0)
    >>> X = np.random.multivariate_normal(mean=[0, 0, 0, 0],
    ...                                   cov=true_cov,
    ...                                   size=200)
    >>> cov = GraphicalLassoCV().fit(X)
    >>> np.around(cov.covariance_, decimals=3)
    array([[0.816, 0.051, 0.22 , 0.017],
           [0.051, 0.364, 0.018, 0.036],
           [0.22 , 0.018, 0.322, 0.094],
           [0.017, 0.036, 0.094, 0.69 ]])
    >>> np.around(cov.location_, decimals=3)
    array([0.073, 0.04 , 0.038, 0.143])

    See Also
    --------
    graphical_lasso, GraphicalLasso

    Notes
    -----
    The search for the optimal penalization parameter (alpha) is done on an
    iteratively refined grid: first the cross-validated scores on a grid are
    computed, then a new refined grid is centered around the maximum, and so
    on.

    One of the challenges which is faced here is that the solvers can
    fail to converge to a well-conditioned estimate. The corresponding
    values of alpha then come out as missing values, but the optimum may
    be close to these missing values.
    """
    @_deprecate_positional_args
    def __init__(self, *, alphas=4, n_refinements=4, cv=None, tol=1e-4,
                 enet_tol=1e-4, max_iter=100, mode='cd', n_jobs=None,
                 verbose=False, assume_centered=False):
        super().__init__(
            mode=mode, tol=tol, verbose=verbose, enet_tol=enet_tol,
            max_iter=max_iter, assume_centered=assume_centered)
        self.alphas = alphas
        self.n_refinements = n_refinements
        self.cv = cv
        self.n_jobs = n_jobs

    def fit(self, X, y=None):
        """Fits the GraphicalLasso covariance model to X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Data from which to compute the covariance estimate

        y : Ignored
            Not used, present for API consistence purpose.

        Returns
        -------
        self : object
        """
        # Covariance does not make sense for a single feature
        X = self._validate_data(X, ensure_min_features=2, estimator=self)
        if self.assume_centered:
            self.location_ = np.zeros(X.shape[1])
        else:
            self.location_ = X.mean(0)
        emp_cov = empirical_covariance(
            X, assume_centered=self.assume_centered)

        cv = check_cv(self.cv, y, classifier=False)

        # List of (alpha, scores, covs)
        path = list()
        n_alphas = self.alphas
        inner_verbose = max(0, self.verbose - 1)

        if isinstance(n_alphas, Sequence):
            alphas = self.alphas
            n_refinements = 1
        else:
            n_refinements = self.n_refinements
            alpha_1 = alpha_max(emp_cov)
            alpha_0 = 1e-2 * alpha_1
            alphas = np.logspace(np.log10(alpha_0), np.log10(alpha_1),
                                 n_alphas)[::-1]

        t0 = time.time()
        for i in range(n_refinements):
            with warnings.catch_warnings():
                # No need to see the convergence warnings on this grid:
                # they will always be points that will not converge
                # during the cross-validation
                warnings.simplefilter('ignore', ConvergenceWarning)
                # Compute the cross-validated loss on the current grid

                # NOTE: Warm-restarting graphical_lasso_path has been tried,
                # and this did not allow to gain anything
                # (same execution time with or without).
                this_path = Parallel(
                    n_jobs=self.n_jobs,
                    verbose=self.verbose
                )(delayed(graphical_lasso_path)(X[train], alphas=alphas,
                                                X_test=X[test], mode=self.mode,
                                                tol=self.tol,
                                                enet_tol=self.enet_tol,
                                                max_iter=int(.1 *
                                                             self.max_iter),
                                                verbose=inner_verbose)
                  for train, test in cv.split(X, y))

            # Little danse to transform the list in what we need
            covs, _, scores = zip(*this_path)
            covs = zip(*covs)
            scores = zip(*scores)
            path.extend(zip(alphas, scores, covs))
            path = sorted(path, key=operator.itemgetter(0), reverse=True)

            # Find the maximum (avoid using built in 'max' function to
            # have a fully-reproducible selection of the smallest alpha
            # in case of equality)
            best_score = -np.inf
            last_finite_idx = 0
            for index, (alpha, scores, _) in enumerate(path):
                this_score = np.mean(scores)
                if this_score >= .1 / np.finfo(np.float64).eps:
                    this_score = np.nan
                if np.isfinite(this_score):
                    last_finite_idx = index
                if this_score >= best_score:
                    best_score = this_score
                    best_index = index

            # Refine the grid
            if best_index == 0:
                # We do not need to go back: we have chosen
                # the highest value of alpha for which there are
                # non-zero coefficients
                alpha_1 = path[0][0]
                alpha_0 = path[1][0]
            elif (best_index == last_finite_idx
                    and not best_index == len(path) - 1):
                # We have non-converged models on the upper bound of the
                # grid, we need to refine the grid there
                alpha_1 = path[best_index][0]
                alpha_0 = path[best_index + 1][0]
            elif best_index == len(path) - 1:
                alpha_1 = path[best_index][0]
                alpha_0 = 0.01 * path[best_index][0]
            else:
                alpha_1 = path[best_index - 1][0]
                alpha_0 = path[best_index + 1][0]

            if not isinstance(n_alphas, Sequence):
                alphas = np.logspace(np.log10(alpha_1), np.log10(alpha_0),
                                     n_alphas + 2)
                alphas = alphas[1:-1]

            if self.verbose and n_refinements > 1:
                print('[GraphicalLassoCV] Done refinement % 2i out of'
                      ' %i: % 3is' % (i + 1, n_refinements, time.time() - t0))

        path = list(zip(*path))
        grid_scores = list(path[1])
        alphas = list(path[0])
        # Finally, compute the score with alpha = 0
        alphas.append(0)
        grid_scores.append(cross_val_score(EmpiricalCovariance(), X,
                                           cv=cv, n_jobs=self.n_jobs,
                                           verbose=inner_verbose))
        self.grid_scores_ = np.array(grid_scores)
        best_alpha = alphas[best_index]
        self.alpha_ = best_alpha
        self.cv_alphas_ = alphas

        # Finally fit the model with the selected alpha
        self.covariance_, self.precision_, self.n_iter_ = graphical_lasso(
            emp_cov, alpha=best_alpha, mode=self.mode, tol=self.tol,
            enet_tol=self.enet_tol, max_iter=self.max_iter,
            verbose=inner_verbose, return_n_iter=True)
        return self