test_upfirdn.py
10.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Code adapted from "upfirdn" python library with permission:
#
# Copyright (c) 2009, Motorola, Inc
#
# All Rights Reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of Motorola nor the names of its contributors may be
# used to endorse or promote products derived from this software without
# specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
# IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
# THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
# LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
from itertools import product
from numpy.testing import assert_equal, assert_allclose
from pytest import raises as assert_raises
import pytest
from scipy.signal import upfirdn, firwin
from scipy.signal._upfirdn import _output_len, _upfirdn_modes
from scipy.signal._upfirdn_apply import _pad_test
def upfirdn_naive(x, h, up=1, down=1):
"""Naive upfirdn processing in Python.
Note: arg order (x, h) differs to facilitate apply_along_axis use.
"""
h = np.asarray(h)
out = np.zeros(len(x) * up, x.dtype)
out[::up] = x
out = np.convolve(h, out)[::down][:_output_len(len(h), len(x), up, down)]
return out
class UpFIRDnCase(object):
"""Test _UpFIRDn object"""
def __init__(self, up, down, h, x_dtype):
self.up = up
self.down = down
self.h = np.atleast_1d(h)
self.x_dtype = x_dtype
self.rng = np.random.RandomState(17)
def __call__(self):
# tiny signal
self.scrub(np.ones(1, self.x_dtype))
# ones
self.scrub(np.ones(10, self.x_dtype)) # ones
# randn
x = self.rng.randn(10).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(10)
self.scrub(x)
# ramp
self.scrub(np.arange(10).astype(self.x_dtype))
# 3D, random
size = (2, 3, 5)
x = self.rng.randn(*size).astype(self.x_dtype)
if self.x_dtype in (np.complex64, np.complex128):
x += 1j * self.rng.randn(*size)
for axis in range(len(size)):
self.scrub(x, axis=axis)
x = x[:, ::2, 1::3].T
for axis in range(len(size)):
self.scrub(x, axis=axis)
def scrub(self, x, axis=-1):
yr = np.apply_along_axis(upfirdn_naive, axis, x,
self.h, self.up, self.down)
want_len = _output_len(len(self.h), x.shape[axis], self.up, self.down)
assert yr.shape[axis] == want_len
y = upfirdn(self.h, x, self.up, self.down, axis=axis)
assert y.shape[axis] == want_len
assert y.shape == yr.shape
dtypes = (self.h.dtype, x.dtype)
if all(d == np.complex64 for d in dtypes):
assert_equal(y.dtype, np.complex64)
elif np.complex64 in dtypes and np.float32 in dtypes:
assert_equal(y.dtype, np.complex64)
elif all(d == np.float32 for d in dtypes):
assert_equal(y.dtype, np.float32)
elif np.complex128 in dtypes or np.complex64 in dtypes:
assert_equal(y.dtype, np.complex128)
else:
assert_equal(y.dtype, np.float64)
assert_allclose(yr, y)
_UPFIRDN_TYPES = (int, np.float32, np.complex64, float, complex)
class TestUpfirdn(object):
def test_valid_input(self):
assert_raises(ValueError, upfirdn, [1], [1], 1, 0) # up or down < 1
assert_raises(ValueError, upfirdn, [], [1], 1, 1) # h.ndim != 1
assert_raises(ValueError, upfirdn, [[1]], [1], 1, 1)
@pytest.mark.parametrize('len_h', [1, 2, 3, 4, 5])
@pytest.mark.parametrize('len_x', [1, 2, 3, 4, 5])
def test_singleton(self, len_h, len_x):
# gh-9844: lengths producing expected outputs
h = np.zeros(len_h)
h[len_h // 2] = 1. # make h a delta
x = np.ones(len_x)
y = upfirdn(h, x, 1, 1)
want = np.pad(x, (len_h // 2, (len_h - 1) // 2), 'constant')
assert_allclose(y, want)
def test_shift_x(self):
# gh-9844: shifted x can change values?
y = upfirdn([1, 1], [1.], 1, 1)
assert_allclose(y, [1, 1]) # was [0, 1] in the issue
y = upfirdn([1, 1], [0., 1.], 1, 1)
assert_allclose(y, [0, 1, 1])
# A bunch of lengths/factors chosen because they exposed differences
# between the "old way" and new way of computing length, and then
# got `expected` from MATLAB
@pytest.mark.parametrize('len_h, len_x, up, down, expected', [
(2, 2, 5, 2, [1, 0, 0, 0]),
(2, 3, 6, 3, [1, 0, 1, 0, 1]),
(2, 4, 4, 3, [1, 0, 0, 0, 1]),
(3, 2, 6, 2, [1, 0, 0, 1, 0]),
(4, 11, 3, 5, [1, 0, 0, 1, 0, 0, 1]),
])
def test_length_factors(self, len_h, len_x, up, down, expected):
# gh-9844: weird factors
h = np.zeros(len_h)
h[0] = 1.
