bsr.py 24.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
"""Compressed Block Sparse Row matrix format"""

__docformat__ = "restructuredtext en"

__all__ = ['bsr_matrix', 'isspmatrix_bsr']

from warnings import warn

import numpy as np

from .data import _data_matrix, _minmax_mixin
from .compressed import _cs_matrix
from .base import isspmatrix, _formats, spmatrix
from .sputils import (isshape, getdtype, to_native, upcast, get_index_dtype,
                      check_shape)
from . import _sparsetools
from ._sparsetools import (bsr_matvec, bsr_matvecs, csr_matmat_maxnnz,
                           bsr_matmat, bsr_transpose, bsr_sort_indices,
                           bsr_tocsr)


class bsr_matrix(_cs_matrix, _minmax_mixin):
    """Block Sparse Row matrix

    This can be instantiated in several ways:
        bsr_matrix(D, [blocksize=(R,C)])
            where D is a dense matrix or 2-D ndarray.

        bsr_matrix(S, [blocksize=(R,C)])
            with another sparse matrix S (equivalent to S.tobsr())

        bsr_matrix((M, N), [blocksize=(R,C), dtype])
            to construct an empty matrix with shape (M, N)
            dtype is optional, defaulting to dtype='d'.

        bsr_matrix((data, ij), [blocksize=(R,C), shape=(M, N)])
            where ``data`` and ``ij`` satisfy ``a[ij[0, k], ij[1, k]] = data[k]``

        bsr_matrix((data, indices, indptr), [shape=(M, N)])
            is the standard BSR representation where the block column
            indices for row i are stored in ``indices[indptr[i]:indptr[i+1]]``
            and their corresponding block values are stored in
            ``data[ indptr[i]: indptr[i+1] ]``. If the shape parameter is not
            supplied, the matrix dimensions are inferred from the index arrays.

    Attributes
    ----------
    dtype : dtype
        Data type of the matrix
    shape : 2-tuple
        Shape of the matrix
    ndim : int
        Number of dimensions (this is always 2)
    nnz
        Number of stored values, including explicit zeros
    data
        Data array of the matrix
    indices
        BSR format index array
    indptr
        BSR format index pointer array
    blocksize
        Block size of the matrix
    has_sorted_indices
        Whether indices are sorted

    Notes
    -----
    Sparse matrices can be used in arithmetic operations: they support
    addition, subtraction, multiplication, division, and matrix power.

    **Summary of BSR format**

    The Block Compressed Row (BSR) format is very similar to the Compressed
    Sparse Row (CSR) format. BSR is appropriate for sparse matrices with dense
    sub matrices like the last example below.  Block matrices often arise in
    vector-valued finite element discretizations. In such cases, BSR is
    considerably more efficient than CSR and CSC for many sparse arithmetic
    operations.

    **Blocksize**

    The blocksize (R,C) must evenly divide the shape of the matrix (M,N).
    That is, R and C must satisfy the relationship ``M % R = 0`` and
    ``N % C = 0``.

    If no blocksize is specified, a simple heuristic is applied to determine
    an appropriate blocksize.

    Examples
    --------
    >>> from scipy.sparse import bsr_matrix
    >>> bsr_matrix((3, 4), dtype=np.int8).toarray()
    array([[0, 0, 0, 0],
           [0, 0, 0, 0],
           [0, 0, 0, 0]], dtype=int8)

    >>> row = np.array([0, 0, 1, 2, 2, 2])
    >>> col = np.array([0, 2, 2, 0, 1, 2])
    >>> data = np.array([1, 2, 3 ,4, 5, 6])
    >>> bsr_matrix((data, (row, col)), shape=(3, 3)).toarray()
    array([[1, 0, 2],
           [0, 0, 3],
           [4, 5, 6]])

