signaltools.py 143 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282
# Author: Travis Oliphant
# 1999 -- 2002

import operator
import math
import timeit
from scipy.spatial import cKDTree
from . import sigtools, dlti
from ._upfirdn import upfirdn, _output_len, _upfirdn_modes
from scipy import linalg, fft as sp_fft
from scipy.fft._helper import _init_nd_shape_and_axes
from scipy._lib._util import prod as _prod
import numpy as np
from scipy.special import lambertw
from .windows import get_window
from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext
from .filter_design import cheby1, _validate_sos
from .fir_filter_design import firwin
from ._sosfilt import _sosfilt
import warnings


__all__ = ['correlate', 'correlate2d',
           'convolve', 'convolve2d', 'fftconvolve', 'oaconvolve',
           'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter',
           'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2',
           'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue',
           'residuez', 'resample', 'resample_poly', 'detrend',
           'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method',
           'filtfilt', 'decimate', 'vectorstrength']


_modedict = {'valid': 0, 'same': 1, 'full': 2}

_boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1,
                 'symmetric': 1, 'reflect': 4}


def _valfrommode(mode):
    try:
        return _modedict[mode]
    except KeyError:
        raise ValueError("Acceptable mode flags are 'valid',"
                         " 'same', or 'full'.")


def _bvalfromboundary(boundary):
    try:
        return _boundarydict[boundary] << 2
    except KeyError:
        raise ValueError("Acceptable boundary flags are 'fill', 'circular' "
                         "(or 'wrap'), and 'symmetric' (or 'symm').")


def _inputs_swap_needed(mode, shape1, shape2, axes=None):
    """Determine if inputs arrays need to be swapped in `"valid"` mode.

    If in `"valid"` mode, returns whether or not the input arrays need to be
    swapped depending on whether `shape1` is at least as large as `shape2` in
    every calculated dimension.

    This is important for some of the correlation and convolution
    implementations in this module, where the larger array input needs to come
    before the smaller array input when operating in this mode.

    Note that if the mode provided is not 'valid', False is immediately
    returned.

    """
    if mode != 'valid':
        return False

    if not shape1:
        return False

    if axes is None:
        axes = range(len(shape1))

    ok1 = all(shape1[i] >= shape2[i] for i in axes)
    ok2 = all(shape2[i] >= shape1[i] for i in axes)

    if not (ok1 or ok2):
        raise ValueError("For 'valid' mode, one must be at least "
                         "as large as the other in every dimension")

    return not ok1


def correlate(in1, in2, mode='full', method='auto'):
    r"""
    Cross-correlate two N-dimensional arrays.

    Cross-correlate `in1` and `in2`, with the output size determined by the
    `mode` argument.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear cross-correlation
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    method : str {'auto', 'direct', 'fft'}, optional
        A string indicating which method to use to calculate the correlation.

        ``direct``
           The correlation is determined directly from sums, the definition of
           correlation.
        ``fft``
           The Fast Fourier Transform is used to perform the correlation more
           quickly (only available for numerical arrays.)
        ``auto``
           Automatically chooses direct or Fourier method based on an estimate
           of which is faster (default).  See `convolve` Notes for more detail.

           .. versionadded:: 0.19.0

    Returns
    -------
    correlate : array
        An N-dimensional array containing a subset of the discrete linear
        cross-correlation of `in1` with `in2`.

    See Also
    --------
    choose_conv_method : contains more documentation on `method`.

    Notes
    -----
    The correlation z of two d-dimensional arrays x and y is defined as::

        z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])

    This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')``
    then

    .. math::

          z[k] = (x * y)(k - N + 1)
               = \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}

    for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2`

    where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`,
    and :math:`y_m` is 0 when m is outside the range of y.

    ``method='fft'`` only works for numerical arrays as it relies on
    `fftconvolve`. In certain cases (i.e., arrays of objects or when
    rounding integers can lose precision), ``method='direct'`` is always used.

    When using "same" mode with even-length inputs, the outputs of `correlate`
    and `correlate2d` differ: There is a 1-index offset between them.

    Examples
    --------
    Implement a matched filter using cross-correlation, to recover a signal
    that has passed through a noisy channel.

    >>> from scipy import signal
    >>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
    >>> sig_noise = sig + np.random.randn(len(sig))
    >>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128

    >>> import matplotlib.pyplot as plt
    >>> clock = np.arange(64, len(sig), 128)
    >>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
    >>> ax_orig.plot(sig)
    >>> ax_orig.plot(clock, sig[clock], 'ro')
    >>> ax_orig.set_title('Original signal')
    >>> ax_noise.plot(sig_noise)
    >>> ax_noise.set_title('Signal with noise')
    >>> ax_corr.plot(corr)
    >>> ax_corr.plot(clock, corr[clock], 'ro')
    >>> ax_corr.axhline(0.5, ls=':')
    >>> ax_corr.set_title('Cross-correlated with rectangular pulse')
    >>> ax_orig.margins(0, 0.1)
    >>> fig.tight_layout()
    >>> fig.show()

    """
    in1 = np.asarray(in1)
    in2 = np.asarray(in2)

    if in1.ndim == in2.ndim == 0:
        return in1 * in2.conj()
    elif in1.ndim != in2.ndim:
        raise ValueError("in1 and in2 should have the same dimensionality")

    # Don't use _valfrommode, since correlate should not accept numeric modes
    try:
        val = _modedict[mode]
    except KeyError:
        raise ValueError("Acceptable mode flags are 'valid',"
                         " 'same', or 'full'.")

    # this either calls fftconvolve or this function with method=='direct'
    if method in ('fft', 'auto'):
        return convolve(in1, _reverse_and_conj(in2), mode, method)

    elif method == 'direct':
        # fastpath to faster numpy.correlate for 1d inputs when possible
        if _np_conv_ok(in1, in2, mode):
            return np.correlate(in1, in2, mode)

        # _correlateND is far slower when in2.size > in1.size, so swap them
        # and then undo the effect afterward if mode == 'full'.  Also, it fails
        # with 'valid' mode if in2 is larger than in1, so swap those, too.
        # Don't swap inputs for 'same' mode, since shape of in1 matters.
        swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or
                          _inputs_swap_needed(mode, in1.shape, in2.shape))

        if swapped_inputs:
            in1, in2 = in2, in1

        if mode == 'valid':
            ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)]
            out = np.empty(ps, in1.dtype)

            z = sigtools._correlateND(in1, in2, out, val)

        else:
            ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)]

            # zero pad input
            in1zpadded = np.zeros(ps, in1.dtype)
            sc = tuple(slice(0, i) for i in in1.shape)
            in1zpadded[sc] = in1.copy()

            if mode == 'full':
                out = np.empty(ps, in1.dtype)
            elif mode == 'same':
                out = np.empty(in1.shape, in1.dtype)

            z = sigtools._correlateND(in1zpadded, in2, out, val)

        if swapped_inputs:
            # Reverse and conjugate to undo the effect of swapping inputs
            z = _reverse_and_conj(z)

        return z

    else:
        raise ValueError("Acceptable method flags are 'auto',"
                         " 'direct', or 'fft'.")


def _centered(arr, newshape):
    # Return the center newshape portion of the array.
    newshape = np.asarray(newshape)
    currshape = np.array(arr.shape)
    startind = (currshape - newshape) // 2
    endind = startind + newshape
    myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
    return arr[tuple(myslice)]


def _init_freq_conv_axes(in1, in2, mode, axes, sorted_axes=False):
    """Handle the axes argument for frequency-domain convolution.

    Returns the inputs and axes in a standard form, eliminating redundant axes,
    swapping the inputs if necessary, and checking for various potential
    errors.

    Parameters
    ----------
    in1 : array
        First input.
    in2 : array
        Second input.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output.
        See the documentation `fftconvolve` for more information.
    axes : list of ints
        Axes over which to compute the FFTs.
    sorted_axes : bool, optional
        If `True`, sort the axes.
        Default is `False`, do not sort.

    Returns
    -------
    in1 : array
        The first input, possible swapped with the second input.
    in2 : array
        The second input, possible swapped with the first input.
    axes : list of ints
        Axes over which to compute the FFTs.

    """
    s1 = in1.shape
    s2 = in2.shape
    noaxes = axes is None

    _, axes = _init_nd_shape_and_axes(in1, shape=None, axes=axes)

    if not noaxes and not len(axes):
        raise ValueError("when provided, axes cannot be empty")

    # Axes of length 1 can rely on broadcasting rules for multipy,
    # no fft needed.
    axes = [a for a in axes if s1[a] != 1 and s2[a] != 1]

    if sorted_axes:
        axes.sort()

    if not all(s1[a] == s2[a] or s1[a] == 1 or s2[a] == 1
               for a in range(in1.ndim) if a not in axes):
        raise ValueError("incompatible shapes for in1 and in2:"
                         " {0} and {1}".format(s1, s2))

    # Check that input sizes are compatible with 'valid' mode.
    if _inputs_swap_needed(mode, s1, s2, axes=axes):
        # Convolution is commutative; order doesn't have any effect on output.
        in1, in2 = in2, in1

    return in1, in2, axes


def _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=False):
    """Convolve two arrays in the frequency domain.

