_kmeans.py 73.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916
"""K-means clustering"""

# Authors: Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Thomas Rueckstiess <ruecksti@in.tum.de>
#          James Bergstra <james.bergstra@umontreal.ca>
#          Jan Schlueter <scikit-learn@jan-schlueter.de>
#          Nelle Varoquaux
#          Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Robert Layton <robertlayton@gmail.com>
# License: BSD 3 clause

import warnings

import numpy as np
import scipy.sparse as sp
from threadpoolctl import threadpool_limits

from ..base import BaseEstimator, ClusterMixin, TransformerMixin
from ..metrics.pairwise import euclidean_distances
from ..utils.extmath import row_norms, stable_cumsum
from ..utils.sparsefuncs_fast import assign_rows_csr
from ..utils.sparsefuncs import mean_variance_axis
from ..utils.validation import _deprecate_positional_args
from ..utils import check_array
from ..utils import gen_batches
from ..utils import check_random_state
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils._openmp_helpers import _openmp_effective_n_threads
from ..exceptions import ConvergenceWarning
from ._k_means_fast import _inertia_dense
from ._k_means_fast import _inertia_sparse
from ._k_means_fast import _mini_batch_update_csr
from ._k_means_lloyd import lloyd_iter_chunked_dense
from ._k_means_lloyd import lloyd_iter_chunked_sparse
from ._k_means_elkan import init_bounds_dense
from ._k_means_elkan import init_bounds_sparse
from ._k_means_elkan import elkan_iter_chunked_dense
from ._k_means_elkan import elkan_iter_chunked_sparse


###############################################################################
# Initialization heuristic


def _k_init(X, n_clusters, x_squared_norms, random_state, n_local_trials=None):
    """Init n_clusters seeds according to k-means++

    Parameters
    ----------
    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
        The data to pick seeds for. To avoid memory copy, the input data
        should be double precision (dtype=np.float64).

    n_clusters : int
        The number of seeds to choose

    x_squared_norms : ndarray of shape (n_samples,)
        Squared Euclidean norm of each data point.

    random_state : RandomState instance
        The generator used to initialize the centers.
        See :term:`Glossary <random_state>`.

    n_local_trials : int, default=None
        The number of seeding trials for each center (except the first),
        of which the one reducing inertia the most is greedily chosen.
        Set to None to make the number of trials depend logarithmically
        on the number of seeds (2+log(k)); this is the default.

    Notes
    -----
    Selects initial cluster centers for k-mean clustering in a smart way
    to speed up convergence. see: Arthur, D. and Vassilvitskii, S.
    "k-means++: the advantages of careful seeding". ACM-SIAM symposium
    on Discrete algorithms. 2007

    Version ported from http://www.stanford.edu/~darthur/kMeansppTest.zip,
    which is the implementation used in the aforementioned paper.
    """
    n_samples, n_features = X.shape

    centers = np.empty((n_clusters, n_features), dtype=X.dtype)

    assert x_squared_norms is not None, 'x_squared_norms None in _k_init'

    # Set the number of local seeding trials if none is given
    if n_local_trials is None:
        # This is what Arthur/Vassilvitskii tried, but did not report
        # specific results for other than mentioning in the conclusion
        # that it helped.
        n_local_trials = 2 + int(np.log(n_clusters))

    # Pick first center randomly
    center_id = random_state.randint(n_samples)
    if sp.issparse(X):
        centers[0] = X[center_id].toarray()
    else:
        centers[0] = X[center_id]

    # Initialize list of closest distances and calculate current potential
    closest_dist_sq = euclidean_distances(
        centers[0, np.newaxis], X, Y_norm_squared=x_squared_norms,
        squared=True)
    current_pot = closest_dist_sq.sum()

    # Pick the remaining n_clusters-1 points
    for c in range(1, n_clusters):
        # Choose center candidates by sampling with probability proportional
        # to the squared distance to the closest existing center
        rand_vals = random_state.random_sample(n_local_trials) * current_pot
        candidate_ids = np.searchsorted(stable_cumsum(closest_dist_sq),
                                        rand_vals)
        # XXX: numerical imprecision can result in a candidate_id out of range
        np.clip(candidate_ids, None, closest_dist_sq.size - 1,
                out=candidate_ids)

        # Compute distances to center candidates
        distance_to_candidates = euclidean_distances(
            X[candidate_ids], X, Y_norm_squared=x_squared_norms, squared=True)

        # update closest distances squared and potential for each candidate
        np.minimum(closest_dist_sq, distance_to_candidates,
                   out=distance_to_candidates)
        candidates_pot = distance_to_candidates.sum(axis=1)

        # Decide which candidate is the best
        best_candidate = np.argmin(candidates_pot)
        current_pot = candidates_pot[best_candidate]
        closest_dist_sq = distance_to_candidates[best_candidate]
        best_candidate = candidate_ids[best_candidate]

        # Permanently add best center candidate found in local tries
        if sp.issparse(X):
            centers[c] = X[best_candidate].toarray()
        else:
            centers[c] = X[best_candidate]

    return centers


###############################################################################
# K-means batch estimation by EM (expectation maximization)

def _validate_center_shape(X, n_centers, centers):
    """Check if centers is compatible with X and n_centers"""
    if centers.shape[0] != n_centers:
        raise ValueError(
            f"The shape of the initial centers {centers.shape} does not "
            f"match the number of clusters {n_centers}.")
    if centers.shape[1] != X.shape[1]:
        raise ValueError(
            f"The shape of the initial centers {centers.shape} does not "
            f"match the number of features of the data {X.shape[1]}.")


def _tolerance(X, tol):
    """Return a tolerance which is independent of the dataset"""
    if tol == 0:
        return 0
    if sp.issparse(X):
        variances = mean_variance_axis(X, axis=0)[1]
    else:
        variances = np.var(X, axis=0)
    return np.mean(variances) * tol


@_deprecate_positional_args
def k_means(X, n_clusters, *, sample_weight=None, init='k-means++',
            precompute_distances='deprecated', n_init=10, max_iter=300,
            verbose=False, tol=1e-4, random_state=None, copy_x=True,
            n_jobs='deprecated', algorithm="auto", return_n_iter=False):
    """K-means clustering algorithm.

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------
    X : {array-like, sparse} matrix of shape (n_samples, n_features)
        The observations to cluster. It must be noted that the data
        will be converted to C ordering, which will cause a memory copy
        if the given data is not C-contiguous.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    sample_weight : array-like of shape (n_samples,), default=None
        The weights for each observation in X. If None, all observations
        are assigned equal weight

    init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
        Method for initialization:

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose `n_clusters` observations (rows) at random from data
        for the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, n_clusters and a
        random state and return an initialization.

    precompute_distances : {'auto', True, False}
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances

        False : never precompute distances

        .. deprecated:: 0.23
            'precompute_distances' was deprecated in version 0.23 and will be
            removed in 0.25. It has no effect.

    n_init : int, default=10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    max_iter : int, default=300
        Maximum number of iterations of the k-means algorithm to run.

    verbose : bool, default=False
        Verbosity mode.

    tol : float, default=1e-4
        Relative tolerance with regards to Frobenius norm of the difference
        in the cluster centers of two consecutive iterations to declare
        convergence.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    copy_x : bool, default=True
        When pre-computing distances it is more numerically accurate to center
        the data first. If copy_x is True (default), then the original data is
        not modified. If False, the original data is modified, and put back
        before the function returns, but small numerical differences may be
        introduced by subtracting and then adding the data mean. Note that if
        the original data is not C-contiguous, a copy will be made even if
        copy_x is False. If the original data is sparse, but not in CSR format,
        a copy will be made even if copy_x is False.

    n_jobs : int, default=None
        The number of OpenMP threads to use for the computation. Parallelism is
        sample-wise on the main cython loop which assigns each sample to its
        closest center.