    >>> indptr = np.array([0, 2, 3, 6])
    >>> indices = np.array([0, 2, 2, 0, 1, 2])
    >>> data = np.array([1, 2, 3, 4, 5, 6]).repeat(4).reshape(6, 2, 2)
    >>> bsr_matrix((data,indices,indptr), shape=(6, 6)).toarray()
    array([[1, 1, 0, 0, 2, 2],
           [1, 1, 0, 0, 2, 2],
           [0, 0, 0, 0, 3, 3],
           [0, 0, 0, 0, 3, 3],
           [4, 4, 5, 5, 6, 6],
           [4, 4, 5, 5, 6, 6]])

    """
    format = 'bsr'

    def __init__(self, arg1, shape=None, dtype=None, copy=False, blocksize=None):
        _data_matrix.__init__(self)

        if isspmatrix(arg1):
            if isspmatrix_bsr(arg1) and copy:
                arg1 = arg1.copy()
            else:
                arg1 = arg1.tobsr(blocksize=blocksize)
            self._set_self(arg1)

        elif isinstance(arg1,tuple):
            if isshape(arg1):
                # it's a tuple of matrix dimensions (M,N)
                self._shape = check_shape(arg1)
                M,N = self.shape
                # process blocksize
                if blocksize is None:
                    blocksize = (1,1)
                else:
                    if not isshape(blocksize):
                        raise ValueError('invalid blocksize=%s' % blocksize)
                    blocksize = tuple(blocksize)
                self.data = np.zeros((0,) + blocksize, getdtype(dtype, default=float))

                R,C = blocksize
                if (M % R) != 0 or (N % C) != 0:
                    raise ValueError('shape must be multiple of blocksize')

                # Select index dtype large enough to pass array and
                # scalar parameters to sparsetools
                idx_dtype = get_index_dtype(maxval=max(M//R, N//C, R, C))
                self.indices = np.zeros(0, dtype=idx_dtype)
                self.indptr = np.zeros(M//R + 1, dtype=idx_dtype)

            elif len(arg1) == 2:
                # (data,(row,col)) format
                from .coo import coo_matrix
                self._set_self(coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize))

            elif len(arg1) == 3:
                # (data,indices,indptr) format
                (data, indices, indptr) = arg1

                # Select index dtype large enough to pass array and
                # scalar parameters to sparsetools
                maxval = 1
                if shape is not None:
                    maxval = max(shape)
                if blocksize is not None:
                    maxval = max(maxval, max(blocksize))
                idx_dtype = get_index_dtype((indices, indptr), maxval=maxval, check_contents=True)

                self.indices = np.array(indices, copy=copy, dtype=idx_dtype)
                self.indptr = np.array(indptr, copy=copy, dtype=idx_dtype)
                self.data = np.array(data, copy=copy, dtype=getdtype(dtype, data))
            else:
                raise ValueError('unrecognized bsr_matrix constructor usage')
        else:
            # must be dense
            try:
                arg1 = np.asarray(arg1)
            except Exception:
                raise ValueError("unrecognized form for"
                        " %s_matrix constructor" % self.format)
            from .coo import coo_matrix
            arg1 = coo_matrix(arg1, dtype=dtype).tobsr(blocksize=blocksize)
            self._set_self(arg1)

        if shape is not None:
            self._shape = check_shape(shape)
        else:
            if self.shape is None:
                # shape not already set, try to infer dimensions
                try:
                    M = len(self.indptr) - 1
                    N = self.indices.max() + 1
                except Exception:
                    raise ValueError('unable to infer matrix dimensions')
                else:
                    R,C = self.blocksize
                    self._shape = check_shape((M*R,N*C))

        if self.shape is None:
            if shape is None:
                # TODO infer shape here
                raise ValueError('need to infer shape')
            else:
                self._shape = check_shape(shape)

        if dtype is not None:
            self.data = self.data.astype(dtype, copy=False)

        self.check_format(full_check=False)

    def check_format(self, full_check=True):
        """check whether the matrix format is valid

            *Parameters*:
                full_check:
                    True  - rigorous check, O(N) operations : default
                    False - basic check, O(1) operations