    This function implements only base the FFT-related operations.
    Specifically, it converts the signals to the frequency domain, multiplies
    them, then converts them back to the time domain.  Calculations of axes,
    shapes, convolution mode, etc. are implemented in higher level-functions,
    such as `fftconvolve` and `oaconvolve`.  Those functions should be used
    instead of this one.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    axes : array_like of ints
        Axes over which to compute the FFTs.
    shape : array_like of ints
        The sizes of the FFTs.
    calc_fast_len : bool, optional
        If `True`, set each value of `shape` to the next fast FFT length.
        Default is `False`, use `axes` as-is.

    Returns
    -------
    out : array
        An N-dimensional array containing the discrete linear convolution of
        `in1` with `in2`.

    """
    if not len(axes):
        return in1 * in2

    complex_result = (in1.dtype.kind == 'c' or in2.dtype.kind == 'c')

    if calc_fast_len:
        # Speed up FFT by padding to optimal size.
        fshape = [
            sp_fft.next_fast_len(shape[a], not complex_result) for a in axes]
    else:
        fshape = shape

    if not complex_result:
        fft, ifft = sp_fft.rfftn, sp_fft.irfftn
    else:
        fft, ifft = sp_fft.fftn, sp_fft.ifftn

    sp1 = fft(in1, fshape, axes=axes)
    sp2 = fft(in2, fshape, axes=axes)

    ret = ifft(sp1 * sp2, fshape, axes=axes)

    if calc_fast_len:
        fslice = tuple([slice(sz) for sz in shape])
        ret = ret[fslice]

    return ret


def _apply_conv_mode(ret, s1, s2, mode, axes):
    """Calculate the convolution result shape based on the `mode` argument.

    Returns the result sliced to the correct size for the given mode.

    Parameters
    ----------
    ret : array
        The result array, with the appropriate shape for the 'full' mode.
    s1 : list of int
        The shape of the first input.
    s2 : list of int
        The shape of the second input.
    mode : str {'full', 'valid', 'same'}
        A string indicating the size of the output.
        See the documentation `fftconvolve` for more information.
    axes : list of ints
        Axes over which to compute the convolution.

    Returns
    -------
    ret : array
        A copy of `res`, sliced to the correct size for the given `mode`.

    """
    if mode == "full":
        return ret.copy()
    elif mode == "same":
        return _centered(ret, s1).copy()
    elif mode == "valid":
        shape_valid = [ret.shape[a] if a not in axes else s1[a] - s2[a] + 1
                       for a in range(ret.ndim)]
        return _centered(ret, shape_valid).copy()
    else:
        raise ValueError("acceptable mode flags are 'valid',"
                         " 'same', or 'full'")


def fftconvolve(in1, in2, mode="full", axes=None):
    """Convolve two N-dimensional arrays using FFT.

    Convolve `in1` and `in2` using the fast Fourier transform method, with
    the output size determined by the `mode` argument.

    This is generally much faster than `convolve` for large arrays (n > ~500),
    but can be slower when only a few output values are needed, and can only
    output float arrays (int or object array inputs will be cast to float).

    As of v0.19, `convolve` automatically chooses this method or the direct
    method based on an estimation of which is faster.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    axes : int or array_like of ints or None, optional
        Axes over which to compute the convolution.
        The default is over all axes.

    Returns
    -------
    out : array
        An N-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    See Also
    --------
    convolve : Uses the direct convolution or FFT convolution algorithm
               depending on which is faster.
    oaconvolve : Uses the overlap-add method to do convolution, which is
                 generally faster when the input arrays are large and
                 significantly different in size.

    Examples
    --------
    Autocorrelation of white noise is an impulse.

    >>> from scipy import signal
    >>> sig = np.random.randn(1000)
    >>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
    >>> ax_orig.plot(sig)
    >>> ax_orig.set_title('White noise')
    >>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
    >>> ax_mag.set_title('Autocorrelation')
    >>> fig.tight_layout()
    >>> fig.show()

    Gaussian blur implemented using FFT convolution.  Notice the dark borders
    around the image, due to the zero-padding beyond its boundaries.
    The `convolve2d` function allows for other types of image boundaries,
    but is far slower.

    >>> from scipy import misc
    >>> face = misc.face(gray=True)
    >>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
    >>> blurred = signal.fftconvolve(face, kernel, mode='same')

    >>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
    ...                                                      figsize=(6, 15))
    >>> ax_orig.imshow(face, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_kernel.imshow(kernel, cmap='gray')
    >>> ax_kernel.set_title('Gaussian kernel')
    >>> ax_kernel.set_axis_off()
    >>> ax_blurred.imshow(blurred, cmap='gray')
    >>> ax_blurred.set_title('Blurred')
    >>> ax_blurred.set_axis_off()
    >>> fig.show()

    """
    in1 = np.asarray(in1)
    in2 = np.asarray(in2)

    if in1.ndim == in2.ndim == 0:  # scalar inputs
        return in1 * in2
    elif in1.ndim != in2.ndim:
        raise ValueError("in1 and in2 should have the same dimensionality")
    elif in1.size == 0 or in2.size == 0:  # empty arrays
        return np.array([])

    in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes,
                                          sorted_axes=False)

    s1 = in1.shape
    s2 = in2.shape

    shape = [max((s1[i], s2[i])) if i not in axes else s1[i] + s2[i] - 1
             for i in range(in1.ndim)]

    ret = _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=True)

    return _apply_conv_mode(ret, s1, s2, mode, axes)


def _calc_oa_lens(s1, s2):
    """Calculate the optimal FFT lengths for overlapp-add convolution.

    The calculation is done for a single dimension.

    Parameters
    ----------
    s1 : int
        Size of the dimension for the first array.
    s2 : int
        Size of the dimension for the second array.

    Returns
    -------
    block_size : int
        The size of the FFT blocks.
    overlap : int
        The amount of overlap between two blocks.
    in1_step : int
        The size of each step for the first array.
    in2_step : int
        The size of each step for the first array.

    """
    # Set up the arguments for the conventional FFT approach.
    fallback = (s1+s2-1, None, s1, s2)

    # Use conventional FFT convolve if sizes are same.
    if s1 == s2 or s1 == 1 or s2 == 1:
        return fallback

    if s2 > s1:
        s1, s2 = s2, s1
        swapped = True
    else:
        swapped = False

    # There cannot be a useful block size if s2 is more than half of s1.
    if s2 >= s1/2:
        return fallback

    # Derivation of optimal block length
    # For original formula see:
    # https://en.wikipedia.org/wiki/Overlap-add_method
    #
    # Formula:
    # K = overlap = s2-1
    # N = block_size
    # C = complexity
    # e = exponential, exp(1)
    #
    # C = (N*(log2(N)+1))/(N-K)
    # C = (N*log2(2N))/(N-K)
    # C = N/(N-K) * log2(2N)
    # C1 = N/(N-K)
    # C2 = log2(2N) = ln(2N)/ln(2)
    #
    # dC1/dN = (1*(N-K)-N)/(N-K)^2 = -K/(N-K)^2
    # dC2/dN = 2/(2*N*ln(2)) = 1/(N*ln(2))
    #
    # dC/dN = dC1/dN*C2 + dC2/dN*C1
    # dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + N/(N*ln(2)*(N-K))
    # dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + 1/(ln(2)*(N-K))
    # dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + (N-K)/(ln(2)*(N-K)^2)
    # dC/dN = (-K*ln(2N) + (N-K)/(ln(2)*(N-K)^2)
    # dC/dN = (N - K*ln(2N) - K)/(ln(2)*(N-K)^2)
    #
    # Solve for minimum, where dC/dN = 0
    # 0 = (N - K*ln(2N) - K)/(ln(2)*(N-K)^2)
    # 0 * ln(2)*(N-K)^2 = N - K*ln(2N) - K
    # 0 = N - K*ln(2N) - K
    # 0 = N - K*(ln(2N) + 1)
    # 0 = N - K*ln(2Ne)
    # N = K*ln(2Ne)
    # N/K = ln(2Ne)
    #
    # e^(N/K) = e^ln(2Ne)
    # e^(N/K) = 2Ne
    # 1/e^(N/K) = 1/(2*N*e)
    # e^(N/-K) = 1/(2*N*e)
    # e^(N/-K) = K/N*1/(2*K*e)
    # N/K*e^(N/-K) = 1/(2*e*K)
    # N/-K*e^(N/-K) = -1/(2*e*K)
    #
    # Using Lambert W function
    # https://en.wikipedia.org/wiki/Lambert_W_function
    # x = W(y) It is the solution to y = x*e^x
    # x = N/-K
    # y = -1/(2*e*K)
    #
    # N/-K = W(-1/(2*e*K))
    #
    # N = -K*W(-1/(2*e*K))
    overlap = s2-1
    opt_size = -overlap*lambertw(-1/(2*math.e*overlap), k=-1).real
    block_size = sp_fft.next_fast_len(math.ceil(opt_size))

    # Use conventional FFT convolve if there is only going to be one block.
    if block_size >= s1:
        return fallback

    if not swapped:
        in1_step = block_size-s2+1
        in2_step = s2
    else:
        in1_step = s2
        in2_step = block_size-s2+1

    return block_size, overlap, in1_step, in2_step


def oaconvolve(in1, in2, mode="full", axes=None):
    """Convolve two N-dimensional arrays using the overlap-add method.

