wavelets.py 13.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
import numpy as np
from scipy.linalg import eig
from scipy.special import comb
from scipy.signal import convolve

__all__ = ['daub', 'qmf', 'cascade', 'morlet', 'ricker', 'morlet2', 'cwt']


def daub(p):
    """
    The coefficients for the FIR low-pass filter producing Daubechies wavelets.

    p>=1 gives the order of the zero at f=1/2.
    There are 2p filter coefficients.

    Parameters
    ----------
    p : int
        Order of the zero at f=1/2, can have values from 1 to 34.

    Returns
    -------
    daub : ndarray
        Return

    """
    sqrt = np.sqrt
    if p < 1:
        raise ValueError("p must be at least 1.")
    if p == 1:
        c = 1 / sqrt(2)
        return np.array([c, c])
    elif p == 2:
        f = sqrt(2) / 8
        c = sqrt(3)
        return f * np.array([1 + c, 3 + c, 3 - c, 1 - c])
    elif p == 3:
        tmp = 12 * sqrt(10)
        z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6
        z1c = np.conj(z1)
        f = sqrt(2) / 8
        d0 = np.real((1 - z1) * (1 - z1c))
        a0 = np.real(z1 * z1c)
        a1 = 2 * np.real(z1)
        return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1,
                                  a0 - 3 * a1 + 3, 3 - a1, 1])
    elif p < 35:
        # construct polynomial and factor it
        if p < 35:
            P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1]
            yj = np.roots(P)
        else:  # try different polynomial --- needs work
            P = [comb(p - 1 + k, k, exact=1) / 4.0**k
                 for k in range(p)][::-1]
            yj = np.roots(P) / 4
        # for each root, compute two z roots, select the one with |z|>1
        # Build up final polynomial
        c = np.poly1d([1, 1])**p
        q = np.poly1d([1])
        for k in range(p - 1):
            yval = yj[k]
            part = 2 * sqrt(yval * (yval - 1))
            const = 1 - 2 * yval
            z1 = const + part
            if (abs(z1)) < 1:
                z1 = const - part
            q = q * [1, -z1]

        q = c * np.real(q)
        # Normalize result
        q = q / np.sum(q) * sqrt(2)
        return q.c[::-1]
    else:
        raise ValueError("Polynomial factorization does not work "
                         "well for p too large.")


def qmf(hk):
    """
    Return high-pass qmf filter from low-pass

    Parameters
    ----------
    hk : array_like
        Coefficients of high-pass filter.

    """
    N = len(hk) - 1
    asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)]
    return hk[::-1] * np.array(asgn)


def cascade(hk, J=7):
    """
    Return (x, phi, psi) at dyadic points ``K/2**J`` from filter coefficients.

    Parameters
    ----------
    hk : array_like
        Coefficients of low-pass filter.
    J : int, optional
        Values will be computed at grid points ``K/2**J``. Default is 7.

    Returns
    -------
    x : ndarray
        The dyadic points ``K/2**J`` for ``K=0...N * (2**J)-1`` where
        ``len(hk) = len(gk) = N+1``.
    phi : ndarray
        The scaling function ``phi(x)`` at `x`:
        ``phi(x) = sum(hk * phi(2x-k))``, where k is from 0 to N.
    psi : ndarray, optional
        The wavelet function ``psi(x)`` at `x`:
        ``phi(x) = sum(gk * phi(2x-k))``, where k is from 0 to N.
        `psi` is only returned if `gk` is not None.

    Notes
    -----
    The algorithm uses the vector cascade algorithm described by Strang and
    Nguyen in "Wavelets and Filter Banks".  It builds a dictionary of values
    and slices for quick reuse.  Then inserts vectors into final vector at the
    end.

    """
    N = len(hk) - 1

    if (J > 30 - np.log2(N + 1)):
        raise ValueError("Too many levels.")
    if (J < 1):
        raise ValueError("Too few levels.")

    # construct matrices needed
    nn, kk = np.ogrid[:N, :N]
    s2 = np.sqrt(2)
    # append a zero so that take works
    thk = np.r_[hk, 0]
    gk = qmf(hk)
    tgk = np.r_[gk, 0]

    indx1 = np.clip(2 * nn - kk, -1, N + 1)
    indx2 = np.clip(2 * nn - kk + 1, -1, N + 1)
    m = np.zeros((2, 2, N, N), 'd')
    m[0, 0] = np.take(thk, indx1, 0)
    m[0, 1] = np.take(thk, indx2, 0)
    m[1, 0] = np.take(tgk, indx1, 0)
    m[1, 1] = np.take(tgk, indx2, 0)
    m *= s2