        """
        M,N = self.shape
        R,C = self.blocksize

        # index arrays should have integer data types
        if self.indptr.dtype.kind != 'i':
            warn("indptr array has non-integer dtype (%s)"
                    % self.indptr.dtype.name)
        if self.indices.dtype.kind != 'i':
            warn("indices array has non-integer dtype (%s)"
                    % self.indices.dtype.name)

        idx_dtype = get_index_dtype((self.indices, self.indptr))
        self.indptr = np.asarray(self.indptr, dtype=idx_dtype)
        self.indices = np.asarray(self.indices, dtype=idx_dtype)
        self.data = to_native(self.data)

        # check array shapes
        if self.indices.ndim != 1 or self.indptr.ndim != 1:
            raise ValueError("indices, and indptr should be 1-D")
        if self.data.ndim != 3:
            raise ValueError("data should be 3-D")

        # check index pointer
        if (len(self.indptr) != M//R + 1):
            raise ValueError("index pointer size (%d) should be (%d)" %
                                (len(self.indptr), M//R + 1))
        if (self.indptr[0] != 0):
            raise ValueError("index pointer should start with 0")

        # check index and data arrays
        if (len(self.indices) != len(self.data)):
            raise ValueError("indices and data should have the same size")
        if (self.indptr[-1] > len(self.indices)):
            raise ValueError("Last value of index pointer should be less than "
                                "the size of index and data arrays")

        self.prune()

        if full_check:
            # check format validity (more expensive)
            if self.nnz > 0:
                if self.indices.max() >= N//C:
                    raise ValueError("column index values must be < %d (now max %d)" % (N//C, self.indices.max()))
                if self.indices.min() < 0:
                    raise ValueError("column index values must be >= 0")
                if np.diff(self.indptr).min() < 0:
                    raise ValueError("index pointer values must form a "
                                        "non-decreasing sequence")

        # if not self.has_sorted_indices():
        #    warn('Indices were not in sorted order. Sorting indices.')
        #    self.sort_indices(check_first=False)

    def _get_blocksize(self):
        return self.data.shape[1:]
    blocksize = property(fget=_get_blocksize)

    def getnnz(self, axis=None):
        if axis is not None:
            raise NotImplementedError("getnnz over an axis is not implemented "
                                      "for BSR format")
        R,C = self.blocksize
        return int(self.indptr[-1] * R * C)

    getnnz.__doc__ = spmatrix.getnnz.__doc__

    def __repr__(self):
        format = _formats[self.getformat()][1]
        return ("<%dx%d sparse matrix of type '%s'\n"
                "\twith %d stored elements (blocksize = %dx%d) in %s format>" %
                (self.shape + (self.dtype.type, self.nnz) + self.blocksize +
                 (format,)))

    def diagonal(self, k=0):
        rows, cols = self.shape
        if k <= -rows or k >= cols:
            return np.empty(0, dtype=self.data.dtype)
        R, C = self.blocksize
        y = np.zeros(min(rows + min(k, 0), cols - max(k, 0)),
                     dtype=upcast(self.dtype))
        _sparsetools.bsr_diagonal(k, rows // R, cols // C, R, C,
                                  self.indptr, self.indices,
                                  np.ravel(self.data), y)
        return y

    diagonal.__doc__ = spmatrix.diagonal.__doc__

    ##########################
    # NotImplemented methods #
    ##########################

    def __getitem__(self,key):
        raise NotImplementedError

    def __setitem__(self,key,val):
        raise NotImplementedError

    ######################
    # Arithmetic methods #
    ######################

    @np.deprecate(message="BSR matvec is deprecated in SciPy 0.19.0. "
                          "Use * operator instead.")
    def matvec(self, other):
        """Multiply matrix by vector."""
        return self * other