    Convolve `in1` and `in2` using the overlap-add method, with
    the output size determined by the `mode` argument.

    This is generally much faster than `convolve` for large arrays (n > ~500),
    and generally much faster than `fftconvolve` when one array is much
    larger than the other, but can be slower when only a few output values are
    needed or when the arrays are very similar in shape, and can only
    output float arrays (int or object array inputs will be cast to float).

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    axes : int or array_like of ints or None, optional
        Axes over which to compute the convolution.
        The default is over all axes.

    Returns
    -------
    out : array
        An N-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    See Also
    --------
    convolve : Uses the direct convolution or FFT convolution algorithm
               depending on which is faster.
    fftconvolve : An implementation of convolution using FFT.

    Notes
    -----
    .. versionadded:: 1.4.0

    Examples
    --------
    Convolve a 100,000 sample signal with a 512-sample filter.

    >>> from scipy import signal
    >>> sig = np.random.randn(100000)
    >>> filt = signal.firwin(512, 0.01)
    >>> fsig = signal.oaconvolve(sig, filt)

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
    >>> ax_orig.plot(sig)
    >>> ax_orig.set_title('White noise')
    >>> ax_mag.plot(fsig)
    >>> ax_mag.set_title('Filtered noise')
    >>> fig.tight_layout()
    >>> fig.show()

    References
    ----------
    .. [1] Wikipedia, "Overlap-add_method".
           https://en.wikipedia.org/wiki/Overlap-add_method
    .. [2] Richard G. Lyons. Understanding Digital Signal Processing,
           Third Edition, 2011. Chapter 13.10.
           ISBN 13: 978-0137-02741-5

    """
    in1 = np.asarray(in1)
    in2 = np.asarray(in2)

    if in1.ndim == in2.ndim == 0:  # scalar inputs
        return in1 * in2
    elif in1.ndim != in2.ndim:
        raise ValueError("in1 and in2 should have the same dimensionality")
    elif in1.size == 0 or in2.size == 0:  # empty arrays
        return np.array([])
    elif in1.shape == in2.shape:  # Equivalent to fftconvolve
        return fftconvolve(in1, in2, mode=mode, axes=axes)

    in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes,
                                          sorted_axes=True)

    s1 = in1.shape
    s2 = in2.shape

    if not axes:
        ret = in1 * in2
        return _apply_conv_mode(ret, s1, s2, mode, axes)

    # Calculate this now since in1 is changed later
    shape_final = [None if i not in axes else
                   s1[i] + s2[i] - 1 for i in range(in1.ndim)]

    # Calculate the block sizes for the output, steps, first and second inputs.
    # It is simpler to calculate them all together than doing them in separate
    # loops due to all the special cases that need to be handled.
    optimal_sizes = ((-1, -1, s1[i], s2[i]) if i not in axes else
                     _calc_oa_lens(s1[i], s2[i]) for i in range(in1.ndim))
    block_size, overlaps, \
        in1_step, in2_step = zip(*optimal_sizes)

    # Fall back to fftconvolve if there is only one block in every dimension.
    if in1_step == s1 and in2_step == s2:
        return fftconvolve(in1, in2, mode=mode, axes=axes)

    # Figure out the number of steps and padding.
    # This would get too complicated in a list comprehension.
    nsteps1 = []
    nsteps2 = []
    pad_size1 = []
    pad_size2 = []
    for i in range(in1.ndim):
        if i not in axes:
            pad_size1 += [(0, 0)]
            pad_size2 += [(0, 0)]
            continue

        if s1[i] > in1_step[i]:
            curnstep1 = math.ceil((s1[i]+1)/in1_step[i])
            if (block_size[i] - overlaps[i])*curnstep1 < shape_final[i]:
                curnstep1 += 1

            curpad1 = curnstep1*in1_step[i] - s1[i]
        else:
            curnstep1 = 1
            curpad1 = 0

        if s2[i] > in2_step[i]:
            curnstep2 = math.ceil((s2[i]+1)/in2_step[i])
            if (block_size[i] - overlaps[i])*curnstep2 < shape_final[i]:
                curnstep2 += 1

            curpad2 = curnstep2*in2_step[i] - s2[i]
        else:
            curnstep2 = 1
            curpad2 = 0

        nsteps1 += [curnstep1]
        nsteps2 += [curnstep2]
        pad_size1 += [(0, curpad1)]
        pad_size2 += [(0, curpad2)]

    # Pad the array to a size that can be reshaped to the desired shape
    # if necessary.
    if not all(curpad == (0, 0) for curpad in pad_size1):
        in1 = np.pad(in1, pad_size1, mode='constant', constant_values=0)

    if not all(curpad == (0, 0) for curpad in pad_size2):
        in2 = np.pad(in2, pad_size2, mode='constant', constant_values=0)

    # Reshape the overlap-add parts to input block sizes.
    split_axes = [iax+i for i, iax in enumerate(axes)]
    fft_axes = [iax+1 for iax in split_axes]

    # We need to put each new dimension before the corresponding dimension
    # being reshaped in order to get the data in the right layout at the end.
    reshape_size1 = list(in1_step)
    reshape_size2 = list(in2_step)
    for i, iax in enumerate(split_axes):
        reshape_size1.insert(iax, nsteps1[i])
        reshape_size2.insert(iax, nsteps2[i])

    in1 = in1.reshape(*reshape_size1)
    in2 = in2.reshape(*reshape_size2)

    # Do the convolution.
    fft_shape = [block_size[i] for i in axes]
    ret = _freq_domain_conv(in1, in2, fft_axes, fft_shape, calc_fast_len=False)

    # Do the overlap-add.
    for ax, ax_fft, ax_split in zip(axes, fft_axes, split_axes):
        overlap = overlaps[ax]
        if overlap is None:
            continue

        ret, overpart = np.split(ret, [-overlap], ax_fft)
        overpart = np.split(overpart, [-1], ax_split)[0]

        ret_overpart = np.split(ret, [overlap], ax_fft)[0]
        ret_overpart = np.split(ret_overpart, [1], ax_split)[1]
        ret_overpart += overpart

    # Reshape back to the correct dimensionality.
    shape_ret = [ret.shape[i] if i not in fft_axes else
                 ret.shape[i]*ret.shape[i-1]
                 for i in range(ret.ndim) if i not in split_axes]
    ret = ret.reshape(*shape_ret)

    # Slice to the correct size.
    slice_final = tuple([slice(islice) for islice in shape_final])
    ret = ret[slice_final]

    return _apply_conv_mode(ret, s1, s2, mode, axes)


def _numeric_arrays(arrays, kinds='buifc'):
    """
    See if a list of arrays are all numeric.

    Parameters
    ----------
    ndarrays : array or list of arrays
        arrays to check if numeric.
    numeric_kinds : string-like
        The dtypes of the arrays to be checked. If the dtype.kind of
        the ndarrays are not in this string the function returns False and
        otherwise returns True.
    """
    if type(arrays) == np.ndarray:
        return arrays.dtype.kind in kinds
    for array_ in arrays:
        if array_.dtype.kind not in kinds:
            return False
    return True


def _conv_ops(x_shape, h_shape, mode):
    """
    Find the number of operations required for direct/fft methods of
    convolution. The direct operations were recorded by making a dummy class to
    record the number of operations by overriding ``__mul__`` and ``__add__``.
    The FFT operations rely on the (well-known) computational complexity of the
    FFT (and the implementation of ``_freq_domain_conv``).

    """
    if mode == "full":
        out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)]
    elif mode == "valid":
        out_shape = [abs(n - k) + 1 for n, k in zip(x_shape, h_shape)]
    elif mode == "same":
        out_shape = x_shape
    else:
        raise ValueError("Acceptable mode flags are 'valid',"
                         " 'same', or 'full', not mode={}".format(mode))

    s1, s2 = x_shape, h_shape
    if len(x_shape) == 1:
        s1, s2 = s1[0], s2[0]
        if mode == "full":
            direct_ops = s1 * s2
        elif mode == "valid":
            direct_ops = (s2 - s1 + 1) * s1 if s2 >= s1 else (s1 - s2 + 1) * s2
        elif mode == "same":
            direct_ops = (s1 * s2 if s1 < s2 else
                          s1 * s2 - (s2 // 2) * ((s2 + 1) // 2))
    else:
        if mode == "full":
            direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape)
        elif mode == "valid":
            direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape)
        elif mode == "same":
            direct_ops = _prod(s1) * _prod(s2)

    full_out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)]
    N = _prod(full_out_shape)
    fft_ops = 3 * N * np.log(N)  # 3 separate FFTs of size full_out_shape
    return fft_ops, direct_ops


def _fftconv_faster(x, h, mode):
    """
    See if using fftconvolve or convolve is faster.

    Parameters
    ----------
    x : np.ndarray
        Signal
    h : np.ndarray
        Kernel
    mode : str
        Mode passed to convolve

    Returns
    -------
    fft_faster : bool

    Notes
    -----
    See docstring of `choose_conv_method` for details on tuning hardware.