        ``None`` or ``-1`` means using all processors.

        .. deprecated:: 0.23
            ``n_jobs`` was deprecated in version 0.23 and will be removed in
            0.25.

    algorithm : {"auto", "full", "elkan"}, default="auto"
        K-means algorithm to use. The classical EM-style algorithm is "full".
        The "elkan" variation is more efficient on data with well-defined
        clusters, by using the triangle inequality. However it's more memory
        intensive due to the allocation of an extra array of shape
        (n_samples, n_clusters).

        For now "auto" (kept for backward compatibiliy) chooses "elkan" but it
        might change in the future for a better heuristic.

    return_n_iter : bool, default=False
        Whether or not to return the number of iterations.

    Returns
    -------
    centroid : ndarray of shape (n_clusters, n_features)
        Centroids found at the last iteration of k-means.

    label : ndarray of shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    best_n_iter : int
        Number of iterations corresponding to the best results.
        Returned only if `return_n_iter` is set to True.
    """
    est = KMeans(
        n_clusters=n_clusters, init=init, n_init=n_init, max_iter=max_iter,
        verbose=verbose, precompute_distances=precompute_distances, tol=tol,
        random_state=random_state, copy_x=copy_x, n_jobs=n_jobs,
        algorithm=algorithm
    ).fit(X, sample_weight=sample_weight)
    if return_n_iter:
        return est.cluster_centers_, est.labels_, est.inertia_, est.n_iter_
    else:
        return est.cluster_centers_, est.labels_, est.inertia_


def _kmeans_single_elkan(X, sample_weight, n_clusters, max_iter=300,
                         init='k-means++', verbose=False, x_squared_norms=None,
                         random_state=None, tol=1e-4, n_threads=1):
    """A single run of k-means lloyd, assumes preparation completed prior.

    Parameters
    ----------
    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
        The observations to cluster. If sparse matrix, must be in CSR format.

    sample_weight : array-like of shape (n_samples,)
        The weights for each observation in X.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter : int, default=300
        Maximum number of iterations of the k-means algorithm to run.

    init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
        Method for initialization:

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose `n_clusters` observations (rows) at random from data
        for the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, n_clusters and a
        random state and return an initialization.

    verbose : bool, default=False
        Verbosity mode

    x_squared_norms : array-like, default=None
        Precomputed x_squared_norms.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    tol : float, default=1e-4
        Relative tolerance with regards to Frobenius norm of the difference
        in the cluster centers of two consecutive iterations to declare
        convergence.
        It's not advised to set `tol=0` since convergence might never be
        declared due to rounding errors. Use a very small number instead.

    n_threads : int, default=1
        The number of OpenMP threads to use for the computation. Parallelism is
        sample-wise on the main cython loop which assigns each sample to its
        closest center.

    Returns
    -------
    centroid : ndarray of shape (n_clusters, n_features)
        Centroids found at the last iteration of k-means.

    label : ndarray of shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    n_iter : int
        Number of iterations run.
    """
    random_state = check_random_state(random_state)
    sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

    # init
    centers = _init_centroids(X, n_clusters, init, random_state=random_state,
                              x_squared_norms=x_squared_norms)

    if verbose:
        print('Initialization complete')

    n_samples = X.shape[0]

    centers_new = np.zeros_like(centers)
    weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
    labels = np.full(n_samples, -1, dtype=np.int32)
    labels_old = labels.copy()
    center_half_distances = euclidean_distances(centers) / 2
    distance_next_center = np.partition(np.asarray(center_half_distances),
                                        kth=1, axis=0)[1]
    upper_bounds = np.zeros(n_samples, dtype=X.dtype)
    lower_bounds = np.zeros((n_samples, n_clusters), dtype=X.dtype)
    center_shift = np.zeros(n_clusters, dtype=X.dtype)

    if sp.issparse(X):
        init_bounds = init_bounds_sparse
        elkan_iter = elkan_iter_chunked_sparse
        _inertia = _inertia_sparse
    else:
        init_bounds = init_bounds_dense
        elkan_iter = elkan_iter_chunked_dense
        _inertia = _inertia_dense

    init_bounds(X, centers, center_half_distances,
                labels, upper_bounds, lower_bounds)

    strict_convergence = False

    for i in range(max_iter):
        elkan_iter(X, sample_weight, centers, centers_new,
                   weight_in_clusters, center_half_distances,
                   distance_next_center, upper_bounds, lower_bounds,
                   labels, center_shift, n_threads)

        # compute new pairwise distances between centers and closest other
        # center of each center for next iterations
        center_half_distances = euclidean_distances(centers_new) / 2
        distance_next_center = np.partition(
            np.asarray(center_half_distances), kth=1, axis=0)[1]

        if verbose:
            inertia = _inertia(X, sample_weight, centers, labels)
            print("Iteration {0}, inertia {1}" .format(i, inertia))

        if np.array_equal(labels, labels_old):
            # First check the labels for strict convergence.
            if verbose:
                print(f"Converged at iteration {i}: strict convergence.")
            strict_convergence = True
            break
        else:
            # No strict convergence, check for tol based convergence.
            center_shift_tot = (center_shift**2).sum()
            if center_shift_tot <= tol:
                if verbose:
                    print(f"Converged at iteration {i}: center shift "
                          f"{center_shift_tot} within tolerance {tol}.")
                break

        centers, centers_new = centers_new, centers
        labels_old[:] = labels

    if not strict_convergence:
        # rerun E-step so that predicted labels match cluster centers
        elkan_iter(X, sample_weight, centers, centers, weight_in_clusters,
                   center_half_distances, distance_next_center,
                   upper_bounds, lower_bounds, labels, center_shift,
                   n_threads, update_centers=False)

    inertia = _inertia(X, sample_weight, centers, labels)

    return labels, inertia, centers, i + 1


def _kmeans_single_lloyd(X, sample_weight, n_clusters, max_iter=300,
                         init='k-means++', verbose=False, x_squared_norms=None,
                         random_state=None, tol=1e-4, n_threads=1):
    """A single run of k-means lloyd, assumes preparation completed prior.