    @np.deprecate(message="BSR matmat is deprecated in SciPy 0.19.0. "
                          "Use * operator instead.")
    def matmat(self, other):
        """Multiply this sparse matrix by other matrix."""
        return self * other

    def _add_dense(self, other):
        return self.tocoo(copy=False)._add_dense(other)

    def _mul_vector(self, other):
        M,N = self.shape
        R,C = self.blocksize

        result = np.zeros(self.shape[0], dtype=upcast(self.dtype, other.dtype))

        bsr_matvec(M//R, N//C, R, C,
            self.indptr, self.indices, self.data.ravel(),
            other, result)

        return result

    def _mul_multivector(self,other):
        R,C = self.blocksize
        M,N = self.shape
        n_vecs = other.shape[1]  # number of column vectors

        result = np.zeros((M,n_vecs), dtype=upcast(self.dtype,other.dtype))

        bsr_matvecs(M//R, N//C, n_vecs, R, C,
                self.indptr, self.indices, self.data.ravel(),
                other.ravel(), result.ravel())

        return result

    def _mul_sparse_matrix(self, other):
        M, K1 = self.shape
        K2, N = other.shape

        R,n = self.blocksize

        # convert to this format
        if isspmatrix_bsr(other):
            C = other.blocksize[1]
        else:
            C = 1

        from .csr import isspmatrix_csr

        if isspmatrix_csr(other) and n == 1:
            other = other.tobsr(blocksize=(n,C), copy=False)  # lightweight conversion
        else:
            other = other.tobsr(blocksize=(n,C))

        idx_dtype = get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices))

        bnnz = csr_matmat_maxnnz(M//R, N//C,
                                 self.indptr.astype(idx_dtype),
                                 self.indices.astype(idx_dtype),
                                 other.indptr.astype(idx_dtype),
                                 other.indices.astype(idx_dtype))

        idx_dtype = get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices),
                                    maxval=bnnz)
        indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
        indices = np.empty(bnnz, dtype=idx_dtype)
        data = np.empty(R*C*bnnz, dtype=upcast(self.dtype,other.dtype))

        bsr_matmat(bnnz, M//R, N//C, R, C, n,
                   self.indptr.astype(idx_dtype),
                   self.indices.astype(idx_dtype),
                   np.ravel(self.data),
                   other.indptr.astype(idx_dtype),
                   other.indices.astype(idx_dtype),
                   np.ravel(other.data),
                   indptr,
                   indices,
                   data)

        data = data.reshape(-1,R,C)

        # TODO eliminate zeros

        return bsr_matrix((data,indices,indptr),shape=(M,N),blocksize=(R,C))

    ######################
    # Conversion methods #
    ######################

    def tobsr(self, blocksize=None, copy=False):
        """Convert this matrix into Block Sparse Row Format.

        With copy=False, the data/indices may be shared between this
        matrix and the resultant bsr_matrix.

        If blocksize=(R, C) is provided, it will be used for determining
        block size of the bsr_matrix.
        """
        if blocksize not in [None, self.blocksize]:
            return self.tocsr().tobsr(blocksize=blocksize)
        if copy:
            return self.copy()
        else:
            return self

    def tocsr(self, copy=False):
        M, N = self.shape
        R, C = self.blocksize
        nnz = self.nnz
        idx_dtype = get_index_dtype((self.indptr, self.indices),
                                    maxval=max(nnz, N))
        indptr = np.empty(M + 1, dtype=idx_dtype)
        indices = np.empty(nnz, dtype=idx_dtype)
        data = np.empty(nnz, dtype=upcast(self.dtype))

        bsr_tocsr(M // R,  # n_brow
                  N // C,  # n_bcol
                  R, C,
                  self.indptr.astype(idx_dtype, copy=False),
                  self.indices.astype(idx_dtype, copy=False),
                  self.data,
                  indptr,
                  indices,
                  data)
        from .csr import csr_matrix
        return csr_matrix((data, indices, indptr), shape=self.shape)

    tocsr.__doc__ = spmatrix.tocsr.__doc__

    def tocsc(self, copy=False):
        return self.tocsr(copy=False).tocsc(copy=copy)

    tocsc.__doc__ = spmatrix.tocsc.__doc__

    def tocoo(self, copy=True):
        """Convert this matrix to COOrdinate format.

