test_bicluster.py
9.29 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
"""Testing for Spectral Biclustering methods"""
import numpy as np
import pytest
from scipy.sparse import csr_matrix, issparse
from sklearn.model_selection import ParameterGrid
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.base import BaseEstimator, BiclusterMixin
from sklearn.cluster import SpectralCoclustering
from sklearn.cluster import SpectralBiclustering
from sklearn.cluster._bicluster import _scale_normalize
from sklearn.cluster._bicluster import _bistochastic_normalize
from sklearn.cluster._bicluster import _log_normalize
from sklearn.metrics import (consensus_score, v_measure_score)
from sklearn.datasets import make_biclusters, make_checkerboard
class MockBiclustering(BiclusterMixin, BaseEstimator):
# Mock object for testing get_submatrix.
def __init__(self):
pass
def get_indices(self, i):
# Overridden to reproduce old get_submatrix test.
return (np.where([True, True, False, False, True])[0],
np.where([False, False, True, True])[0])
def test_get_submatrix():
data = np.arange(20).reshape(5, 4)
model = MockBiclustering()
for X in (data, csr_matrix(data), data.tolist()):
submatrix = model.get_submatrix(0, X)
if issparse(submatrix):
submatrix = submatrix.toarray()
assert_array_equal(submatrix, [[2, 3],
[6, 7],
[18, 19]])
submatrix[:] = -1
if issparse(X):
X = X.toarray()
assert np.all(X != -1)
def _test_shape_indices(model):
# Test get_shape and get_indices on fitted model.
for i in range(model.n_clusters):
m, n = model.get_shape(i)
i_ind, j_ind = model.get_indices(i)
assert len(i_ind) == m
assert len(j_ind) == n
def test_spectral_coclustering():
# Test Dhillon's Spectral CoClustering on a simple problem.
param_grid = {'svd_method': ['randomized', 'arpack'],
'n_svd_vecs': [None, 20],
'mini_batch': [False, True],
'init': ['k-means++'],
'n_init': [10]}
random_state = 0
S, rows, cols = make_biclusters((30, 30), 3, noise=0.5,
random_state=random_state)
S -= S.min() # needs to be nonnegative before making it sparse
S = np.where(S < 1, 0, S) # threshold some values
for mat in (S, csr_matrix(S)):
for kwargs in ParameterGrid(param_grid):
model = SpectralCoclustering(n_clusters=3,
random_state=random_state,
**kwargs)
model.fit(mat)
assert model.rows_.shape == (3, 30)
assert_array_equal(model.rows_.sum(axis=0), np.ones(30))
assert_array_equal(model.columns_.sum(axis=0), np.ones(30))
assert consensus_score(model.biclusters_,
(rows, cols)) == 1
_test_shape_indices(model)
def test_spectral_biclustering():
# Test Kluger methods on a checkerboard dataset.
S, rows, cols = make_checkerboard((30, 30), 3, noise=0.5,
random_state=0)
non_default_params = {'method': ['scale', 'log'],
'svd_method': ['arpack'],
'n_svd_vecs': [20],
'mini_batch': [True]}
for mat in (S, csr_matrix(S)):
for param_name, param_values in non_default_params.items():
for param_value in param_values:
model = SpectralBiclustering(
n_clusters=3,
n_init=3,
init='k-means++',
random_state=0,
)
model.set_params(**dict([(param_name, param_value)]))
if issparse(mat) and model.get_params().get('method') == 'log':
# cannot take log of sparse matrix
with pytest.raises(ValueError):
model.fit(mat)
continue
else:
model.fit(mat)
assert model.rows_.shape == (9, 30)
assert model.columns_.shape == (9, 30)
assert_array_equal(model.rows_.sum(axis=0),
np.repeat(3, 30))
assert_array_equal(model.columns_.sum(axis=0),
np.repeat(3, 30))
assert consensus_score(model.biclusters_,
(rows, cols)) == 1
_test_shape_indices(model)
def _do_scale_test(scaled):
"""Check that rows sum to one constant, and columns to another."""
row_sum = scaled.sum(axis=1)
col_sum = scaled.sum(axis=0)
if issparse(scaled):
row_sum = np.asarray(row_sum).squeeze()
col_sum = np.asarray(col_sum).squeeze()
assert_array_almost_equal(row_sum, np.tile(row_sum.mean(), 100),
decimal=1)
assert_array_almost_equal(col_sum, np.tile(col_sum.mean(), 100),
decimal=1)
def _do_bistochastic_test(scaled):
"""Check that rows and columns sum to the same constant."""