    See pull request 11031 for more detail:
    https://github.com/scipy/scipy/pull/11031.

    """
    fft_ops, direct_ops = _conv_ops(x.shape, h.shape, mode)
    offset = -1e-3 if x.ndim == 1 else -1e-4
    constants = {
            "valid": (1.89095737e-9, 2.1364985e-10, offset),
            "full": (1.7649070e-9, 2.1414831e-10, offset),
            "same": (3.2646654e-9, 2.8478277e-10, offset)
            if h.size <= x.size
            else (3.21635404e-9, 1.1773253e-8, -1e-5),
    } if x.ndim == 1 else {
            "valid": (1.85927e-9, 2.11242e-8, offset),
            "full": (1.99817e-9, 1.66174e-8, offset),
            "same": (2.04735e-9, 1.55367e-8, offset),
    }
    O_fft, O_direct, O_offset = constants[mode]
    return O_fft * fft_ops < O_direct * direct_ops + O_offset


def _reverse_and_conj(x):
    """
    Reverse array `x` in all dimensions and perform the complex conjugate
    """
    reverse = (slice(None, None, -1),) * x.ndim
    return x[reverse].conj()


def _np_conv_ok(volume, kernel, mode):
    """
    See if numpy supports convolution of `volume` and `kernel` (i.e. both are
    1D ndarrays and of the appropriate shape).  NumPy's 'same' mode uses the
    size of the larger input, while SciPy's uses the size of the first input.

    Invalid mode strings will return False and be caught by the calling func.
    """
    if volume.ndim == kernel.ndim == 1:
        if mode in ('full', 'valid'):
            return True
        elif mode == 'same':
            return volume.size >= kernel.size
    else:
        return False


def _timeit_fast(stmt="pass", setup="pass", repeat=3):
    """
    Returns the time the statement/function took, in seconds.

    Faster, less precise version of IPython's timeit. `stmt` can be a statement
    written as a string or a callable.

    Will do only 1 loop (like IPython's timeit) with no repetitions
    (unlike IPython) for very slow functions.  For fast functions, only does
    enough loops to take 5 ms, which seems to produce similar results (on
    Windows at least), and avoids doing an extraneous cycle that isn't
    measured.

    """
    timer = timeit.Timer(stmt, setup)

    # determine number of calls per rep so total time for 1 rep >= 5 ms
    x = 0
    for p in range(0, 10):
        number = 10**p
        x = timer.timeit(number)  # seconds
        if x >= 5e-3 / 10:  # 5 ms for final test, 1/10th that for this one
            break
    if x > 1:  # second
        # If it's macroscopic, don't bother with repetitions
        best = x
    else:
        number *= 10
        r = timer.repeat(repeat, number)
        best = min(r)

    sec = best / number
    return sec


def choose_conv_method(in1, in2, mode='full', measure=False):
    """
    Find the fastest convolution/correlation method.

    This primarily exists to be called during the ``method='auto'`` option in
    `convolve` and `correlate`. It can also be used to determine the value of
    ``method`` for many different convolutions of the same dtype/shape.
    In addition, it supports timing the convolution to adapt the value of
    ``method`` to a particular set of inputs and/or hardware.

    Parameters
    ----------
    in1 : array_like
        The first argument passed into the convolution function.
    in2 : array_like
        The second argument passed into the convolution function.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    measure : bool, optional
        If True, run and time the convolution of `in1` and `in2` with both
        methods and return the fastest. If False (default), predict the fastest
        method using precomputed values.

    Returns
    -------
    method : str
        A string indicating which convolution method is fastest, either
        'direct' or 'fft'
    times : dict, optional
        A dictionary containing the times (in seconds) needed for each method.
        This value is only returned if ``measure=True``.

    See Also
    --------
    convolve
    correlate

    Notes
    -----
    Generally, this method is 99% accurate for 2D signals and 85% accurate
    for 1D signals for randomly chosen input sizes. For precision, use
    ``measure=True`` to find the fastest method by timing the convolution.
    This can be used to avoid the minimal overhead of finding the fastest
    ``method`` later, or to adapt the value of ``method`` to a particular set
    of inputs.

    Experiments were run on an Amazon EC2 r5a.2xlarge machine to test this
    function. These experiments measured the ratio between the time required
    when using ``method='auto'`` and the time required for the fastest method
    (i.e., ``ratio = time_auto / min(time_fft, time_direct)``). In these
    experiments, we found:

    * There is a 95% chance of this ratio being less than 1.5 for 1D signals
      and a 99% chance of being less than 2.5 for 2D signals.
    * The ratio was always less than 2.5/5 for 1D/2D signals respectively.
    * This function is most inaccurate for 1D convolutions that take between 1
      and 10 milliseconds with ``method='direct'``. A good proxy for this
      (at least in our experiments) is ``1e6 <= in1.size * in2.size <= 1e7``.

    The 2D results almost certainly generalize to 3D/4D/etc because the
    implementation is the same (the 1D implementation is different).

    All the numbers above are specific to the EC2 machine. However, we did find
    that this function generalizes fairly decently across hardware. The speed
    tests were of similar quality (and even slightly better) than the same
    tests performed on the machine to tune this function's numbers (a mid-2014
    15-inch MacBook Pro with 16GB RAM and a 2.5GHz Intel i7 processor).

    There are cases when `fftconvolve` supports the inputs but this function
    returns `direct` (e.g., to protect against floating point integer
    precision).

    .. versionadded:: 0.19

    Examples
    --------
    Estimate the fastest method for a given input:

    >>> from scipy import signal
    >>> img = np.random.rand(32, 32)
    >>> filter = np.random.rand(8, 8)
    >>> method = signal.choose_conv_method(img, filter, mode='same')
    >>> method
    'fft'

    This can then be applied to other arrays of the same dtype and shape:

    >>> img2 = np.random.rand(32, 32)
    >>> filter2 = np.random.rand(8, 8)
    >>> corr2 = signal.correlate(img2, filter2, mode='same', method=method)
    >>> conv2 = signal.convolve(img2, filter2, mode='same', method=method)

    The output of this function (``method``) works with `correlate` and
    `convolve`.

    """
    volume = np.asarray(in1)
    kernel = np.asarray(in2)

    if measure:
        times = {}
        for method in ['fft', 'direct']:
            times[method] = _timeit_fast(lambda: convolve(volume, kernel,
                                         mode=mode, method=method))

        chosen_method = 'fft' if times['fft'] < times['direct'] else 'direct'
        return chosen_method, times

    # for integer input,
    # catch when more precision required than float provides (representing an
    # integer as float can lose precision in fftconvolve if larger than 2**52)
    if any([_numeric_arrays([x], kinds='ui') for x in [volume, kernel]]):
        max_value = int(np.abs(volume).max()) * int(np.abs(kernel).max())
        max_value *= int(min(volume.size, kernel.size))
        if max_value > 2**np.finfo('float').nmant - 1:
            return 'direct'

    if _numeric_arrays([volume, kernel], kinds='b'):
        return 'direct'

    if _numeric_arrays([volume, kernel]):
        if _fftconv_faster(volume, kernel, mode):
            return 'fft'

    return 'direct'


def convolve(in1, in2, mode='full', method='auto'):
    """
    Convolve two N-dimensional arrays.

    Convolve `in1` and `in2`, with the output size determined by the
    `mode` argument.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    method : str {'auto', 'direct', 'fft'}, optional
        A string indicating which method to use to calculate the convolution.

        ``direct``
           The convolution is determined directly from sums, the definition of
           convolution.
        ``fft``
           The Fourier Transform is used to perform the convolution by calling
           `fftconvolve`.
        ``auto``
           Automatically chooses direct or Fourier method based on an estimate
           of which is faster (default).  See Notes for more detail.

           .. versionadded:: 0.19.0

    Returns
    -------
    convolve : array
        An N-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    See Also
    --------
    numpy.polymul : performs polynomial multiplication (same operation, but
                    also accepts poly1d objects)
    choose_conv_method : chooses the fastest appropriate convolution method
    fftconvolve : Always uses the FFT method.
    oaconvolve : Uses the overlap-add method to do convolution, which is
                 generally faster when the input arrays are large and
                 significantly different in size.

    Notes
    -----
    By default, `convolve` and `correlate` use ``method='auto'``, which calls
    `choose_conv_method` to choose the fastest method using pre-computed
    values (`choose_conv_method` can also measure real-world timing with a
    keyword argument). Because `fftconvolve` relies on floating point numbers,
    there are certain constraints that may force `method=direct` (more detail
    in `choose_conv_method` docstring).