    Parameters
    ----------
    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
        The observations to cluster. If sparse matrix, must be in CSR format.

    sample_weight : ndarray of shape (n_samples,)
        The weights for each observation in X.

    n_clusters : int
        The number of clusters to form as well as the number of
        centroids to generate.

    max_iter : int, default=300
        Maximum number of iterations of the k-means algorithm to run.

    init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
        Method for initialization:

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose `n_clusters` observations (rows) at random from data
        for the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, n_clusters and a
        random state and return an initialization.

    verbose : bool, default=False
        Verbosity mode

    x_squared_norms : ndarray of shape(n_samples,), default=None
        Precomputed x_squared_norms.

    random_state : int, RandomState instance or None, default=None
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    tol : float, default=1e-4
        Relative tolerance with regards to Frobenius norm of the difference
        in the cluster centers of two consecutive iterations to declare
        convergence.
        It's not advised to set `tol=0` since convergence might never be
        declared due to rounding errors. Use a very small number instead.

    n_threads : int, default=1
        The number of OpenMP threads to use for the computation. Parallelism is
        sample-wise on the main cython loop which assigns each sample to its
        closest center.

    Returns
    -------
    centroid : ndarray of shape (n_clusters, n_features)
        Centroids found at the last iteration of k-means.

    label : ndarray of shape (n_samples,)
        label[i] is the code or index of the centroid the
        i'th observation is closest to.

    inertia : float
        The final value of the inertia criterion (sum of squared distances to
        the closest centroid for all observations in the training set).

    n_iter : int
        Number of iterations run.
    """
    random_state = check_random_state(random_state)
    sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

    # init
    centers = _init_centroids(X, n_clusters, init, random_state=random_state,
                              x_squared_norms=x_squared_norms)

    if verbose:
        print("Initialization complete")

    centers_new = np.zeros_like(centers)
    labels = np.full(X.shape[0], -1, dtype=np.int32)
    labels_old = labels.copy()
    weight_in_clusters = np.zeros(n_clusters, dtype=X.dtype)
    center_shift = np.zeros(n_clusters, dtype=X.dtype)

    if sp.issparse(X):
        lloyd_iter = lloyd_iter_chunked_sparse
        _inertia = _inertia_sparse
    else:
        lloyd_iter = lloyd_iter_chunked_dense
        _inertia = _inertia_dense

    strict_convergence = False

    # Threadpoolctl context to limit the number of threads in second level of
    # nested parallelism (i.e. BLAS) to avoid oversubsciption.
    with threadpool_limits(limits=1, user_api="blas"):
        for i in range(max_iter):
            lloyd_iter(X, sample_weight, x_squared_norms, centers, centers_new,
                       weight_in_clusters, labels, center_shift, n_threads)

            if verbose:
                inertia = _inertia(X, sample_weight, centers, labels)
                print("Iteration {0}, inertia {1}" .format(i, inertia))

            if np.array_equal(labels, labels_old):
                # First check the labels for strict convergence.
                if verbose:
                    print(f"Converged at iteration {i}: strict convergence.")
                strict_convergence = True
                break
            else:
                # No strict convergence, check for tol based convergence.
                center_shift_tot = (center_shift**2).sum()
                if center_shift_tot <= tol:
                    if verbose:
                        print(f"Converged at iteration {i}: center shift "
                              f"{center_shift_tot} within tolerance {tol}.")
                    break

            centers, centers_new = centers_new, centers
            labels_old[:] = labels

        if not strict_convergence:
            # rerun E-step so that predicted labels match cluster centers
            lloyd_iter(X, sample_weight, x_squared_norms, centers, centers,
                       weight_in_clusters, labels, center_shift, n_threads,
                       update_centers=False)

    inertia = _inertia(X, sample_weight, centers, labels)

    return labels, inertia, centers, i + 1


def _labels_inertia(X, sample_weight, x_squared_norms, centers,
                    n_threads=None):
    """E step of the K-means EM algorithm.

    Compute the labels and the inertia of the given samples and centers.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The input samples to assign to the labels. If sparse matrix, must be in
        CSR format.

    sample_weight : array-like of shape (n_samples,)
        The weights for each observation in X.

    x_squared_norms : ndarray of shape (n_samples,)
        Precomputed squared euclidean norm of each data point, to speed up
        computations.

    centers : ndarray, shape (n_clusters, n_features)
        The cluster centers.

    n_threads : int, default=None
        The number of OpenMP threads to use for the computation. Parallelism is
        sample-wise on the main cython loop which assigns each sample to its
        closest center.

    Returns
    -------
    labels : ndarray of shape (n_samples,)
        The resulting assignment

    inertia : float
        Sum of squared distances of samples to their closest cluster center.
    """
    n_samples = X.shape[0]
    n_clusters = centers.shape[0]

    n_threads = _openmp_effective_n_threads(n_threads)

    sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
    labels = np.full(n_samples, -1, dtype=np.int32)
    weight_in_clusters = np.zeros(n_clusters, dtype=centers.dtype)
    center_shift = np.zeros_like(weight_in_clusters)

    if sp.issparse(X):
        _labels = lloyd_iter_chunked_sparse
        _inertia = _inertia_sparse
    else:
        _labels = lloyd_iter_chunked_dense
        _inertia = _inertia_dense

    _labels(X, sample_weight, x_squared_norms, centers, centers,
            weight_in_clusters, labels, center_shift, n_threads,
            update_centers=False)

    inertia = _inertia(X, sample_weight, centers, labels)

    return labels, inertia


def _init_centroids(X, n_clusters=8, init="k-means++", random_state=None,
                    x_squared_norms=None, init_size=None):
    """Compute the initial centroids

    Parameters
    ----------

    X : {ndarray, spare matrix} of shape (n_samples, n_features)
        The input samples.

    n_clusters : int, default=8
        number of centroids.

    init : {'k-means++', 'random', ndarray, callable}, default="k-means++"
        Method for initialization.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    x_squared_norms : ndarray of shape (n_samples,), default=None
        Squared euclidean norm of each data point. Pass it if you have it at
        hands already to avoid it being recomputed here. Default: None

    init_size : int, default=None
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than k.

    Returns
    -------
    centers : array of shape(k, n_features)
    """
    random_state = check_random_state(random_state)
    n_samples = X.shape[0]

    if x_squared_norms is None:
        x_squared_norms = row_norms(X, squared=True)

    if init_size is not None and init_size < n_samples:
        if init_size < n_clusters:
            warnings.warn(
                "init_size=%d should be larger than k=%d. "
                "Setting it to 3*k" % (init_size, n_clusters),
                RuntimeWarning, stacklevel=2)
            init_size = 3 * n_clusters
        init_indices = random_state.randint(0, n_samples, init_size)
        X = X[init_indices]
        x_squared_norms = x_squared_norms[init_indices]
        n_samples = X.shape[0]
    elif n_samples < n_clusters:
        raise ValueError(
            "n_samples={} should be larger than n_clusters={}"
            .format(n_samples, n_clusters))

    if isinstance(init, str) and init == 'k-means++':
        centers = _k_init(X, n_clusters, random_state=random_state,
                          x_squared_norms=x_squared_norms)
    elif isinstance(init, str) and init == 'random':
        seeds = random_state.permutation(n_samples)[:n_clusters]
        centers = X[seeds]
    elif hasattr(init, '__array__'):
        # ensure that the centers have the same dtype as X
        # this is a requirement of fused types of cython
        centers = np.array(init, dtype=X.dtype)
    elif callable(init):
        centers = init(X, n_clusters, random_state=random_state)
        centers = np.asarray(centers, dtype=X.dtype)
    else:
        raise ValueError("the init parameter for the k-means should "
                         "be 'k-means++' or 'random' or an ndarray, "
                         "'%s' (type '%s') was passed." % (init, type(init)))

    if sp.issparse(centers):
        centers = centers.toarray()

    _validate_center_shape(X, n_clusters, centers)
    return centers


class KMeans(TransformerMixin, ClusterMixin, BaseEstimator):
    """K-Means clustering.