_do_scale_test(scaled)
assert_almost_equal(scaled.sum(axis=0).mean(),
scaled.sum(axis=1).mean(),
decimal=1)
def test_scale_normalize():
generator = np.random.RandomState(0)
X = generator.rand(100, 100)
for mat in (X, csr_matrix(X)):
scaled, _, _ = _scale_normalize(mat)
_do_scale_test(scaled)
if issparse(mat):
assert issparse(scaled)
def test_bistochastic_normalize():
generator = np.random.RandomState(0)
X = generator.rand(100, 100)
for mat in (X, csr_matrix(X)):
scaled = _bistochastic_normalize(mat)
_do_bistochastic_test(scaled)
if issparse(mat):
assert issparse(scaled)
def test_log_normalize():
# adding any constant to a log-scaled matrix should make it
# bistochastic
generator = np.random.RandomState(0)
mat = generator.rand(100, 100)
scaled = _log_normalize(mat) + 1
_do_bistochastic_test(scaled)
def test_fit_best_piecewise():
model = SpectralBiclustering(random_state=0)
vectors = np.array([[0, 0, 0, 1, 1, 1],
[2, 2, 2, 3, 3, 3],
[0, 1, 2, 3, 4, 5]])
best = model._fit_best_piecewise(vectors, n_best=2, n_clusters=2)
assert_array_equal(best, vectors[:2])
def test_project_and_cluster():
model = SpectralBiclustering(random_state=0)
data = np.array([[1, 1, 1],
[1, 1, 1],
[3, 6, 3],
[3, 6, 3]])
vectors = np.array([[1, 0],
[0, 1],
[0, 0]])
for mat in (data, csr_matrix(data)):
labels = model._project_and_cluster(mat, vectors,
n_clusters=2)
assert_almost_equal(v_measure_score(labels, [0, 0, 1, 1]), 1.0)
def test_perfect_checkerboard():
# XXX Previously failed on build bot (not reproducible)
model = SpectralBiclustering(3, svd_method="arpack", random_state=0)
S, rows, cols = make_checkerboard((30, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert consensus_score(model.biclusters_,
(rows, cols)) == 1
S, rows, cols = make_checkerboard((40, 30), 3, noise=0,
random_state=0)
model.fit(S)
assert consensus_score(model.biclusters_,
(rows, cols)) == 1
S, rows, cols = make_checkerboard((30, 40), 3, noise=0,
random_state=0)
model.fit(S)
assert consensus_score(model.biclusters_,
(rows, cols)) == 1
@pytest.mark.parametrize(
"args",
[{'n_clusters': (3, 3, 3)},
{'n_clusters': 'abc'},
{'n_clusters': (3, 'abc')},
{'method': 'unknown'},
{'n_components': 0},
{'n_best': 0},
{'svd_method': 'unknown'},
{'n_components': 3, 'n_best': 4}]
)
def test_errors(args):
data = np.arange(25).reshape((5, 5))
model = SpectralBiclustering(**args)
with pytest.raises(ValueError):
model.fit(data)
def test_wrong_shape():
model = SpectralBiclustering()
data = np.arange(27).reshape((3, 3, 3))
with pytest.raises(ValueError):
model.fit(data)
@pytest.mark.parametrize('est',
(SpectralBiclustering(), SpectralCoclustering()))
def test_n_features_in_(est):
X, _, _ = make_biclusters((3, 3), 3, random_state=0)
assert not hasattr(est, 'n_features_in_')
est.fit(X)
assert est.n_features_in_ == 3
@pytest.mark.parametrize("klass", [SpectralBiclustering, SpectralCoclustering])
@pytest.mark.parametrize("n_jobs", [None, 1])
def test_n_jobs_deprecated(klass, n_jobs):
# FIXME: remove in 0.25
depr_msg = ("'n_jobs' was deprecated in version 0.23 and will be removed "
"in 0.25.")
S, _, _ = make_biclusters((30, 30), 3, noise=0.5, random_state=0)
est = klass(random_state=0, n_jobs=n_jobs)
with pytest.warns(FutureWarning, match=depr_msg):
est.fit(S)