    Examples
    --------
    Smooth a square pulse using a Hann window:

    >>> from scipy import signal
    >>> sig = np.repeat([0., 1., 0.], 100)
    >>> win = signal.hann(50)
    >>> filtered = signal.convolve(sig, win, mode='same') / sum(win)

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
    >>> ax_orig.plot(sig)
    >>> ax_orig.set_title('Original pulse')
    >>> ax_orig.margins(0, 0.1)
    >>> ax_win.plot(win)
    >>> ax_win.set_title('Filter impulse response')
    >>> ax_win.margins(0, 0.1)
    >>> ax_filt.plot(filtered)
    >>> ax_filt.set_title('Filtered signal')
    >>> ax_filt.margins(0, 0.1)
    >>> fig.tight_layout()
    >>> fig.show()

    """
    volume = np.asarray(in1)
    kernel = np.asarray(in2)

    if volume.ndim == kernel.ndim == 0:
        return volume * kernel
    elif volume.ndim != kernel.ndim:
        raise ValueError("volume and kernel should have the same "
                         "dimensionality")

    if _inputs_swap_needed(mode, volume.shape, kernel.shape):
        # Convolution is commutative; order doesn't have any effect on output
        volume, kernel = kernel, volume

    if method == 'auto':
        method = choose_conv_method(volume, kernel, mode=mode)

    if method == 'fft':
        out = fftconvolve(volume, kernel, mode=mode)
        result_type = np.result_type(volume, kernel)
        if result_type.kind in {'u', 'i'}:
            out = np.around(out)
        return out.astype(result_type)
    elif method == 'direct':
        # fastpath to faster numpy.convolve for 1d inputs when possible
        if _np_conv_ok(volume, kernel, mode):
            return np.convolve(volume, kernel, mode)

        return correlate(volume, _reverse_and_conj(kernel), mode, 'direct')
    else:
        raise ValueError("Acceptable method flags are 'auto',"
                         " 'direct', or 'fft'.")


def order_filter(a, domain, rank):
    """
    Perform an order filter on an N-D array.

    Perform an order filter on the array in. The domain argument acts as a
    mask centered over each pixel. The non-zero elements of domain are
    used to select elements surrounding each input pixel which are placed
    in a list. The list is sorted, and the output for that pixel is the
    element corresponding to rank in the sorted list.

    Parameters
    ----------
    a : ndarray
        The N-dimensional input array.
    domain : array_like
        A mask array with the same number of dimensions as `a`.
        Each dimension should have an odd number of elements.
    rank : int
        A non-negative integer which selects the element from the
        sorted list (0 corresponds to the smallest element, 1 is the
        next smallest element, etc.).

    Returns
    -------
    out : ndarray
        The results of the order filter in an array with the same
        shape as `a`.

    Examples
    --------
    >>> from scipy import signal
    >>> x = np.arange(25).reshape(5, 5)
    >>> domain = np.identity(3)
    >>> x
    array([[ 0,  1,  2,  3,  4],
           [ 5,  6,  7,  8,  9],
           [10, 11, 12, 13, 14],
           [15, 16, 17, 18, 19],
           [20, 21, 22, 23, 24]])
    >>> signal.order_filter(x, domain, 0)
    array([[  0.,   0.,   0.,   0.,   0.],
           [  0.,   0.,   1.,   2.,   0.],
           [  0.,   5.,   6.,   7.,   0.],
           [  0.,  10.,  11.,  12.,   0.],
           [  0.,   0.,   0.,   0.,   0.]])
    >>> signal.order_filter(x, domain, 2)
    array([[  6.,   7.,   8.,   9.,   4.],
           [ 11.,  12.,  13.,  14.,   9.],
           [ 16.,  17.,  18.,  19.,  14.],
           [ 21.,  22.,  23.,  24.,  19.],
           [ 20.,  21.,  22.,  23.,  24.]])

    """
    domain = np.asarray(domain)
    size = domain.shape
    for k in range(len(size)):
        if (size[k] % 2) != 1:
            raise ValueError("Each dimension of domain argument "
                             " should have an odd number of elements.")
    return sigtools._order_filterND(a, domain, rank)


def medfilt(volume, kernel_size=None):
    """
    Perform a median filter on an N-dimensional array.

    Apply a median filter to the input array using a local window-size
    given by `kernel_size`. The array will automatically be zero-padded.

    Parameters
    ----------
    volume : array_like
        An N-dimensional input array.
    kernel_size : array_like, optional
        A scalar or an N-length list giving the size of the median filter
        window in each dimension.  Elements of `kernel_size` should be odd.
        If `kernel_size` is a scalar, then this scalar is used as the size in
        each dimension. Default size is 3 for each dimension.

    Returns
    -------
    out : ndarray
        An array the same size as input containing the median filtered
        result.

    Warns
    -----
    UserWarning
        If array size is smaller than kernel size along any dimension

    See Also
    --------
    scipy.ndimage.median_filter

    Notes
    -------
    The more general function `scipy.ndimage.median_filter` has a more
    efficient implementation of a median filter and therefore runs much faster.
    """
    volume = np.atleast_1d(volume)
    if kernel_size is None:
        kernel_size = [3] * volume.ndim
    kernel_size = np.asarray(kernel_size)
    if kernel_size.shape == ():
        kernel_size = np.repeat(kernel_size.item(), volume.ndim)

    for k in range(volume.ndim):
        if (kernel_size[k] % 2) != 1:
            raise ValueError("Each element of kernel_size should be odd.")
    if any(k > s for k, s in zip(kernel_size, volume.shape)):
        warnings.warn('kernel_size exceeds volume extent: the volume will be '
                      'zero-padded.')

    domain = np.ones(kernel_size)

    numels = np.prod(kernel_size, axis=0)
    order = numels // 2
    return sigtools._order_filterND(volume, domain, order)


def wiener(im, mysize=None, noise=None):
    """
    Perform a Wiener filter on an N-dimensional array.

    Apply a Wiener filter to the N-dimensional array `im`.

    Parameters
    ----------
    im : ndarray
        An N-dimensional array.
    mysize : int or array_like, optional
        A scalar or an N-length list giving the size of the Wiener filter
        window in each dimension.  Elements of mysize should be odd.
        If mysize is a scalar, then this scalar is used as the size
        in each dimension.
    noise : float, optional
        The noise-power to use. If None, then noise is estimated as the
        average of the local variance of the input.

    Returns
    -------
    out : ndarray
        Wiener filtered result with the same shape as `im`.

    Examples
    --------

    >>> from scipy.misc import face
    >>> from scipy.signal.signaltools import wiener
    >>> import matplotlib.pyplot as plt
    >>> import numpy as np
    >>> img = np.random.random((40, 40))    #Create a random image
    >>> filtered_img = wiener(img, (5, 5))  #Filter the image
    >>> f, (plot1, plot2) = plt.subplots(1, 2)
    >>> plot1.imshow(img)
    >>> plot2.imshow(filtered_img)
    >>> plt.show()

    Notes
    -----
    This implementation is similar to wiener2 in Matlab/Octave.
    For more details see [1]_

    References
    ----------
    .. [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
           Englewood Cliffs, NJ, Prentice Hall, 1990, p. 548.


    """
    im = np.asarray(im)
    if mysize is None:
        mysize = [3] * im.ndim
    mysize = np.asarray(mysize)
    if mysize.shape == ():
        mysize = np.repeat(mysize.item(), im.ndim)

    # Estimate the local mean
    lMean = correlate(im, np.ones(mysize), 'same') / np.prod(mysize, axis=0)

    # Estimate the local variance
    lVar = (correlate(im ** 2, np.ones(mysize), 'same') /
            np.prod(mysize, axis=0) - lMean ** 2)

    # Estimate the noise power if needed.
    if noise is None:
        noise = np.mean(np.ravel(lVar), axis=0)

    res = (im - lMean)
    res *= (1 - noise / lVar)
    res += lMean
    out = np.where(lVar < noise, lMean, res)

    return out


def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
    """
    Convolve two 2-dimensional arrays.

    Convolve `in1` and `in2` with output size determined by `mode`, and
    boundary conditions determined by `boundary` and `fillvalue`.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear convolution
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    boundary : str {'fill', 'wrap', 'symm'}, optional
        A flag indicating how to handle boundaries:

        ``fill``
           pad input arrays with fillvalue. (default)
        ``wrap``
           circular boundary conditions.
        ``symm``
           symmetrical boundary conditions.

    fillvalue : scalar, optional
        Value to fill pad input arrays with. Default is 0.

    Returns
    -------
    out : ndarray
        A 2-dimensional array containing a subset of the discrete linear
        convolution of `in1` with `in2`.

    Examples
    --------
    Compute the gradient of an image by 2D convolution with a complex Scharr
    operator.  (Horizontal operator is real, vertical is imaginary.)  Use
    symmetric boundary condition to avoid creating edges at the image
    boundaries.

    >>> from scipy import signal
    >>> from scipy import misc
    >>> ascent = misc.ascent()
    >>> scharr = np.array([[ -3-3j, 0-10j,  +3 -3j],
    ...                    [-10+0j, 0+ 0j, +10 +0j],
    ...                    [ -3+3j, 0+10j,  +3 +3j]]) # Gx + j*Gy
    >>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
    >>> ax_orig.imshow(ascent, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_mag.imshow(np.absolute(grad), cmap='gray')
    >>> ax_mag.set_title('Gradient magnitude')
    >>> ax_mag.set_axis_off()
    >>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
    >>> ax_ang.set_title('Gradient orientation')
    >>> ax_ang.set_axis_off()
    >>> fig.show()

    """
    in1 = np.asarray(in1)
    in2 = np.asarray(in2)

    if not in1.ndim == in2.ndim == 2:
        raise ValueError('convolve2d inputs must both be 2-D arrays')

    if _inputs_swap_needed(mode, in1.shape, in2.shape):
        in1, in2 = in2, in1

    val = _valfrommode(mode)
    bval = _bvalfromboundary(boundary)
    out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue)
    return out


def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
    """
    Cross-correlate two 2-dimensional arrays.