    # construct the grid of points
    x = np.arange(0, N * (1 << J), dtype=float) / (1 << J)
    phi = 0 * x

    psi = 0 * x

    # find phi0, and phi1
    lam, v = eig(m[0, 0])
    ind = np.argmin(np.absolute(lam - 1))
    # a dictionary with a binary representation of the
    #   evaluation points x < 1 -- i.e. position is 0.xxxx
    v = np.real(v[:, ind])
    # need scaling function to integrate to 1 so find
    #  eigenvector normalized to sum(v,axis=0)=1
    sm = np.sum(v)
    if sm < 0:  # need scaling function to integrate to 1
        v = -v
        sm = -sm
    bitdic = {'0': v / sm}
    bitdic['1'] = np.dot(m[0, 1], bitdic['0'])
    step = 1 << J
    phi[::step] = bitdic['0']
    phi[(1 << (J - 1))::step] = bitdic['1']
    psi[::step] = np.dot(m[1, 0], bitdic['0'])
    psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0'])
    # descend down the levels inserting more and more values
    #  into bitdic -- store the values in the correct location once we
    #  have computed them -- stored in the dictionary
    #  for quicker use later.
    prevkeys = ['1']
    for level in range(2, J + 1):
        newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys]
        fac = 1 << (J - level)
        for key in newkeys:
            # convert key to number
            num = 0
            for pos in range(level):
                if key[pos] == '1':
                    num += (1 << (level - 1 - pos))
            pastphi = bitdic[key[1:]]
            ii = int(key[0])
            temp = np.dot(m[0, ii], pastphi)
            bitdic[key] = temp
            phi[num * fac::step] = temp
            psi[num * fac::step] = np.dot(m[1, ii], pastphi)
        prevkeys = newkeys

    return x, phi, psi


def morlet(M, w=5.0, s=1.0, complete=True):
    """
    Complex Morlet wavelet.

    Parameters
    ----------
    M : int
        Length of the wavelet.
    w : float, optional
        Omega0. Default is 5
    s : float, optional
        Scaling factor, windowed from ``-s*2*pi`` to ``+s*2*pi``. Default is 1.
    complete : bool, optional
        Whether to use the complete or the standard version.

    Returns
    -------
    morlet : (M,) ndarray

    See Also
    --------
    morlet2 : Implementation of Morlet wavelet, compatible with `cwt`.
    scipy.signal.gausspulse

    Notes
    -----
    The standard version::

        pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

    This commonly used wavelet is often referred to simply as the
    Morlet wavelet.  Note that this simplified version can cause
    admissibility problems at low values of `w`.

    The complete version::

        pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

    This version has a correction
    term to improve admissibility. For `w` greater than 5, the
    correction term is negligible.

    Note that the energy of the return wavelet is not normalised
    according to `s`.

    The fundamental frequency of this wavelet in Hz is given
    by ``f = 2*s*w*r / M`` where `r` is the sampling rate.

    Note: This function was created before `cwt` and is not compatible
    with it.

    """
    x = np.linspace(-s * 2 * np.pi, s * 2 * np.pi, M)
    output = np.exp(1j * w * x)

    if complete:
        output -= np.exp(-0.5 * (w**2))

    output *= np.exp(-0.5 * (x**2)) * np.pi**(-0.25)

    return output


def ricker(points, a):
    """
    Return a Ricker wavelet, also known as the "Mexican hat wavelet".

    It models the function:

        ``A * (1 - (x/a)**2) * exp(-0.5*(x/a)**2)``,

    where ``A = 2/(sqrt(3*a)*(pi**0.25))``.

    Parameters
    ----------
    points : int
        Number of points in `vector`.
        Will be centered around 0.
    a : scalar
        Width parameter of the wavelet.

    Returns
    -------
    vector : (N,) ndarray
        Array of length `points` in shape of ricker curve.

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> points = 100
    >>> a = 4.0
    >>> vec2 = signal.ricker(points, a)
    >>> print(len(vec2))
    100
    >>> plt.plot(vec2)
    >>> plt.show()

    """
    A = 2 / (np.sqrt(3 * a) * (np.pi**0.25))
    wsq = a**2
    vec = np.arange(0, points) - (points - 1.0) / 2
    xsq = vec**2
    mod = (1 - xsq / wsq)
    gauss = np.exp(-xsq / (2 * wsq))
    total = A * mod * gauss
    return total


def morlet2(M, s, w=5):
    """
    Complex Morlet wavelet, designed to work with `cwt`.

    Returns the complete version of morlet wavelet, normalised
    according to `s`::

        exp(1j*w*x/s) * exp(-0.5*(x/s)**2) * pi**(-0.25) * sqrt(1/s)

    Parameters
    ----------
    M : int
        Length of the wavelet.
    s : float
        Width parameter of the wavelet.
    w : float, optional
        Omega0. Default is 5

    Returns
    -------
    morlet : (M,) ndarray

    See Also
    --------
    morlet : Implementation of Morlet wavelet, incompatible with `cwt`

    Notes
    -----

    .. versionadded:: 1.4.0

    This function was designed to work with `cwt`. Because `morlet2`
    returns an array of complex numbers, the `dtype` argument of `cwt`
    should be set to `complex128` for best results.