    Read more in the :ref:`User Guide <k_means>`.

    Parameters
    ----------

    n_clusters : int, default=8
        The number of clusters to form as well as the number of
        centroids to generate.

    init : {'k-means++', 'random', ndarray, callable}, default='k-means++'
        Method for initialization:

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose `n_clusters` observations (rows) at random from data
        for the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

        If a callable is passed, it should take arguments X, n_clusters and a
        random state and return an initialization.

    n_init : int, default=10
        Number of time the k-means algorithm will be run with different
        centroid seeds. The final results will be the best output of
        n_init consecutive runs in terms of inertia.

    max_iter : int, default=300
        Maximum number of iterations of the k-means algorithm for a
        single run.

    tol : float, default=1e-4
        Relative tolerance with regards to Frobenius norm of the difference
        in the cluster centers of two consecutive iterations to declare
        convergence.

    precompute_distances : {'auto', True, False}, default='auto'
        Precompute distances (faster but takes more memory).

        'auto' : do not precompute distances if n_samples * n_clusters > 12
        million. This corresponds to about 100MB overhead per job using
        double precision.

        True : always precompute distances.

        False : never precompute distances.

        .. deprecated:: 0.23
            'precompute_distances' was deprecated in version 0.22 and will be
            removed in 0.25. It has no effect.

    verbose : int, default=0
        Verbosity mode.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    copy_x : bool, default=True
        When pre-computing distances it is more numerically accurate to center
        the data first. If copy_x is True (default), then the original data is
        not modified. If False, the original data is modified, and put back
        before the function returns, but small numerical differences may be
        introduced by subtracting and then adding the data mean. Note that if
        the original data is not C-contiguous, a copy will be made even if
        copy_x is False. If the original data is sparse, but not in CSR format,
        a copy will be made even if copy_x is False.

    n_jobs : int, default=None
        The number of OpenMP threads to use for the computation. Parallelism is
        sample-wise on the main cython loop which assigns each sample to its
        closest center.

        ``None`` or ``-1`` means using all processors.

        .. deprecated:: 0.23
            ``n_jobs`` was deprecated in version 0.23 and will be removed in
            0.25.

    algorithm : {"auto", "full", "elkan"}, default="auto"
        K-means algorithm to use. The classical EM-style algorithm is "full".
        The "elkan" variation is more efficient on data with well-defined
        clusters, by using the triangle inequality. However it's more memory
        intensive due to the allocation of an extra array of shape
        (n_samples, n_clusters).

        For now "auto" (kept for backward compatibiliy) chooses "elkan" but it
        might change in the future for a better heuristic.

        .. versionchanged:: 0.18
            Added Elkan algorithm

    Attributes
    ----------
    cluster_centers_ : ndarray of shape (n_clusters, n_features)
        Coordinates of cluster centers. If the algorithm stops before fully
        converging (see ``tol`` and ``max_iter``), these will not be
        consistent with ``labels_``.

    labels_ : ndarray of shape (n_samples,)
        Labels of each point

    inertia_ : float
        Sum of squared distances of samples to their closest cluster center.

    n_iter_ : int
        Number of iterations run.

    See also
    --------

    MiniBatchKMeans
        Alternative online implementation that does incremental updates
        of the centers positions using mini-batches.
        For large scale learning (say n_samples > 10k) MiniBatchKMeans is
        probably much faster than the default batch implementation.

    Notes
    -----
    The k-means problem is solved using either Lloyd's or Elkan's algorithm.

    The average complexity is given by O(k n T), were n is the number of
    samples and T is the number of iteration.

    The worst case complexity is given by O(n^(k+2/p)) with
    n = n_samples, p = n_features. (D. Arthur and S. Vassilvitskii,
    'How slow is the k-means method?' SoCG2006)

    In practice, the k-means algorithm is very fast (one of the fastest
    clustering algorithms available), but it falls in local minima. That's why
    it can be useful to restart it several times.

    If the algorithm stops before fully converging (because of ``tol`` or
    ``max_iter``), ``labels_`` and ``cluster_centers_`` will not be consistent,
    i.e. the ``cluster_centers_`` will not be the means of the points in each
    cluster. Also, the estimator will reassign ``labels_`` after the last
    iteration to make ``labels_`` consistent with ``predict`` on the training
    set.

    Examples
    --------

    >>> from sklearn.cluster import KMeans
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [10, 2], [10, 4], [10, 0]])
    >>> kmeans = KMeans(n_clusters=2, random_state=0).fit(X)
    >>> kmeans.labels_
    array([1, 1, 1, 0, 0, 0], dtype=int32)
    >>> kmeans.predict([[0, 0], [12, 3]])
    array([1, 0], dtype=int32)
    >>> kmeans.cluster_centers_
    array([[10.,  2.],
           [ 1.,  2.]])
    """
    @_deprecate_positional_args
    def __init__(self, n_clusters=8, *, init='k-means++', n_init=10,
                 max_iter=300, tol=1e-4, precompute_distances='deprecated',
                 verbose=0, random_state=None, copy_x=True,
                 n_jobs='deprecated', algorithm='auto'):

        self.n_clusters = n_clusters
        self.init = init
        self.max_iter = max_iter
        self.tol = tol
        self.precompute_distances = precompute_distances
        self.n_init = n_init
        self.verbose = verbose
        self.random_state = random_state
        self.copy_x = copy_x
        self.n_jobs = n_jobs
        self.algorithm = algorithm

    def _check_params(self, X):
        # precompute_distances
        if self.precompute_distances != 'deprecated':
            warnings.warn("'precompute_distances' was deprecated in version "
                          "0.23 and will be removed in 0.25. It has no "
                          "effect", FutureWarning)

        # n_jobs
        if self.n_jobs != 'deprecated':
            warnings.warn("'n_jobs' was deprecated in version 0.23 and will be"
                          " removed in 0.25.", FutureWarning)
            self._n_threads = self.n_jobs
        else:
            self._n_threads = None
        self._n_threads = _openmp_effective_n_threads(self._n_threads)

        # n_init
        if self.n_init <= 0:
            raise ValueError(
                f"n_init should be > 0, got {self.n_init} instead.")
        self._n_init = self.n_init

        # max_iter
        if self.max_iter <= 0:
            raise ValueError(
                f"max_iter should be > 0, got {self.max_iter} instead.")

        # n_clusters
        if X.shape[0] < self.n_clusters:
            raise ValueError(f"n_samples={X.shape[0]} should be >= "
                             f"n_clusters={self.n_clusters}.")