    Cross correlate `in1` and `in2` with output size determined by `mode`, and
    boundary conditions determined by `boundary` and `fillvalue`.

    Parameters
    ----------
    in1 : array_like
        First input.
    in2 : array_like
        Second input. Should have the same number of dimensions as `in1`.
    mode : str {'full', 'valid', 'same'}, optional
        A string indicating the size of the output:

        ``full``
           The output is the full discrete linear cross-correlation
           of the inputs. (Default)
        ``valid``
           The output consists only of those elements that do not
           rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
           must be at least as large as the other in every dimension.
        ``same``
           The output is the same size as `in1`, centered
           with respect to the 'full' output.
    boundary : str {'fill', 'wrap', 'symm'}, optional
        A flag indicating how to handle boundaries:

        ``fill``
           pad input arrays with fillvalue. (default)
        ``wrap``
           circular boundary conditions.
        ``symm``
           symmetrical boundary conditions.

    fillvalue : scalar, optional
        Value to fill pad input arrays with. Default is 0.

    Returns
    -------
    correlate2d : ndarray
        A 2-dimensional array containing a subset of the discrete linear
        cross-correlation of `in1` with `in2`.

    Notes
    -----
    When using "same" mode with even-length inputs, the outputs of `correlate`
    and `correlate2d` differ: There is a 1-index offset between them.

    Examples
    --------
    Use 2D cross-correlation to find the location of a template in a noisy
    image:

    >>> from scipy import signal
    >>> from scipy import misc
    >>> face = misc.face(gray=True) - misc.face(gray=True).mean()
    >>> template = np.copy(face[300:365, 670:750])  # right eye
    >>> template -= template.mean()
    >>> face = face + np.random.randn(*face.shape) * 50  # add noise
    >>> corr = signal.correlate2d(face, template, boundary='symm', mode='same')
    >>> y, x = np.unravel_index(np.argmax(corr), corr.shape)  # find the match

    >>> import matplotlib.pyplot as plt
    >>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,
    ...                                                     figsize=(6, 15))
    >>> ax_orig.imshow(face, cmap='gray')
    >>> ax_orig.set_title('Original')
    >>> ax_orig.set_axis_off()
    >>> ax_template.imshow(template, cmap='gray')
    >>> ax_template.set_title('Template')
    >>> ax_template.set_axis_off()
    >>> ax_corr.imshow(corr, cmap='gray')
    >>> ax_corr.set_title('Cross-correlation')
    >>> ax_corr.set_axis_off()
    >>> ax_orig.plot(x, y, 'ro')
    >>> fig.show()

    """
    in1 = np.asarray(in1)
    in2 = np.asarray(in2)

    if not in1.ndim == in2.ndim == 2:
        raise ValueError('correlate2d inputs must both be 2-D arrays')

    swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape)
    if swapped_inputs:
        in1, in2 = in2, in1

    val = _valfrommode(mode)
    bval = _bvalfromboundary(boundary)
    out = sigtools._convolve2d(in1, in2.conj(), 0, val, bval, fillvalue)

    if swapped_inputs:
        out = out[::-1, ::-1]

    return out


def medfilt2d(input, kernel_size=3):
    """
    Median filter a 2-dimensional array.

    Apply a median filter to the `input` array using a local window-size
    given by `kernel_size` (must be odd). The array is zero-padded
    automatically.

    Parameters
    ----------
    input : array_like
        A 2-dimensional input array.
    kernel_size : array_like, optional
        A scalar or a list of length 2, giving the size of the
        median filter window in each dimension.  Elements of
        `kernel_size` should be odd.  If `kernel_size` is a scalar,
        then this scalar is used as the size in each dimension.
        Default is a kernel of size (3, 3).

    Returns
    -------
    out : ndarray
        An array the same size as input containing the median filtered
        result.

    See also
    --------
    scipy.ndimage.median_filter

    Notes
    -------
    The more general function `scipy.ndimage.median_filter` has a more
    efficient implementation of a median filter and therefore runs much faster.
    """
    image = np.asarray(input)
    if kernel_size is None:
        kernel_size = [3] * 2
    kernel_size = np.asarray(kernel_size)
    if kernel_size.shape == ():
        kernel_size = np.repeat(kernel_size.item(), 2)

    for size in kernel_size:
        if (size % 2) != 1:
            raise ValueError("Each element of kernel_size should be odd.")

    return sigtools._medfilt2d(image, kernel_size)


def lfilter(b, a, x, axis=-1, zi=None):
    """
    Filter data along one-dimension with an IIR or FIR filter.

    Filter a data sequence, `x`, using a digital filter.  This works for many
    fundamental data types (including Object type).  The filter is a direct
    form II transposed implementation of the standard difference equation
    (see Notes).

    The function `sosfilt` (and filter design using ``output='sos'``) should be
    preferred over `lfilter` for most filtering tasks, as second-order sections
    have fewer numerical problems.

    Parameters
    ----------
    b : array_like
        The numerator coefficient vector in a 1-D sequence.
    a : array_like
        The denominator coefficient vector in a 1-D sequence.  If ``a[0]``
        is not 1, then both `a` and `b` are normalized by ``a[0]``.
    x : array_like
        An N-dimensional input array.
    axis : int, optional
        The axis of the input data array along which to apply the
        linear filter. The filter is applied to each subarray along
        this axis.  Default is -1.
    zi : array_like, optional
        Initial conditions for the filter delays.  It is a vector
        (or array of vectors for an N-dimensional input) of length
        ``max(len(a), len(b)) - 1``.  If `zi` is None or is not given then
        initial rest is assumed.  See `lfiltic` for more information.

    Returns
    -------
    y : array
        The output of the digital filter.
    zf : array, optional
        If `zi` is None, this is not returned, otherwise, `zf` holds the
        final filter delay values.

    See Also
    --------
    lfiltic : Construct initial conditions for `lfilter`.
    lfilter_zi : Compute initial state (steady state of step response) for
                 `lfilter`.
    filtfilt : A forward-backward filter, to obtain a filter with linear phase.
    savgol_filter : A Savitzky-Golay filter.
    sosfilt: Filter data using cascaded second-order sections.
    sosfiltfilt: A forward-backward filter using second-order sections.

    Notes
    -----
    The filter function is implemented as a direct II transposed structure.
    This means that the filter implements::

       a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
                             - a[1]*y[n-1] - ... - a[N]*y[n-N]

    where `M` is the degree of the numerator, `N` is the degree of the
    denominator, and `n` is the sample number.  It is implemented using
    the following difference equations (assuming M = N)::

         a[0]*y[n] = b[0] * x[n]               + d[0][n-1]
           d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1]
           d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1]
         ...
         d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1]
         d[N-1][n] = b[N] * x[n] - a[N] * y[n]

    where `d` are the state variables.

    The rational transfer function describing this filter in the
    z-transform domain is::

                             -1              -M
                 b[0] + b[1]z  + ... + b[M] z
         Y(z) = -------------------------------- X(z)
                             -1              -N
                 a[0] + a[1]z  + ... + a[N] z

    Examples
    --------
    Generate a noisy signal to be filtered:

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt
    >>> t = np.linspace(-1, 1, 201)
    >>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) +
    ...      0.1*np.sin(2*np.pi*1.25*t + 1) +
    ...      0.18*np.cos(2*np.pi*3.85*t))
    >>> xn = x + np.random.randn(len(t)) * 0.08

    Create an order 3 lowpass butterworth filter:

    >>> b, a = signal.butter(3, 0.05)

    Apply the filter to xn.  Use lfilter_zi to choose the initial condition of
    the filter:

    >>> zi = signal.lfilter_zi(b, a)
    >>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0])

    Apply the filter again, to have a result filtered at an order the same as
    filtfilt:

    >>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0])

    Use filtfilt to apply the filter:

    >>> y = signal.filtfilt(b, a, xn)

    Plot the original signal and the various filtered versions:

    >>> plt.figure
    >>> plt.plot(t, xn, 'b', alpha=0.75)
    >>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k')
    >>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice',
    ...             'filtfilt'), loc='best')
    >>> plt.grid(True)
    >>> plt.show()