    Note the difference in implementation with `morlet`.
    The fundamental frequency of this wavelet in Hz is given by::

        f = w*fs / (2*s*np.pi)

    where ``fs`` is the sampling rate and `s` is the wavelet width parameter.
    Similarly we can get the wavelet width parameter at ``f``::

        s = w*fs / (2*f*np.pi)

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> M = 100
    >>> s = 4.0
    >>> w = 2.0
    >>> wavelet = signal.morlet2(M, s, w)
    >>> plt.plot(abs(wavelet))
    >>> plt.show()

    This example shows basic use of `morlet2` with `cwt` in time-frequency
    analysis:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t, dt = np.linspace(0, 1, 200, retstep=True)
    >>> fs = 1/dt
    >>> w = 6.
    >>> sig = np.cos(2*np.pi*(50 + 10*t)*t) + np.sin(40*np.pi*t)
    >>> freq = np.linspace(1, fs/2, 100)
    >>> widths = w*fs / (2*freq*np.pi)
    >>> cwtm = signal.cwt(sig, signal.morlet2, widths, w=w)
    >>> plt.pcolormesh(t, freq, np.abs(cwtm), cmap='viridis', shading='gouraud')
    >>> plt.show()

    """
    x = np.arange(0, M) - (M - 1.0) / 2
    x = x / s
    wavelet = np.exp(1j * w * x) * np.exp(-0.5 * x**2) * np.pi**(-0.25)
    output = np.sqrt(1/s) * wavelet
    return output


def cwt(data, wavelet, widths, dtype=None, **kwargs):
    """
    Continuous wavelet transform.

    Performs a continuous wavelet transform on `data`,
    using the `wavelet` function. A CWT performs a convolution
    with `data` using the `wavelet` function, which is characterized
    by a width parameter and length parameter. The `wavelet` function
    is allowed to be complex.

    Parameters
    ----------
    data : (N,) ndarray
        data on which to perform the transform.
    wavelet : function
        Wavelet function, which should take 2 arguments.
        The first argument is the number of points that the returned vector
        will have (len(wavelet(length,width)) == length).
        The second is a width parameter, defining the size of the wavelet
        (e.g. standard deviation of a gaussian). See `ricker`, which
        satisfies these requirements.
    widths : (M,) sequence
        Widths to use for transform.
    dtype : data-type, optional
        The desired data type of output. Defaults to ``float64`` if the
        output of `wavelet` is real and ``complex128`` if it is complex.

        .. versionadded:: 1.4.0

    kwargs
        Keyword arguments passed to wavelet function.

        .. versionadded:: 1.4.0

    Returns
    -------
    cwt: (M, N) ndarray
        Will have shape of (len(widths), len(data)).

    Notes
    -----

    .. versionadded:: 1.4.0

    For non-symmetric, complex-valued wavelets, the input signal is convolved
    with the time-reversed complex-conjugate of the wavelet data [1].

    ::

        length = min(10 * width[ii], len(data))
        cwt[ii,:] = signal.convolve(data, np.conj(wavelet(length, width[ii],
                                        **kwargs))[::-1], mode='same')

    References
    ----------
    .. [1] S. Mallat, "A Wavelet Tour of Signal Processing (3rd Edition)",
        Academic Press, 2009.

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 200, endpoint=False)
    >>> sig  = np.cos(2 * np.pi * 7 * t) + signal.gausspulse(t - 0.4, fc=2)
    >>> widths = np.arange(1, 31)
    >>> cwtmatr = signal.cwt(sig, signal.ricker, widths)
    >>> plt.imshow(cwtmatr, extent=[-1, 1, 1, 31], cmap='PRGn', aspect='auto',
    ...            vmax=abs(cwtmatr).max(), vmin=-abs(cwtmatr).max())
    >>> plt.show()
    """
    if wavelet == ricker:
        window_size = kwargs.pop('window_size', None)
    # Determine output type
    if dtype is None:
        if np.asarray(wavelet(1, widths[0], **kwargs)).dtype.char in 'FDG':
            dtype = np.complex128
        else:
            dtype = np.float64

    output = np.zeros((len(widths), len(data)), dtype=dtype)
    for ind, width in enumerate(widths):
        N = np.min([10 * width, len(data)])
        # the conditional block below and the window_size
        # kwarg pop above may be removed eventually; these
        # are shims for 32-bit arch + NumPy <= 1.14.5 to
        # address gh-11095
        if wavelet == ricker and window_size is None:
            ceil = np.ceil(N)
            if ceil != N:
                N = int(N)
        wavelet_data = np.conj(wavelet(N, width, **kwargs)[::-1])
        output[ind] = convolve(data, wavelet_data, mode='same')
    return output