_spectral.py 21.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
# -*- coding: utf-8 -*-
"""Algorithms for spectral clustering"""

# Author: Gael Varoquaux gael.varoquaux@normalesup.org
#         Brian Cheung
#         Wei LI <kuantkid@gmail.com>
# License: BSD 3 clause
import warnings

import numpy as np

from ..base import BaseEstimator, ClusterMixin
from ..utils import check_random_state, as_float_array
from ..utils.validation import _deprecate_positional_args
from ..metrics.pairwise import pairwise_kernels
from ..neighbors import kneighbors_graph, NearestNeighbors
from ..manifold import spectral_embedding
from ._kmeans import k_means


@_deprecate_positional_args
def discretize(vectors, *, copy=True, max_svd_restarts=30, n_iter_max=20,
               random_state=None):
    """Search for a partition matrix (clustering) which is closest to the
    eigenvector embedding.

    Parameters
    ----------
    vectors : array-like, shape: (n_samples, n_clusters)
        The embedding space of the samples.

    copy : boolean, optional, default: True
        Whether to copy vectors, or perform in-place normalization.

    max_svd_restarts : int, optional, default: 30
        Maximum number of attempts to restart SVD if convergence fails

    n_iter_max : int, optional, default: 30
        Maximum number of iterations to attempt in rotation and partition
        matrix search if machine precision convergence is not reached

    random_state : int, RandomState instance, default=None
        Determines random number generation for rotation matrix initialization.
        Use an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    labels : array of integers, shape: n_samples
        The labels of the clusters.

    References
    ----------

    - Multiclass spectral clustering, 2003
      Stella X. Yu, Jianbo Shi
      https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

    Notes
    -----

    The eigenvector embedding is used to iteratively search for the
    closest discrete partition.  First, the eigenvector embedding is
    normalized to the space of partition matrices. An optimal discrete
    partition matrix closest to this normalized embedding multiplied by
    an initial rotation is calculated.  Fixing this discrete partition
    matrix, an optimal rotation matrix is calculated.  These two
    calculations are performed until convergence.  The discrete partition
    matrix is returned as the clustering solution.  Used in spectral
    clustering, this method tends to be faster and more robust to random
    initialization than k-means.

    """

    from scipy.sparse import csc_matrix
    from scipy.linalg import LinAlgError

    random_state = check_random_state(random_state)

    vectors = as_float_array(vectors, copy=copy)

    eps = np.finfo(float).eps
    n_samples, n_components = vectors.shape

    # Normalize the eigenvectors to an equal length of a vector of ones.
    # Reorient the eigenvectors to point in the negative direction with respect
    # to the first element.  This may have to do with constraining the
    # eigenvectors to lie in a specific quadrant to make the discretization
    # search easier.
    norm_ones = np.sqrt(n_samples)
    for i in range(vectors.shape[1]):
        vectors[:, i] = (vectors[:, i] / np.linalg.norm(vectors[:, i])) \
            * norm_ones
        if vectors[0, i] != 0:
            vectors[:, i] = -1 * vectors[:, i] * np.sign(vectors[0, i])

    # Normalize the rows of the eigenvectors.  Samples should lie on the unit
    # hypersphere centered at the origin.  This transforms the samples in the
    # embedding space to the space of partition matrices.
    vectors = vectors / np.sqrt((vectors ** 2).sum(axis=1))[:, np.newaxis]

    svd_restarts = 0
    has_converged = False

    # If there is an exception we try to randomize and rerun SVD again
    # do this max_svd_restarts times.
    while (svd_restarts < max_svd_restarts) and not has_converged:

        # Initialize first column of rotation matrix with a row of the
        # eigenvectors
        rotation = np.zeros((n_components, n_components))
        rotation[:, 0] = vectors[random_state.randint(n_samples), :].T

        # To initialize the rest of the rotation matrix, find the rows
        # of the eigenvectors that are as orthogonal to each other as
        # possible
        c = np.zeros(n_samples)
        for j in range(1, n_components):
            # Accumulate c to ensure row is as orthogonal as possible to
            # previous picks as well as current one
            c += np.abs(np.dot(vectors, rotation[:, j - 1]))
            rotation[:, j] = vectors[c.argmin(), :].T

        last_objective_value = 0.0
        n_iter = 0

        while not has_converged:
            n_iter += 1

            t_discrete = np.dot(vectors, rotation)

            labels = t_discrete.argmax(axis=1)
            vectors_discrete = csc_matrix(
                (np.ones(len(labels)), (np.arange(0, n_samples), labels)),
                shape=(n_samples, n_components))

            t_svd = vectors_discrete.T * vectors

            try:
                U, S, Vh = np.linalg.svd(t_svd)
                svd_restarts += 1
            except LinAlgError:
                print("SVD did not converge, randomizing and trying again")
                break

            ncut_value = 2.0 * (n_samples - S.sum())
            if ((abs(ncut_value - last_objective_value) < eps) or
                    (n_iter > n_iter_max)):
                has_converged = True
            else:
                # otherwise calculate rotation and continue
                last_objective_value = ncut_value
                rotation = np.dot(Vh.T, U.T)

    if not has_converged:
        raise LinAlgError('SVD did not converge')
    return labels