    """
    a = np.atleast_1d(a)
    if len(a) == 1:
        # This path only supports types fdgFDGO to mirror _linear_filter below.
        # Any of b, a, x, or zi can set the dtype, but there is no default
        # casting of other types; instead a NotImplementedError is raised.
        b = np.asarray(b)
        a = np.asarray(a)
        if b.ndim != 1 and a.ndim != 1:
            raise ValueError('object of too small depth for desired array')
        x = _validate_x(x)
        inputs = [b, a, x]
        if zi is not None:
            # _linear_filter does not broadcast zi, but does do expansion of
            # singleton dims.
            zi = np.asarray(zi)
            if zi.ndim != x.ndim:
                raise ValueError('object of too small depth for desired array')
            expected_shape = list(x.shape)
            expected_shape[axis] = b.shape[0] - 1
            expected_shape = tuple(expected_shape)
            # check the trivial case where zi is the right shape first
            if zi.shape != expected_shape:
                strides = zi.ndim * [None]
                if axis < 0:
                    axis += zi.ndim
                for k in range(zi.ndim):
                    if k == axis and zi.shape[k] == expected_shape[k]:
                        strides[k] = zi.strides[k]
                    elif k != axis and zi.shape[k] == expected_shape[k]:
                        strides[k] = zi.strides[k]
                    elif k != axis and zi.shape[k] == 1:
                        strides[k] = 0
                    else:
                        raise ValueError('Unexpected shape for zi: expected '
                                         '%s, found %s.' %
                                         (expected_shape, zi.shape))
                zi = np.lib.stride_tricks.as_strided(zi, expected_shape,
                                                     strides)
            inputs.append(zi)
        dtype = np.result_type(*inputs)

        if dtype.char not in 'fdgFDGO':
            raise NotImplementedError("input type '%s' not supported" % dtype)

        b = np.array(b, dtype=dtype)
        a = np.array(a, dtype=dtype, copy=False)
        b /= a[0]
        x = np.array(x, dtype=dtype, copy=False)

        out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x)
        ind = out_full.ndim * [slice(None)]
        if zi is not None:
            ind[axis] = slice(zi.shape[axis])
            out_full[tuple(ind)] += zi

        ind[axis] = slice(out_full.shape[axis] - len(b) + 1)
        out = out_full[tuple(ind)]

        if zi is None:
            return out
        else:
            ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None)
            zf = out_full[tuple(ind)]
            return out, zf
    else:
        if zi is None:
            return sigtools._linear_filter(b, a, x, axis)
        else:
            return sigtools._linear_filter(b, a, x, axis, zi)


def lfiltic(b, a, y, x=None):
    """
    Construct initial conditions for lfilter given input and output vectors.

    Given a linear filter (b, a) and initial conditions on the output `y`
    and the input `x`, return the initial conditions on the state vector zi
    which is used by `lfilter` to generate the output given the input.

    Parameters
    ----------
    b : array_like
        Linear filter term.
    a : array_like
        Linear filter term.
    y : array_like
        Initial conditions.

        If ``N = len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``.

        If `y` is too short, it is padded with zeros.
    x : array_like, optional
        Initial conditions.

        If ``M = len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``.

        If `x` is not given, its initial conditions are assumed zero.

        If `x` is too short, it is padded with zeros.

    Returns
    -------
    zi : ndarray
        The state vector ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``,
        where ``K = max(M, N)``.

    See Also
    --------
    lfilter, lfilter_zi

    """
    N = np.size(a) - 1
    M = np.size(b) - 1
    K = max(M, N)
    y = np.asarray(y)
    if y.dtype.kind in 'bui':
        # ensure calculations are floating point
        y = y.astype(np.float64)
    zi = np.zeros(K, y.dtype)
    if x is None:
        x = np.zeros(M, y.dtype)
    else:
        x = np.asarray(x)
        L = np.size(x)
        if L < M:
            x = np.r_[x, np.zeros(M - L)]
    L = np.size(y)
    if L < N:
        y = np.r_[y, np.zeros(N - L)]

    for m in range(M):
        zi[m] = np.sum(b[m + 1:] * x[:M - m], axis=0)

    for m in range(N):
        zi[m] -= np.sum(a[m + 1:] * y[:N - m], axis=0)

    return zi


def deconvolve(signal, divisor):
    """Deconvolves ``divisor`` out of ``signal`` using inverse filtering.

    Returns the quotient and remainder such that
    ``signal = convolve(divisor, quotient) + remainder``

    Parameters
    ----------
    signal : array_like
        Signal data, typically a recorded signal
    divisor : array_like
        Divisor data, typically an impulse response or filter that was
        applied to the original signal

    Returns
    -------
    quotient : ndarray
        Quotient, typically the recovered original signal
    remainder : ndarray
        Remainder

    Examples
    --------
    Deconvolve a signal that's been filtered:

    >>> from scipy import signal
    >>> original = [0, 1, 0, 0, 1, 1, 0, 0]
    >>> impulse_response = [2, 1]
    >>> recorded = signal.convolve(impulse_response, original)
    >>> recorded
    array([0, 2, 1, 0, 2, 3, 1, 0, 0])
    >>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
    >>> recovered
    array([ 0.,  1.,  0.,  0.,  1.,  1.,  0.,  0.])

    See Also
    --------
    numpy.polydiv : performs polynomial division (same operation, but
                    also accepts poly1d objects)

    """
    num = np.atleast_1d(signal)
    den = np.atleast_1d(divisor)
    N = len(num)
    D = len(den)
    if D > N:
        quot = []
        rem = num
    else:
        input = np.zeros(N - D + 1, float)
        input[0] = 1
        quot = lfilter(num, den, input)
        rem = num - convolve(den, quot, mode='full')
    return quot, rem


def hilbert(x, N=None, axis=-1):
    """
    Compute the analytic signal, using the Hilbert transform.

    The transformation is done along the last axis by default.

    Parameters
    ----------
    x : array_like
        Signal data.  Must be real.
    N : int, optional
        Number of Fourier components.  Default: ``x.shape[axis]``
    axis : int, optional
        Axis along which to do the transformation.  Default: -1.

    Returns
    -------
    xa : ndarray
        Analytic signal of `x`, of each 1-D array along `axis`

    Notes
    -----
    The analytic signal ``x_a(t)`` of signal ``x(t)`` is:

    .. math:: x_a = F^{-1}(F(x) 2U) = x + i y

    where `F` is the Fourier transform, `U` the unit step function,
    and `y` the Hilbert transform of `x`. [1]_

    In other words, the negative half of the frequency spectrum is zeroed
    out, turning the real-valued signal into a complex signal.  The Hilbert
    transformed signal can be obtained from ``np.imag(hilbert(x))``, and the
    original signal from ``np.real(hilbert(x))``.

    Examples
    ---------
    In this example we use the Hilbert transform to determine the amplitude
    envelope and instantaneous frequency of an amplitude-modulated signal.

    >>> import numpy as np
    >>> import matplotlib.pyplot as plt
    >>> from scipy.signal import hilbert, chirp

    >>> duration = 1.0
    >>> fs = 400.0
    >>> samples = int(fs*duration)
    >>> t = np.arange(samples) / fs

    We create a chirp of which the frequency increases from 20 Hz to 100 Hz and
    apply an amplitude modulation.

    >>> signal = chirp(t, 20.0, t[-1], 100.0)
    >>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )

    The amplitude envelope is given by magnitude of the analytic signal. The
    instantaneous frequency can be obtained by differentiating the
    instantaneous phase in respect to time. The instantaneous phase corresponds
    to the phase angle of the analytic signal.

    >>> analytic_signal = hilbert(signal)
    >>> amplitude_envelope = np.abs(analytic_signal)
    >>> instantaneous_phase = np.unwrap(np.angle(analytic_signal))
    >>> instantaneous_frequency = (np.diff(instantaneous_phase) /
    ...                            (2.0*np.pi) * fs)

    >>> fig = plt.figure()
    >>> ax0 = fig.add_subplot(211)
    >>> ax0.plot(t, signal, label='signal')
    >>> ax0.plot(t, amplitude_envelope, label='envelope')
    >>> ax0.set_xlabel("time in seconds")
    >>> ax0.legend()
    >>> ax1 = fig.add_subplot(212)
    >>> ax1.plot(t[1:], instantaneous_frequency)
    >>> ax1.set_xlabel("time in seconds")
    >>> ax1.set_ylim(0.0, 120.0)

    References
    ----------
    .. [1] Wikipedia, "Analytic signal".
           https://en.wikipedia.org/wiki/Analytic_signal
    .. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2.
    .. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal
           Processing, Third Edition, 2009. Chapter 12.
           ISBN 13: 978-1292-02572-8

    """
    x = np.asarray(x)
    if np.iscomplexobj(x):
        raise ValueError("x must be real.")
    if N is None:
        N = x.shape[axis]
    if N <= 0:
        raise ValueError("N must be positive.")

    Xf = sp_fft.fft(x, N, axis=axis)
    h = np.zeros(N)
    if N % 2 == 0:
        h[0] = h[N // 2] = 1
        h[1:N // 2] = 2
    else:
        h[0] = 1
        h[1:(N + 1) // 2] = 2

    if x.ndim > 1:
        ind = [np.newaxis] * x.ndim
        ind[axis] = slice(None)
        h = h[tuple(ind)]
    x = sp_fft.ifft(Xf * h, axis=axis)
    return x


def hilbert2(x, N=None):
    """
    Compute the '2-D' analytic signal of `x`

    Parameters
    ----------
    x : array_like
        2-D signal data.
    N : int or tuple of two ints, optional
        Number of Fourier components. Default is ``x.shape``

    Returns
    -------
    xa : ndarray
        Analytic signal of `x` taken along axes (0,1).