        When copy=False the data array will be shared between
        this matrix and the resultant coo_matrix.
        """

        M,N = self.shape
        R,C = self.blocksize

        indptr_diff = np.diff(self.indptr)
        if indptr_diff.dtype.itemsize > np.dtype(np.intp).itemsize:
            # Check for potential overflow
            indptr_diff_limited = indptr_diff.astype(np.intp)
            if np.any(indptr_diff_limited != indptr_diff):
                raise ValueError("Matrix too big to convert")
            indptr_diff = indptr_diff_limited

        row = (R * np.arange(M//R)).repeat(indptr_diff)
        row = row.repeat(R*C).reshape(-1,R,C)
        row += np.tile(np.arange(R).reshape(-1,1), (1,C))
        row = row.reshape(-1)

        col = (C * self.indices).repeat(R*C).reshape(-1,R,C)
        col += np.tile(np.arange(C), (R,1))
        col = col.reshape(-1)

        data = self.data.reshape(-1)

        if copy:
            data = data.copy()

        from .coo import coo_matrix
        return coo_matrix((data,(row,col)), shape=self.shape)

    def toarray(self, order=None, out=None):
        return self.tocoo(copy=False).toarray(order=order, out=out)

    toarray.__doc__ = spmatrix.toarray.__doc__

    def transpose(self, axes=None, copy=False):
        if axes is not None:
            raise ValueError(("Sparse matrices do not support "
                              "an 'axes' parameter because swapping "
                              "dimensions is the only logical permutation."))

        R, C = self.blocksize
        M, N = self.shape
        NBLK = self.nnz//(R*C)

        if self.nnz == 0:
            return bsr_matrix((N, M), blocksize=(C, R),
                              dtype=self.dtype, copy=copy)

        indptr = np.empty(N//C + 1, dtype=self.indptr.dtype)
        indices = np.empty(NBLK, dtype=self.indices.dtype)
        data = np.empty((NBLK, C, R), dtype=self.data.dtype)

        bsr_transpose(M//R, N//C, R, C,
                      self.indptr, self.indices, self.data.ravel(),
                      indptr, indices, data.ravel())

        return bsr_matrix((data, indices, indptr),
                          shape=(N, M), copy=copy)

    transpose.__doc__ = spmatrix.transpose.__doc__

    ##############################################################
    # methods that examine or modify the internal data structure #
    ##############################################################

    def eliminate_zeros(self):
        """Remove zero elements in-place."""

        if not self.nnz:
            return  # nothing to do

        R,C = self.blocksize
        M,N = self.shape

        mask = (self.data != 0).reshape(-1,R*C).sum(axis=1)  # nonzero blocks

        nonzero_blocks = mask.nonzero()[0]

        self.data[:len(nonzero_blocks)] = self.data[nonzero_blocks]

        # modifies self.indptr and self.indices *in place*
        _sparsetools.csr_eliminate_zeros(M//R, N//C, self.indptr,
                                         self.indices, mask)
        self.prune()

    def sum_duplicates(self):
        """Eliminate duplicate matrix entries by adding them together

        The is an *in place* operation
        """
        if self.has_canonical_format:
            return
        self.sort_indices()
        R, C = self.blocksize
        M, N = self.shape

        # port of _sparsetools.csr_sum_duplicates
        n_row = M // R
        nnz = 0
        row_end = 0
        for i in range(n_row):
            jj = row_end
            row_end = self.indptr[i+1]
            while jj < row_end:
                j = self.indices[jj]
                x = self.data[jj]
                jj += 1
                while jj < row_end and self.indices[jj] == j:
                    x += self.data[jj]
                    jj += 1
                self.indices[nnz] = j
                self.data[nnz] = x
                nnz += 1
            self.indptr[i+1] = nnz

        self.prune()  # nnz may have changed
        self.has_canonical_format = True

    def sort_indices(self):
        """Sort the indices of this matrix *in place*
        """
        if self.has_sorted_indices:
            return