@_deprecate_positional_args
def spectral_clustering(affinity, *, n_clusters=8, n_components=None,
                        eigen_solver=None, random_state=None, n_init=10,
                        eigen_tol=0.0, assign_labels='kmeans'):
    """Apply clustering to a projection of the normalized Laplacian.

    In practice Spectral Clustering is very useful when the structure of
    the individual clusters is highly non-convex or more generally when
    a measure of the center and spread of the cluster is not a suitable
    description of the complete cluster. For instance, when clusters are
    nested circles on the 2D plane.

    If affinity is the adjacency matrix of a graph, this method can be
    used to find normalized graph cuts.

    Read more in the :ref:`User Guide <spectral_clustering>`.

    Parameters
    ----------
    affinity : array-like or sparse matrix, shape: (n_samples, n_samples)
        The affinity matrix describing the relationship of the samples to
        embed. **Must be symmetric**.

        Possible examples:
          - adjacency matrix of a graph,
          - heat kernel of the pairwise distance matrix of the samples,
          - symmetric k-nearest neighbours connectivity matrix of the samples.

    n_clusters : integer, optional
        Number of clusters to extract.

    n_components : integer, optional, default is n_clusters
        Number of eigen vectors to use for the spectral embedding

    eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
        The eigenvalue decomposition strategy to use. AMG requires pyamg
        to be installed. It can be faster on very large, sparse problems,
        but may also lead to instabilities

    random_state : int, RandomState instance, default=None
        A pseudo random number generator used for the initialization of the
        lobpcg eigen vectors decomposition when eigen_solver == 'amg' and by
        the K-Means initialization. Use an int to make the randomness
        deterministic.
        See :term:`Glossary <random_state>`.

    n_init : int, optional, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    eigen_tol : float, optional, default: 0.0
        Stopping criterion for eigendecomposition of the Laplacian matrix
        when using arpack eigen_solver.

    assign_labels : {'kmeans', 'discretize'}, default: 'kmeans'
        The strategy to use to assign labels in the embedding
        space.  There are two ways to assign labels after the laplacian
        embedding.  k-means can be applied and is a popular choice. But it can
        also be sensitive to initialization. Discretization is another
        approach which is less sensitive to random initialization. See
        the 'Multiclass spectral clustering' paper referenced below for
        more details on the discretization approach.

    Returns
    -------
    labels : array of integers, shape: n_samples
        The labels of the clusters.

    References
    ----------

    - Normalized cuts and image segmentation, 2000
      Jianbo Shi, Jitendra Malik
      http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

    - A Tutorial on Spectral Clustering, 2007
      Ulrike von Luxburg
      http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

    - Multiclass spectral clustering, 2003
      Stella X. Yu, Jianbo Shi
      https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf

    Notes
    -----
    The graph should contain only one connect component, elsewhere
    the results make little sense.

    This algorithm solves the normalized cut for k=2: it is a
    normalized spectral clustering.
    """
    if assign_labels not in ('kmeans', 'discretize'):
        raise ValueError("The 'assign_labels' parameter should be "
                         "'kmeans' or 'discretize', but '%s' was given"
                         % assign_labels)

    random_state = check_random_state(random_state)
    n_components = n_clusters if n_components is None else n_components

    # The first eigen vector is constant only for fully connected graphs
    # and should be kept for spectral clustering (drop_first = False)
    # See spectral_embedding documentation.
    maps = spectral_embedding(affinity, n_components=n_components,
                              eigen_solver=eigen_solver,
                              random_state=random_state,
                              eigen_tol=eigen_tol, drop_first=False)

    if assign_labels == 'kmeans':
        _, labels, _ = k_means(maps, n_clusters, random_state=random_state,
                               n_init=n_init)
    else:
        labels = discretize(maps, random_state=random_state)

    return labels


class SpectralClustering(ClusterMixin, BaseEstimator):
    """Apply clustering to a projection of the normalized Laplacian.

    In practice Spectral Clustering is very useful when the structure of
    the individual clusters is highly non-convex or more generally when
    a measure of the center and spread of the cluster is not a suitable
    description of the complete cluster. For instance when clusters are
    nested circles on the 2D plane.