        # tol
        self._tol = _tolerance(X, self.tol)

        # algorithm
        if self.algorithm not in ("auto", "full", "elkan"):
            raise ValueError(f"Algorithm must be 'auto', 'full' or 'elkan', "
                             f"got {self.algorithm} instead.")

        self._algorithm = self.algorithm
        if self._algorithm == "auto":
            self._algorithm = "full" if self.n_clusters == 1 else "elkan"
        if self._algorithm == "elkan" and self.n_clusters == 1:
            warnings.warn("algorithm='elkan' doesn't make sense for a single "
                          "cluster. Using 'full' instead.", RuntimeWarning)
            self._algorithm = "full"

        # init
        if not (hasattr(self.init, '__array__') or callable(self.init)
                or (isinstance(self.init, str)
                    and self.init in ["k-means++", "random"])):
            raise ValueError(
                f"init should be either 'k-means++', 'random', a ndarray or a "
                f"callable, got '{self.init}' instead.")

        if hasattr(self.init, '__array__') and self._n_init != 1:
            warnings.warn(
                f"Explicit initial center position passed: performing only"
                f" one init in {self.__class__.__name__} instead of "
                f"n_init={self._n_init}.", RuntimeWarning, stacklevel=2)
            self._n_init = 1

    def _check_test_data(self, X):
        X = check_array(X, accept_sparse='csr', dtype=[np.float64, np.float32],
                        order='C', accept_large_sparse=False)
        n_samples, n_features = X.shape
        expected_n_features = self.cluster_centers_.shape[1]
        if not n_features == expected_n_features:
            raise ValueError(
                f"Incorrect number of features. Got {n_features} features, "
                f"expected {expected_n_features}.")

        return X

    def fit(self, X, y=None, sample_weight=None):
        """Compute k-means clustering.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Training instances to cluster. It must be noted that the data
            will be converted to C ordering, which will cause a memory
            copy if the given data is not C-contiguous.
            If a sparse matrix is passed, a copy will be made if it's not in
            CSR format.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            The weights for each observation in X. If None, all observations
            are assigned equal weight.

            .. versionadded:: 0.20

        Returns
        -------
        self
            Fitted estimator.
        """
        X = self._validate_data(X, accept_sparse='csr',
                                dtype=[np.float64, np.float32],
                                order='C', copy=self.copy_x,
                                accept_large_sparse=False)

        self._check_params(X)
        random_state = check_random_state(self.random_state)

        # Validate init array
        init = self.init
        if hasattr(init, '__array__'):
            init = check_array(init, dtype=X.dtype, copy=True, order='C')
            _validate_center_shape(X, self.n_clusters, init)

        # subtract of mean of x for more accurate distance computations
        if not sp.issparse(X):
            X_mean = X.mean(axis=0)
            # The copy was already done above
            X -= X_mean

            if hasattr(init, '__array__'):
                init -= X_mean

        # precompute squared norms of data points
        x_squared_norms = row_norms(X, squared=True)

        if self._algorithm == "full":
            kmeans_single = _kmeans_single_lloyd
        else:
            kmeans_single = _kmeans_single_elkan

        best_labels, best_inertia, best_centers = None, None, None

        # seeds for the initializations of the kmeans runs.
        seeds = random_state.randint(np.iinfo(np.int32).max, size=self._n_init)

        for seed in seeds:
            # run a k-means once
            labels, inertia, centers, n_iter_ = kmeans_single(
                X, sample_weight, self.n_clusters, max_iter=self.max_iter,
                init=init, verbose=self.verbose, tol=self._tol,
                x_squared_norms=x_squared_norms, random_state=seed,
                n_threads=self._n_threads)
            # determine if these results are the best so far
            if best_inertia is None or inertia < best_inertia:
                best_labels = labels.copy()
                best_centers = centers.copy()
                best_inertia = inertia
                best_n_iter = n_iter_

        if not sp.issparse(X):
            if not self.copy_x:
                X += X_mean
            best_centers += X_mean

        distinct_clusters = len(set(best_labels))
        if distinct_clusters < self.n_clusters:
            warnings.warn(
                "Number of distinct clusters ({}) found smaller than "
                "n_clusters ({}). Possibly due to duplicate points "
                "in X.".format(distinct_clusters, self.n_clusters),
                ConvergenceWarning, stacklevel=2)

        self.cluster_centers_ = best_centers
        self.labels_ = best_labels
        self.inertia_ = best_inertia
        self.n_iter_ = best_n_iter
        return self

    def fit_predict(self, X, y=None, sample_weight=None):
        """Compute cluster centers and predict cluster index for each sample.

        Convenience method; equivalent to calling fit(X) followed by
        predict(X).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data to transform.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            The weights for each observation in X. If None, all observations
            are assigned equal weight.

        Returns
        -------
        labels : ndarray of shape (n_samples,)
            Index of the cluster each sample belongs to.
        """
        return self.fit(X, sample_weight=sample_weight).labels_

    def fit_transform(self, X, y=None, sample_weight=None):
        """Compute clustering and transform X to cluster-distance space.

        Equivalent to fit(X).transform(X), but more efficiently implemented.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data to transform.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            The weights for each observation in X. If None, all observations
            are assigned equal weight.

        Returns
        -------
        X_new : array of shape (n_samples, n_clusters)
            X transformed in the new space.
        """
        # Currently, this just skips a copy of the data if it is not in
        # np.array or CSR format already.
        # XXX This skips _check_test_data, which may change the dtype;
        # we should refactor the input validation.
        return self.fit(X, sample_weight=sample_weight)._transform(X)

    def transform(self, X):
        """Transform X to a cluster-distance space.

        In the new space, each dimension is the distance to the cluster
        centers.  Note that even if X is sparse, the array returned by
        `transform` will typically be dense.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data to transform.

        Returns
        -------
        X_new : ndarray of shape (n_samples, n_clusters)
            X transformed in the new space.
        """
        check_is_fitted(self)

        X = self._check_test_data(X)
        return self._transform(X)

    def _transform(self, X):
        """guts of transform method; no input validation"""
        return euclidean_distances(X, self.cluster_centers_)

    def predict(self, X, sample_weight=None):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data to predict.

        sample_weight : array-like of shape (n_samples,), default=None
            The weights for each observation in X. If None, all observations
            are assigned equal weight.

        Returns
        -------
        labels : ndarray of shape (n_samples,)
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self)

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)

        return _labels_inertia(X, sample_weight, x_squared_norms,
                               self.cluster_centers_, self._n_threads)[0]

    def score(self, X, y=None, sample_weight=None):
        """Opposite of the value of X on the K-means objective.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            The weights for each observation in X. If None, all observations
            are assigned equal weight.

        Returns
        -------
        score : float
            Opposite of the value of X on the K-means objective.
        """
        check_is_fitted(self)

        X = self._check_test_data(X)
        x_squared_norms = row_norms(X, squared=True)

        return -_labels_inertia(X, sample_weight, x_squared_norms,
                                self.cluster_centers_)[1]


def _mini_batch_step(X, sample_weight, x_squared_norms, centers, weight_sums,
                     old_center_buffer, compute_squared_diff,
                     distances, random_reassign=False,
                     random_state=None, reassignment_ratio=.01,
                     verbose=False):
    """Incremental update of the centers for the Minibatch K-Means algorithm.