        R,C = self.blocksize
        M,N = self.shape

        bsr_sort_indices(M//R, N//C, R, C, self.indptr, self.indices, self.data.ravel())

        self.has_sorted_indices = True

    def prune(self):
        """ Remove empty space after all non-zero elements.
        """

        R,C = self.blocksize
        M,N = self.shape

        if len(self.indptr) != M//R + 1:
            raise ValueError("index pointer has invalid length")

        bnnz = self.indptr[-1]

        if len(self.indices) < bnnz:
            raise ValueError("indices array has too few elements")
        if len(self.data) < bnnz:
            raise ValueError("data array has too few elements")

        self.data = self.data[:bnnz]
        self.indices = self.indices[:bnnz]

    # utility functions
    def _binopt(self, other, op, in_shape=None, out_shape=None):
        """Apply the binary operation fn to two sparse matrices."""

        # Ideally we'd take the GCDs of the blocksize dimensions
        # and explode self and other to match.
        other = self.__class__(other, blocksize=self.blocksize)

        # e.g. bsr_plus_bsr, etc.
        fn = getattr(_sparsetools, self.format + op + self.format)

        R,C = self.blocksize

        max_bnnz = len(self.data) + len(other.data)
        idx_dtype = get_index_dtype((self.indptr, self.indices,
                                     other.indptr, other.indices),
                                    maxval=max_bnnz)
        indptr = np.empty(self.indptr.shape, dtype=idx_dtype)
        indices = np.empty(max_bnnz, dtype=idx_dtype)

        bool_ops = ['_ne_', '_lt_', '_gt_', '_le_', '_ge_']
        if op in bool_ops:
            data = np.empty(R*C*max_bnnz, dtype=np.bool_)
        else:
            data = np.empty(R*C*max_bnnz, dtype=upcast(self.dtype,other.dtype))

        fn(self.shape[0]//R, self.shape[1]//C, R, C,
           self.indptr.astype(idx_dtype),
           self.indices.astype(idx_dtype),
           self.data,
           other.indptr.astype(idx_dtype),
           other.indices.astype(idx_dtype),
           np.ravel(other.data),
           indptr,
           indices,
           data)

        actual_bnnz = indptr[-1]
        indices = indices[:actual_bnnz]
        data = data[:R*C*actual_bnnz]

        if actual_bnnz < max_bnnz/2:
            indices = indices.copy()
            data = data.copy()

        data = data.reshape(-1,R,C)

        return self.__class__((data, indices, indptr), shape=self.shape)

    # needed by _data_matrix
    def _with_data(self,data,copy=True):
        """Returns a matrix with the same sparsity structure as self,
        but with different data.  By default the structure arrays
        (i.e. .indptr and .indices) are copied.
        """
        if copy:
            return self.__class__((data,self.indices.copy(),self.indptr.copy()),
                                   shape=self.shape,dtype=data.dtype)
        else:
            return self.__class__((data,self.indices,self.indptr),
                                   shape=self.shape,dtype=data.dtype)

#    # these functions are used by the parent class
#    # to remove redudancy between bsc_matrix and bsr_matrix
#    def _swap(self,x):
#        """swap the members of x if this is a column-oriented matrix
#        """
#        return (x[0],x[1])


def isspmatrix_bsr(x):
    """Is x of a bsr_matrix type?

    Parameters
    ----------
    x
        object to check for being a bsr matrix

    Returns
    -------
    bool
        True if x is a bsr matrix, False otherwise

    Examples
    --------
    >>> from scipy.sparse import bsr_matrix, isspmatrix_bsr
    >>> isspmatrix_bsr(bsr_matrix([[5]]))
    True

    >>> from scipy.sparse import bsr_matrix, csr_matrix, isspmatrix_bsr
    >>> isspmatrix_bsr(csr_matrix([[5]]))
    False
    """
    return isinstance(x, bsr_matrix)