x = np.ones(len_x)
y = upfirdn(h, x, up, down)
assert_allclose(y, expected)
@pytest.mark.parametrize('down, want_len', [ # lengths from MATLAB
(2, 5015),
(11, 912),
(79, 127),
])
def test_vs_convolve(self, down, want_len):
# Check that up=1.0 gives same answer as convolve + slicing
random_state = np.random.RandomState(17)
try_types = (int, np.float32, np.complex64, float, complex)
size = 10000
for dtype in try_types:
x = random_state.randn(size).astype(dtype)
if dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
h = firwin(31, 1. / down, window='hamming')
yl = upfirdn_naive(x, h, 1, down)
y = upfirdn(h, x, up=1, down=down)
assert y.shape == (want_len,)
assert yl.shape[0] == y.shape[0]
assert_allclose(yl, y, atol=1e-7, rtol=1e-7)
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h', (1., 1j))
@pytest.mark.parametrize('up, down', [(1, 1), (2, 2), (3, 2), (2, 3)])
def test_vs_naive_delta(self, x_dtype, h, up, down):
UpFIRDnCase(up, down, h, x_dtype)()
@pytest.mark.parametrize('x_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('h_dtype', _UPFIRDN_TYPES)
@pytest.mark.parametrize('p_max, q_max',
list(product((10, 100), (10, 100))))
def test_vs_naive(self, x_dtype, h_dtype, p_max, q_max):
tests = self._random_factors(p_max, q_max, h_dtype, x_dtype)
for test in tests:
test()
def _random_factors(self, p_max, q_max, h_dtype, x_dtype):
n_rep = 3
longest_h = 25
random_state = np.random.RandomState(17)
tests = []
for _ in range(n_rep):
# Randomize the up/down factors somewhat
p_add = q_max if p_max > q_max else 1
q_add = p_max if q_max > p_max else 1
p = random_state.randint(p_max) + p_add
q = random_state.randint(q_max) + q_add
# Generate random FIR coefficients
len_h = random_state.randint(longest_h) + 1
h = np.atleast_1d(random_state.randint(len_h))
h = h.astype(h_dtype)
if h_dtype == complex:
h += 1j * random_state.randint(len_h)
tests.append(UpFIRDnCase(p, q, h, x_dtype))
return tests
@pytest.mark.parametrize('mode', _upfirdn_modes)
def test_extensions(self, mode):
"""Test vs. manually computed results for modes not in numpy's pad."""
x = np.array([1, 2, 3, 1], dtype=float)
npre, npost = 6, 6
y = _pad_test(x, npre=npre, npost=npost, mode=mode)
if mode == 'antisymmetric':
y_expected = np.asarray(
[3, 1, -1, -3, -2, -1, 1, 2, 3, 1, -1, -3, -2, -1, 1, 2])
elif mode == 'antireflect':
y_expected = np.asarray(
[1, 2, 3, 1, -1, 0, 1, 2, 3, 1, -1, 0, 1, 2, 3, 1])
elif mode == 'smooth':
y_expected = np.asarray(
[-5, -4, -3, -2, -1, 0, 1, 2, 3, 1, -1, -3, -5, -7, -9, -11])
elif mode == "line":
lin_slope = (x[-1] - x[0]) / (len(x) - 1)
left = x[0] + np.arange(-npre, 0, 1) * lin_slope
right = x[-1] + np.arange(1, npost + 1) * lin_slope
y_expected = np.concatenate((left, x, right))
else:
y_expected = np.pad(x, (npre, npost), mode=mode)
assert_allclose(y, y_expected)
@pytest.mark.parametrize(
'size, h_len, mode, dtype',
product(
[8],
[4, 5, 26], # include cases with h_len > 2*size
_upfirdn_modes,
[np.float32, np.float64, np.complex64, np.complex128],
)
)
def test_modes(self, size, h_len, mode, dtype):
random_state = np.random.RandomState(5)
x = random_state.randn(size).astype(dtype)
if dtype in (np.complex64, np.complex128):
x += 1j * random_state.randn(size)
h = np.arange(1, 1 + h_len, dtype=x.real.dtype)
y = upfirdn(h, x, up=1, down=1, mode=mode)
# expected result: pad the input, filter with zero padding, then crop
npad = h_len - 1
if mode in ['antisymmetric', 'antireflect', 'smooth', 'line']:
# use _pad_test test function for modes not supported by np.pad.
xpad = _pad_test(x, npre=npad, npost=npad, mode=mode)
else:
xpad = np.pad(x, npad, mode=mode)
ypad = upfirdn(h, xpad, up=1, down=1, mode='constant')
y_expected = ypad[npad:-npad]
atol = rtol = np.finfo(dtype).eps * 1e2
assert_allclose(y, y_expected, atol=atol, rtol=rtol)