    Parameters
    ----------

    X : array, shape (n_samples, n_features)
        The original data array.

    sample_weight : array-like, shape (n_samples,)
        The weights for each observation in X.

    x_squared_norms : array, shape (n_samples,)
        Squared euclidean norm of each data point.

    centers : array, shape (k, n_features)
        The cluster centers. This array is MODIFIED IN PLACE

    counts : array, shape (k,)
         The vector in which we keep track of the numbers of elements in a
         cluster. This array is MODIFIED IN PLACE

    distances : array, dtype float, shape (n_samples), optional
        If not None, should be a pre-allocated array that will be used to store
        the distances of each sample to its closest center.
        May not be None when random_reassign is True.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization and to
        pick new clusters amongst observations with uniform probability. Use
        an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    random_reassign : boolean, optional
        If True, centers with very low counts are randomly reassigned
        to observations.

    reassignment_ratio : float, optional
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more likely to be reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    verbose : bool, optional, default False
        Controls the verbosity.

    compute_squared_diff : bool
        If set to False, the squared diff computation is skipped.

    old_center_buffer : int
        Copy of old centers for monitoring convergence.

    Returns
    -------
    inertia : float
        Sum of squared distances of samples to their closest cluster center.

    squared_diff : numpy array, shape (n_clusters,)
        Squared distances between previous and updated cluster centers.

    """
    # Perform label assignment to nearest centers
    nearest_center, inertia = _labels_inertia(X, sample_weight,
                                              x_squared_norms, centers)

    if random_reassign and reassignment_ratio > 0:
        random_state = check_random_state(random_state)
        # Reassign clusters that have very low weight
        to_reassign = weight_sums < reassignment_ratio * weight_sums.max()
        # pick at most .5 * batch_size samples as new centers
        if to_reassign.sum() > .5 * X.shape[0]:
            indices_dont_reassign = \
                    np.argsort(weight_sums)[int(.5 * X.shape[0]):]
            to_reassign[indices_dont_reassign] = False
        n_reassigns = to_reassign.sum()
        if n_reassigns:
            # Pick new clusters amongst observations with uniform probability
            new_centers = random_state.choice(X.shape[0], replace=False,
                                              size=n_reassigns)
            if verbose:
                print("[MiniBatchKMeans] Reassigning %i cluster centers."
                      % n_reassigns)

            if sp.issparse(X) and not sp.issparse(centers):
                assign_rows_csr(
                        X, new_centers.astype(np.intp, copy=False),
                        np.where(to_reassign)[0].astype(np.intp, copy=False),
                        centers)
            else:
                centers[to_reassign] = X[new_centers]
        # reset counts of reassigned centers, but don't reset them too small
        # to avoid instant reassignment. This is a pretty dirty hack as it
        # also modifies the learning rates.
        weight_sums[to_reassign] = np.min(weight_sums[~to_reassign])

    # implementation for the sparse CSR representation completely written in
    # cython
    if sp.issparse(X):
        return inertia, _mini_batch_update_csr(
            X, sample_weight, x_squared_norms, centers, weight_sums,
            nearest_center, old_center_buffer, compute_squared_diff)

    # dense variant in mostly numpy (not as memory efficient though)
    k = centers.shape[0]
    squared_diff = 0.0
    for center_idx in range(k):
        # find points from minibatch that are assigned to this center
        center_mask = nearest_center == center_idx
        wsum = sample_weight[center_mask].sum()

        if wsum > 0:
            if compute_squared_diff:
                old_center_buffer[:] = centers[center_idx]

            # inplace remove previous count scaling
            centers[center_idx] *= weight_sums[center_idx]

            # inplace sum with new points members of this cluster
            centers[center_idx] += \
                np.sum(X[center_mask] *
                       sample_weight[center_mask, np.newaxis], axis=0)

            # update the count statistics for this center
            weight_sums[center_idx] += wsum

            # inplace rescale to compute mean of all points (old and new)
            # Note: numpy >= 1.10 does not support '/=' for the following
            # expression for a mixture of int and float (see numpy issue #6464)
            centers[center_idx] = centers[center_idx] / weight_sums[center_idx]

            # update the squared diff if necessary
            if compute_squared_diff:
                diff = centers[center_idx].ravel() - old_center_buffer.ravel()
                squared_diff += np.dot(diff, diff)

    return inertia, squared_diff


def _mini_batch_convergence(model, iteration_idx, n_iter, tol,
                            n_samples, centers_squared_diff, batch_inertia,
                            context, verbose=0):
    """Helper function to encapsulate the early stopping logic"""
    # Normalize inertia to be able to compare values when
    # batch_size changes
    batch_inertia /= model.batch_size
    centers_squared_diff /= model.batch_size

    # Compute an Exponentially Weighted Average of the squared
    # diff to monitor the convergence while discarding
    # minibatch-local stochastic variability:
    # https://en.wikipedia.org/wiki/Moving_average
    ewa_diff = context.get('ewa_diff')
    ewa_inertia = context.get('ewa_inertia')
    if ewa_diff is None:
        ewa_diff = centers_squared_diff
        ewa_inertia = batch_inertia
    else:
        alpha = float(model.batch_size) * 2.0 / (n_samples + 1)
        alpha = 1.0 if alpha > 1.0 else alpha
        ewa_diff = ewa_diff * (1 - alpha) + centers_squared_diff * alpha
        ewa_inertia = ewa_inertia * (1 - alpha) + batch_inertia * alpha

    # Log progress to be able to monitor convergence
    if verbose:
        progress_msg = (
            'Minibatch iteration %d/%d:'
            ' mean batch inertia: %f, ewa inertia: %f ' % (
                iteration_idx + 1, n_iter, batch_inertia,
                ewa_inertia))
        print(progress_msg)

    # Early stopping based on absolute tolerance on squared change of
    # centers position (using EWA smoothing)
    if tol > 0.0 and ewa_diff <= tol:
        if verbose:
            print('Converged (small centers change) at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # Early stopping heuristic due to lack of improvement on smoothed inertia
    ewa_inertia_min = context.get('ewa_inertia_min')
    no_improvement = context.get('no_improvement', 0)
    if ewa_inertia_min is None or ewa_inertia < ewa_inertia_min:
        no_improvement = 0
        ewa_inertia_min = ewa_inertia
    else:
        no_improvement += 1

    if (model.max_no_improvement is not None
            and no_improvement >= model.max_no_improvement):
        if verbose:
            print('Converged (lack of improvement in inertia)'
                  ' at iteration %d/%d'
                  % (iteration_idx + 1, n_iter))
        return True

    # update the convergence context to maintain state across successive calls:
    context['ewa_diff'] = ewa_diff
    context['ewa_inertia'] = ewa_inertia
    context['ewa_inertia_min'] = ewa_inertia_min
    context['no_improvement'] = no_improvement
    return False


class MiniBatchKMeans(KMeans):
    """
    Mini-Batch K-Means clustering.

    Read more in the :ref:`User Guide <mini_batch_kmeans>`.

    Parameters
    ----------

    n_clusters : int, default=8
        The number of clusters to form as well as the number of
        centroids to generate.

    init : {'k-means++', 'random'} or ndarray of shape \
            (n_clusters, n_features), default='k-means++'
        Method for initialization

        'k-means++' : selects initial cluster centers for k-mean
        clustering in a smart way to speed up convergence. See section
        Notes in k_init for more details.

        'random': choose k observations (rows) at random from data for
        the initial centroids.