    If affinity is the adjacency matrix of a graph, this method can be
    used to find normalized graph cuts.

    When calling ``fit``, an affinity matrix is constructed using either
    kernel function such the Gaussian (aka RBF) kernel of the euclidean
    distanced ``d(X, X)``::

            np.exp(-gamma * d(X,X) ** 2)

    or a k-nearest neighbors connectivity matrix.

    Alternatively, using ``precomputed``, a user-provided affinity
    matrix can be used.

    Read more in the :ref:`User Guide <spectral_clustering>`.

    Parameters
    ----------
    n_clusters : integer, optional
        The dimension of the projection subspace.

    eigen_solver : {None, 'arpack', 'lobpcg', or 'amg'}
        The eigenvalue decomposition strategy to use. AMG requires pyamg
        to be installed. It can be faster on very large, sparse problems,
        but may also lead to instabilities.

    n_components : integer, optional, default=n_clusters
        Number of eigen vectors to use for the spectral embedding

    random_state : int, RandomState instance, default=None
        A pseudo random number generator used for the initialization of the
        lobpcg eigen vectors decomposition when ``eigen_solver='amg'`` and by
        the K-Means initialization. Use an int to make the randomness
        deterministic.
        See :term:`Glossary <random_state>`.

    n_init : int, optional, default: 10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    gamma : float, default=1.0
        Kernel coefficient for rbf, poly, sigmoid, laplacian and chi2 kernels.
        Ignored for ``affinity='nearest_neighbors'``.

    affinity : string or callable, default 'rbf'
        How to construct the affinity matrix.
         - 'nearest_neighbors' : construct the affinity matrix by computing a
           graph of nearest neighbors.
         - 'rbf' : construct the affinity matrix using a radial basis function
           (RBF) kernel.
         - 'precomputed' : interpret ``X`` as a precomputed affinity matrix.
         - 'precomputed_nearest_neighbors' : interpret ``X`` as a sparse graph
           of precomputed nearest neighbors, and constructs the affinity matrix
           by selecting the ``n_neighbors`` nearest neighbors.
         - one of the kernels supported by
           :func:`~sklearn.metrics.pairwise_kernels`.

        Only kernels that produce similarity scores (non-negative values that
        increase with similarity) should be used. This property is not checked
        by the clustering algorithm.

    n_neighbors : integer
        Number of neighbors to use when constructing the affinity matrix using
        the nearest neighbors method. Ignored for ``affinity='rbf'``.

    eigen_tol : float, optional, default: 0.0
        Stopping criterion for eigendecomposition of the Laplacian matrix
        when ``eigen_solver='arpack'``.

    assign_labels : {'kmeans', 'discretize'}, default: 'kmeans'
        The strategy to use to assign labels in the embedding
        space. There are two ways to assign labels after the laplacian
        embedding. k-means can be applied and is a popular choice. But it can
        also be sensitive to initialization. Discretization is another approach
        which is less sensitive to random initialization.

    degree : float, default=3
        Degree of the polynomial kernel. Ignored by other kernels.

    coef0 : float, default=1
        Zero coefficient for polynomial and sigmoid kernels.
        Ignored by other kernels.

    kernel_params : dictionary of string to any, optional
        Parameters (keyword arguments) and values for kernel passed as
        callable object. Ignored by other kernels.

    n_jobs : int or None, optional (default=None)
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    affinity_matrix_ : array-like, shape (n_samples, n_samples)
        Affinity matrix used for clustering. Available only if after calling
        ``fit``.

    labels_ : array, shape (n_samples,)
        Labels of each point

    Examples
    --------
    >>> from sklearn.cluster import SpectralClustering
    >>> import numpy as np
    >>> X = np.array([[1, 1], [2, 1], [1, 0],
    ...               [4, 7], [3, 5], [3, 6]])
    >>> clustering = SpectralClustering(n_clusters=2,
    ...         assign_labels="discretize",
    ...         random_state=0).fit(X)
    >>> clustering.labels_
    array([1, 1, 1, 0, 0, 0])
    >>> clustering
    SpectralClustering(assign_labels='discretize', n_clusters=2,
        random_state=0)

    Notes
    -----
    If you have an affinity matrix, such as a distance matrix,
    for which 0 means identical elements, and high values means
    very dissimilar elements, it can be transformed in a
    similarity matrix that is well suited for the algorithm by
    applying the Gaussian (RBF, heat) kernel::

        np.exp(- dist_matrix ** 2 / (2. * delta ** 2))

    Where ``delta`` is a free parameter representing the width of the Gaussian
    kernel.

    Another alternative is to take a symmetric version of the k
    nearest neighbors connectivity matrix of the points.

    If the pyamg package is installed, it is used: this greatly
    speeds up computation.

    References
    ----------

    - Normalized cuts and image segmentation, 2000
      Jianbo Shi, Jitendra Malik
      http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.160.2324

    - A Tutorial on Spectral Clustering, 2007
      Ulrike von Luxburg
      http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323

    - Multiclass spectral clustering, 2003
      Stella X. Yu, Jianbo Shi
      https://www1.icsi.berkeley.edu/~stellayu/publication/doc/2003kwayICCV.pdf
    """
    @_deprecate_positional_args
    def __init__(self, n_clusters=8, *, eigen_solver=None, n_components=None,
                 random_state=None, n_init=10, gamma=1., affinity='rbf',
                 n_neighbors=10, eigen_tol=0.0, assign_labels='kmeans',
                 degree=3, coef0=1, kernel_params=None, n_jobs=None):
        self.n_clusters = n_clusters
        self.eigen_solver = eigen_solver
        self.n_components = n_components
        self.random_state = random_state
        self.n_init = n_init
        self.gamma = gamma
        self.affinity = affinity
        self.n_neighbors = n_neighbors
        self.eigen_tol = eigen_tol
        self.assign_labels = assign_labels
        self.degree = degree
        self.coef0 = coef0
        self.kernel_params = kernel_params
        self.n_jobs = n_jobs

    def fit(self, X, y=None):
        """Perform spectral clustering from features, or affinity matrix.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features), or \
            array-like, shape (n_samples, n_samples)
            Training instances to cluster, or similarities / affinities between
            instances if ``affinity='precomputed'``. If a sparse matrix is
            provided in a format other than ``csr_matrix``, ``csc_matrix``,
            or ``coo_matrix``, it will be converted into a sparse
            ``csr_matrix``.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        self

        """
        X = self._validate_data(X, accept_sparse=['csr', 'csc', 'coo'],
                                dtype=np.float64, ensure_min_samples=2)
        allow_squared = self.affinity in ["precomputed",
                                          "precomputed_nearest_neighbors"]
        if X.shape[0] == X.shape[1] and not allow_squared:
            warnings.warn("The spectral clustering API has changed. ``fit``"
                          "now constructs an affinity matrix from data. To use"
                          " a custom affinity matrix, "
                          "set ``affinity=precomputed``.")

        if self.affinity == 'nearest_neighbors':
            connectivity = kneighbors_graph(X, n_neighbors=self.n_neighbors,
                                            include_self=True,
                                            n_jobs=self.n_jobs)
            self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
        elif self.affinity == 'precomputed_nearest_neighbors':
            estimator = NearestNeighbors(n_neighbors=self.n_neighbors,
                                         n_jobs=self.n_jobs,
                                         metric="precomputed").fit(X)
            connectivity = estimator.kneighbors_graph(X=X, mode='connectivity')
            self.affinity_matrix_ = 0.5 * (connectivity + connectivity.T)
        elif self.affinity == 'precomputed':
            self.affinity_matrix_ = X
        else:
            params = self.kernel_params
            if params is None:
                params = {}
            if not callable(self.affinity):
                params['gamma'] = self.gamma
                params['degree'] = self.degree
                params['coef0'] = self.coef0
            self.affinity_matrix_ = pairwise_kernels(X, metric=self.affinity,
                                                     filter_params=True,
                                                     **params)

        random_state = check_random_state(self.random_state)
        self.labels_ = spectral_clustering(self.affinity_matrix_,
                                           n_clusters=self.n_clusters,
                                           n_components=self.n_components,
                                           eigen_solver=self.eigen_solver,
                                           random_state=random_state,
                                           n_init=self.n_init,
                                           eigen_tol=self.eigen_tol,
                                           assign_labels=self.assign_labels)
        return self

    def fit_predict(self, X, y=None):
        """Perform spectral clustering from features, or affinity matrix,
        and return cluster labels.

        Parameters
        ----------
        X : array-like or sparse matrix, shape (n_samples, n_features), or \
            array-like, shape (n_samples, n_samples)
            Training instances to cluster, or similarities / affinities between
            instances if ``affinity='precomputed'``. If a sparse matrix is
            provided in a format other than ``csr_matrix``, ``csc_matrix``,
            or ``coo_matrix``, it will be converted into a sparse
            ``csr_matrix``.

        y : Ignored
            Not used, present here for API consistency by convention.

        Returns
        -------
        labels : ndarray, shape (n_samples,)
            Cluster labels.
        """
        return super().fit_predict(X, y)

    @property
    def _pairwise(self):
        return self.affinity in ["precomputed",
                                 "precomputed_nearest_neighbors"]