        If an ndarray is passed, it should be of shape (n_clusters, n_features)
        and gives the initial centers.

    max_iter : int, default=100
        Maximum number of iterations over the complete dataset before
        stopping independently of any early stopping criterion heuristics.

    batch_size : int, default=100
        Size of the mini batches.

    verbose : int, default=0
        Verbosity mode.

    compute_labels : bool, default=True
        Compute label assignment and inertia for the complete dataset
        once the minibatch optimization has converged in fit.

    random_state : int, RandomState instance, default=None
        Determines random number generation for centroid initialization and
        random reassignment. Use an int to make the randomness deterministic.
        See :term:`Glossary <random_state>`.

    tol : float, default=0.0
        Control early stopping based on the relative center changes as
        measured by a smoothed, variance-normalized of the mean center
        squared position changes. This early stopping heuristics is
        closer to the one used for the batch variant of the algorithms
        but induces a slight computational and memory overhead over the
        inertia heuristic.

        To disable convergence detection based on normalized center
        change, set tol to 0.0 (default).

    max_no_improvement : int, default=10
        Control early stopping based on the consecutive number of mini
        batches that does not yield an improvement on the smoothed inertia.

        To disable convergence detection based on inertia, set
        max_no_improvement to None.

    init_size : int, default=None
        Number of samples to randomly sample for speeding up the
        initialization (sometimes at the expense of accuracy): the
        only algorithm is initialized by running a batch KMeans on a
        random subset of the data. This needs to be larger than n_clusters.

        If `None`, `init_size= 3 * batch_size`.

    n_init : int, default=3
        Number of random initializations that are tried.
        In contrast to KMeans, the algorithm is only run once, using the
        best of the ``n_init`` initializations as measured by inertia.

    reassignment_ratio : float, default=0.01
        Control the fraction of the maximum number of counts for a
        center to be reassigned. A higher value means that low count
        centers are more easily reassigned, which means that the
        model will take longer to converge, but should converge in a
        better clustering.

    Attributes
    ----------

    cluster_centers_ : ndarray of shape (n_clusters, n_features)
        Coordinates of cluster centers

    labels_ : int
        Labels of each point (if compute_labels is set to True).

    inertia_ : float
        The value of the inertia criterion associated with the chosen
        partition (if compute_labels is set to True). The inertia is
        defined as the sum of square distances of samples to their nearest
        neighbor.

    See Also
    --------
    KMeans
        The classic implementation of the clustering method based on the
        Lloyd's algorithm. It consumes the whole set of input data at each
        iteration.

    Notes
    -----
    See https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf

    Examples
    --------
    >>> from sklearn.cluster import MiniBatchKMeans
    >>> import numpy as np
    >>> X = np.array([[1, 2], [1, 4], [1, 0],
    ...               [4, 2], [4, 0], [4, 4],
    ...               [4, 5], [0, 1], [2, 2],
    ...               [3, 2], [5, 5], [1, -1]])
    >>> # manually fit on batches
    >>> kmeans = MiniBatchKMeans(n_clusters=2,
    ...                          random_state=0,
    ...                          batch_size=6)
    >>> kmeans = kmeans.partial_fit(X[0:6,:])
    >>> kmeans = kmeans.partial_fit(X[6:12,:])
    >>> kmeans.cluster_centers_
    array([[2. , 1. ],
           [3.5, 4.5]])
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([0, 1], dtype=int32)
    >>> # fit on the whole data
    >>> kmeans = MiniBatchKMeans(n_clusters=2,
    ...                          random_state=0,
    ...                          batch_size=6,
    ...                          max_iter=10).fit(X)
    >>> kmeans.cluster_centers_
    array([[3.95918367, 2.40816327],
           [1.12195122, 1.3902439 ]])
    >>> kmeans.predict([[0, 0], [4, 4]])
    array([1, 0], dtype=int32)
    """
    @_deprecate_positional_args
    def __init__(self, n_clusters=8, *, init='k-means++', max_iter=100,
                 batch_size=100, verbose=0, compute_labels=True,
                 random_state=None, tol=0.0, max_no_improvement=10,
                 init_size=None, n_init=3, reassignment_ratio=0.01):

        super().__init__(
            n_clusters=n_clusters, init=init, max_iter=max_iter,
            verbose=verbose, random_state=random_state, tol=tol, n_init=n_init)

        self.max_no_improvement = max_no_improvement
        self.batch_size = batch_size
        self.compute_labels = compute_labels
        self.init_size = init_size
        self.reassignment_ratio = reassignment_ratio

    def _check_params(self, X):
        super()._check_params(X)

        # max_no_improvement
        if self.max_no_improvement is not None and self.max_no_improvement < 0:
            raise ValueError(
                f"max_no_improvement should be >= 0, got "
                f"{self.max_no_improvement} instead.")

        # batch_size
        if self.batch_size <= 0:
            raise ValueError(
                f"batch_size should be > 0, got {self.batch_size} instead.")

        # init_size
        if self.init_size is not None and self.init_size <= 0:
            raise ValueError(
                f"init_size should be > 0, got {self.init_size} instead.")
        self._init_size = self.init_size
        if self._init_size is None:
            self._init_size = 3 * self.batch_size
            if self._init_size < self.n_clusters:
                self._init_size = 3 * self.n_clusters
        elif self._init_size < self.n_clusters:
            warnings.warn(
                f"init_size={self._init_size} should be larger than "
                f"n_clusters={self.n_clusters}. Setting it to "
                f"min(3*n_clusters, n_samples)",
                RuntimeWarning, stacklevel=2)
            self._init_size = 3 * self.n_clusters
        self._init_size = min(self._init_size, X.shape[0])
        # FIXME: init_size_ will be deprecated and this line will be removed
        self.init_size_ = self._init_size

        # reassignment_ratio
        if self.reassignment_ratio < 0:
            raise ValueError(
                f"reassignment_ratio should be >= 0, got "
                f"{self.reassignment_ratio} instead.")

    def fit(self, X, y=None, sample_weight=None):
        """Compute the centroids on X by chunking it into mini-batches.

        Parameters
        ----------
        X : array-like or sparse matrix, shape=(n_samples, n_features)
            Training instances to cluster. It must be noted that the data
            will be converted to C ordering, which will cause a memory copy
            if the given data is not C-contiguous.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None).

            .. versionadded:: 0.20

        Returns
        -------
        self
        """
        X = self._validate_data(X, accept_sparse='csr',
                                dtype=[np.float64, np.float32],
                                order='C', accept_large_sparse=False)

        self._check_params(X)
        random_state = check_random_state(self.random_state)
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        # Validate init array
        init = self.init
        if hasattr(init, '__array__'):
            init = check_array(init, dtype=X.dtype, copy=True, order='C')
            _validate_center_shape(X, self.n_clusters, init)

        n_samples, n_features = X.shape
        x_squared_norms = row_norms(X, squared=True)

        if self.tol > 0.0:
            tol = _tolerance(X, self.tol)

            # using tol-based early stopping needs the allocation of a
            # dedicated before which can be expensive for high dim data:
            # hence we allocate it outside of the main loop
            old_center_buffer = np.zeros(n_features, dtype=X.dtype)
        else:
            tol = 0.0
            # no need for the center buffer if tol-based early stopping is
            # disabled
            old_center_buffer = np.zeros(0, dtype=X.dtype)

        distances = np.zeros(self.batch_size, dtype=X.dtype)
        n_batches = int(np.ceil(float(n_samples) / self.batch_size))
        n_iter = int(self.max_iter * n_batches)

        validation_indices = random_state.randint(0, n_samples,
                                                  self._init_size)
        X_valid = X[validation_indices]
        sample_weight_valid = sample_weight[validation_indices]
        x_squared_norms_valid = x_squared_norms[validation_indices]

        # perform several inits with random sub-sets
        best_inertia = None
        for init_idx in range(self._n_init):
            if self.verbose:
                print("Init %d/%d with method: %s"
                      % (init_idx + 1, self._n_init, init))
            weight_sums = np.zeros(self.n_clusters, dtype=sample_weight.dtype)

            # TODO: once the `k_means` function works with sparse input we
            # should refactor the following init to use it instead.

            # Initialize the centers using only a fraction of the data as we
            # expect n_samples to be very large when using MiniBatchKMeans
            cluster_centers = _init_centroids(
                X, self.n_clusters, init,
                random_state=random_state,
                x_squared_norms=x_squared_norms,
                init_size=self._init_size)

            # Compute the label assignment on the init dataset
            _mini_batch_step(
                X_valid, sample_weight_valid,
                x_squared_norms[validation_indices], cluster_centers,
                weight_sums, old_center_buffer, False, distances=None,
                verbose=self.verbose)

            # Keep only the best cluster centers across independent inits on
            # the common validation set
            _, inertia = _labels_inertia(X_valid, sample_weight_valid,
                                         x_squared_norms_valid,
                                         cluster_centers)
            if self.verbose:
                print("Inertia for init %d/%d: %f"
                      % (init_idx + 1, self._n_init, inertia))
            if best_inertia is None or inertia < best_inertia:
                self.cluster_centers_ = cluster_centers
                self.counts_ = weight_sums
                best_inertia = inertia

        # Empty context to be used inplace by the convergence check routine
        convergence_context = {}

        # Perform the iterative optimization until the final convergence
        # criterion
        for iteration_idx in range(n_iter):
            # Sample a minibatch from the full dataset
            minibatch_indices = random_state.randint(
                0, n_samples, self.batch_size)

            # Perform the actual update step on the minibatch data
            batch_inertia, centers_squared_diff = _mini_batch_step(
                X[minibatch_indices], sample_weight[minibatch_indices],
                x_squared_norms[minibatch_indices],
                self.cluster_centers_, self.counts_,
                old_center_buffer, tol > 0.0, distances=distances,
                # Here we randomly choose whether to perform
                # random reassignment: the choice is done as a function
                # of the iteration index, and the minimum number of
                # counts, in order to force this reassignment to happen
                # every once in a while
                random_reassign=((iteration_idx + 1)
                                 % (10 + int(self.counts_.min())) == 0),
                random_state=random_state,
                reassignment_ratio=self.reassignment_ratio,
                verbose=self.verbose)

            # Monitor convergence and do early stopping if necessary
            if _mini_batch_convergence(
                    self, iteration_idx, n_iter, tol, n_samples,
                    centers_squared_diff, batch_inertia, convergence_context,
                    verbose=self.verbose):
                break

        self.n_iter_ = iteration_idx + 1

        if self.compute_labels:
            self.labels_, self.inertia_ = \
                    self._labels_inertia_minibatch(X, sample_weight)

        return self

    def _labels_inertia_minibatch(self, X, sample_weight):
        """Compute labels and inertia using mini batches.

        This is slightly slower than doing everything at once but preventes
        memory errors / segfaults.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data.

        sample_weight : array-like, shape (n_samples,)
            The weights for each observation in X.

        Returns
        -------
        labels : array, shape (n_samples,)
            Cluster labels for each point.

        inertia : float
            Sum of squared distances of points to nearest cluster.
        """
        if self.verbose:
            print('Computing label assignment and total inertia')
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
        x_squared_norms = row_norms(X, squared=True)
        slices = gen_batches(X.shape[0], self.batch_size)
        results = [_labels_inertia(X[s], sample_weight[s], x_squared_norms[s],
                                   self.cluster_centers_) for s in slices]
        labels, inertia = zip(*results)
        return np.hstack(labels), np.sum(inertia)

    def partial_fit(self, X, y=None, sample_weight=None):
        """Update k means estimate on a single mini-batch X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Coordinates of the data points to cluster. It must be noted that
            X will be copied if it is not C-contiguous.

        y : Ignored
            Not used, present here for API consistency by convention.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None).

        Returns
        -------
        self
        """
        is_first_call_to_partial_fit = not hasattr(self, 'cluster_centers_')

        X = self._validate_data(X, accept_sparse='csr',
                                dtype=[np.float64, np.float32],
                                order='C', accept_large_sparse=False,
                                reset=is_first_call_to_partial_fit)

        self.random_state_ = getattr(self, "random_state_",
                                     check_random_state(self.random_state))
        sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)

        x_squared_norms = row_norms(X, squared=True)

        if is_first_call_to_partial_fit:
            # this is the first call to partial_fit on this object
            self._check_params(X)

            # Validate init array
            init = self.init
            if hasattr(init, '__array__'):
                init = check_array(init, dtype=X.dtype, copy=True, order='C')
                _validate_center_shape(X, self.n_clusters, init)

            # initialize the cluster centers
            self.cluster_centers_ = _init_centroids(
                X, self.n_clusters, init,
                random_state=self.random_state_,
                x_squared_norms=x_squared_norms, init_size=self.init_size)

            self.counts_ = np.zeros(self.n_clusters,
                                    dtype=sample_weight.dtype)
            random_reassign = False
            distances = None
        else:
            # The lower the minimum count is, the more we do random
            # reassignment, however, we don't want to do random
            # reassignment too often, to allow for building up counts
            random_reassign = self.random_state_.randint(
                10 * (1 + self.counts_.min())) == 0
            distances = np.zeros(X.shape[0], dtype=X.dtype)

        _mini_batch_step(X, sample_weight, x_squared_norms,
                         self.cluster_centers_, self.counts_,
                         np.zeros(0, dtype=X.dtype), 0,
                         random_reassign=random_reassign, distances=distances,
                         random_state=self.random_state_,
                         reassignment_ratio=self.reassignment_ratio,
                         verbose=self.verbose)

        if self.compute_labels:
            self.labels_, self.inertia_ = _labels_inertia(
                X, sample_weight, x_squared_norms, self.cluster_centers_)

        return self

    def predict(self, X, sample_weight=None):
        """Predict the closest cluster each sample in X belongs to.

        In the vector quantization literature, `cluster_centers_` is called
        the code book and each value returned by `predict` is the index of
        the closest code in the code book.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            New data to predict.

        sample_weight : array-like, shape (n_samples,), optional
            The weights for each observation in X. If None, all observations
            are assigned equal weight (default: None).

        Returns
        -------
        labels : array, shape [n_samples,]
            Index of the cluster each sample belongs to.
        """
        check_is_fitted(self)

        X = self._check_test_data(X)
        return self._labels_inertia_minibatch(X, sample_weight)[0]