    References
    ----------
    .. [1] Wikipedia, "Analytic signal",
        https://en.wikipedia.org/wiki/Analytic_signal

    """
    x = np.atleast_2d(x)
    if x.ndim > 2:
        raise ValueError("x must be 2-D.")
    if np.iscomplexobj(x):
        raise ValueError("x must be real.")
    if N is None:
        N = x.shape
    elif isinstance(N, int):
        if N <= 0:
            raise ValueError("N must be positive.")
        N = (N, N)
    elif len(N) != 2 or np.any(np.asarray(N) <= 0):
        raise ValueError("When given as a tuple, N must hold exactly "
                         "two positive integers")

    Xf = sp_fft.fft2(x, N, axes=(0, 1))
    h1 = np.zeros(N[0], 'd')
    h2 = np.zeros(N[1], 'd')
    for p in range(2):
        h = eval("h%d" % (p + 1))
        N1 = N[p]
        if N1 % 2 == 0:
            h[0] = h[N1 // 2] = 1
            h[1:N1 // 2] = 2
        else:
            h[0] = 1
            h[1:(N1 + 1) // 2] = 2
        exec("h%d = h" % (p + 1), globals(), locals())

    h = h1[:, np.newaxis] * h2[np.newaxis, :]
    k = x.ndim
    while k > 2:
        h = h[:, np.newaxis]
        k -= 1
    x = sp_fft.ifft2(Xf * h, axes=(0, 1))
    return x


def cmplx_sort(p):
    """Sort roots based on magnitude.

    Parameters
    ----------
    p : array_like
        The roots to sort, as a 1-D array.

    Returns
    -------
    p_sorted : ndarray
        Sorted roots.
    indx : ndarray
        Array of indices needed to sort the input `p`.

    Examples
    --------
    >>> from scipy import signal
    >>> vals = [1, 4, 1+1.j, 3]
    >>> p_sorted, indx = signal.cmplx_sort(vals)
    >>> p_sorted
    array([1.+0.j, 1.+1.j, 3.+0.j, 4.+0.j])
    >>> indx
    array([0, 2, 3, 1])
    """
    p = np.asarray(p)
    indx = np.argsort(abs(p))
    return np.take(p, indx, 0), indx


def unique_roots(p, tol=1e-3, rtype='min'):
    """Determine unique roots and their multiplicities from a list of roots.

    Parameters
    ----------
    p : array_like
        The list of roots.
    tol : float, optional
        The tolerance for two roots to be considered equal in terms of
        the distance between them. Default is 1e-3. Refer to Notes about
        the details on roots grouping.
    rtype : {'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}, optional
        How to determine the returned root if multiple roots are within
        `tol` of each other.

          - 'max', 'maximum': pick the maximum of those roots
          - 'min', 'minimum': pick the minimum of those roots
          - 'avg', 'mean': take the average of those roots

        When finding minimum or maximum among complex roots they are compared
        first by the real part and then by the imaginary part.

    Returns
    -------
    unique : ndarray
        The list of unique roots.
    multiplicity : ndarray
        The multiplicity of each root.

    Notes
    -----
    If we have 3 roots ``a``, ``b`` and ``c``, such that ``a`` is close to
    ``b`` and ``b`` is close to ``c`` (distance is less than `tol`), then it
    doesn't necessarily mean that ``a`` is close to ``c``. It means that roots
    grouping is not unique. In this function we use "greedy" grouping going
    through the roots in the order they are given in the input `p`.

    This utility function is not specific to roots but can be used for any
    sequence of values for which uniqueness and multiplicity has to be
    determined. For a more general routine, see `numpy.unique`.

    Examples
    --------
    >>> from scipy import signal
    >>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
    >>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')

    Check which roots have multiplicity larger than 1:

    >>> uniq[mult > 1]
    array([ 1.305])
    """
    if rtype in ['max', 'maximum']:
        reduce = np.max
    elif rtype in ['min', 'minimum']:
        reduce = np.min
    elif rtype in ['avg', 'mean']:
        reduce = np.mean
    else:
        raise ValueError("`rtype` must be one of "
                         "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}")

    p = np.asarray(p)

    points = np.empty((len(p), 2))
    points[:, 0] = np.real(p)
    points[:, 1] = np.imag(p)
    tree = cKDTree(points)

    p_unique = []
    p_multiplicity = []
    used = np.zeros(len(p), dtype=bool)
    for i in range(len(p)):
        if used[i]:
            continue

        group = tree.query_ball_point(points[i], tol)
        group = [x for x in group if not used[x]]

        p_unique.append(reduce(p[group]))
        p_multiplicity.append(len(group))

        used[group] = True

    return np.asarray(p_unique), np.asarray(p_multiplicity)


def invres(r, p, k, tol=1e-3, rtype='avg'):
    """Compute b(s) and a(s) from partial fraction expansion.

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

              b(s)     b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
      H(s) = ------ = ------------------------------------------
              a(s)     a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

    then the partial-fraction expansion H(s) is defined as::

               r[0]       r[1]             r[-1]
           = -------- + -------- + ... + --------- + k(s)
             (s-p[0])   (s-p[1])         (s-p[-1])

    If there are any repeated roots (closer together than `tol`), then H(s)
    has terms like::

          r[i]      r[i+1]              r[i+n-1]
        -------- + ----------- + ... + -----------
        (s-p[i])  (s-p[i])**2          (s-p[i])**n

    This function is used for polynomials in positive powers of s or z,
    such as analog filters or digital filters in controls engineering.  For
    negative powers of z (typical for digital filters in DSP), use `invresz`.

    Parameters
    ----------
    r : array_like
        Residues corresponding to the poles. For repeated poles, the residues
        must be ordered to correspond to ascending by power fractions.
    p : array_like
        Poles. Equal poles must be adjacent.
    k : array_like
        Coefficients of the direct polynomial term.
    tol : float, optional
        The tolerance for two roots to be considered equal in terms of
        the distance between them. Default is 1e-3. See `unique_roots`
        for further details.
    rtype : {'avg', 'min', 'max'}, optional
        Method for computing a root to represent a group of identical roots.
        Default is 'avg'. See `unique_roots` for further details.

    Returns
    -------
    b : ndarray
        Numerator polynomial coefficients.
    a : ndarray
        Denominator polynomial coefficients.

    See Also
    --------
    residue, invresz, unique_roots

    """
    r = np.atleast_1d(r)
    p = np.atleast_1d(p)
    k = np.trim_zeros(np.atleast_1d(k), 'f')

    unique_poles, multiplicity = _group_poles(p, tol, rtype)
    factors, denominator = _compute_factors(unique_poles, multiplicity,
                                            include_powers=True)

    if len(k) == 0:
        numerator = 0
    else:
        numerator = np.polymul(k, denominator)

    for residue, factor in zip(r, factors):
        numerator = np.polyadd(numerator, residue * factor)

    return numerator, denominator


def _compute_factors(roots, multiplicity, include_powers=False):
    """Compute the total polynomial divided by factors for each root."""
    current = np.array([1])
    suffixes = [current]
    for pole, mult in zip(roots[-1:0:-1], multiplicity[-1:0:-1]):
        monomial = np.array([1, -pole])
        for _ in range(mult):
            current = np.polymul(current, monomial)
        suffixes.append(current)
    suffixes = suffixes[::-1]

    factors = []
    current = np.array([1])
    for pole, mult, suffix in zip(roots, multiplicity, suffixes):
        monomial = np.array([1, -pole])
        block = []
        for i in range(mult):
            if i == 0 or include_powers:
                block.append(np.polymul(current, suffix))
            current = np.polymul(current, monomial)
        factors.extend(reversed(block))

    return factors, current


def _compute_residues(poles, multiplicity, numerator):
    denominator_factors, _ = _compute_factors(poles, multiplicity)
    numerator = numerator.astype(poles.dtype)

    residues = []
    for pole, mult, factor in zip(poles, multiplicity,
                                  denominator_factors):
        if mult == 1:
            residues.append(np.polyval(numerator, pole) /
                            np.polyval(factor, pole))
        else:
            numer = numerator.copy()
            monomial = np.array([1, -pole])
            factor, d = np.polydiv(factor, monomial)

            block = []
            for _ in range(mult):
                numer, n = np.polydiv(numer, monomial)
                r = n[0] / d[0]
                numer = np.polysub(numer, r * factor)
                block.append(r)

            residues.extend(reversed(block))

    return np.asarray(residues)


def residue(b, a, tol=1e-3, rtype='avg'):
    """Compute partial-fraction expansion of b(s) / a(s).

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

              b(s)     b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
      H(s) = ------ = ------------------------------------------
              a(s)     a[0] s**(N) + a[1] s**(N-1) + ... + a[N]

    then the partial-fraction expansion H(s) is defined as::

               r[0]       r[1]             r[-1]
           = -------- + -------- + ... + --------- + k(s)
             (s-p[0])   (s-p[1])         (s-p[-1])

    If there are any repeated roots (closer together than `tol`), then H(s)
    has terms like::

          r[i]      r[i+1]              r[i+n-1]
        -------- + ----------- + ... + -----------
        (s-p[i])  (s-p[i])**2          (s-p[i])**n

    This function is used for polynomials in positive powers of s or z,
    such as analog filters or digital filters in controls engineering.  For
    negative powers of z (typical for digital filters in DSP), use `residuez`.

    See Notes for details about the algorithm.

    Parameters
    ----------
    b : array_like
        Numerator polynomial coefficients.
    a : array_like
        Denominator polynomial coefficients.
    tol : float, optional
        The tolerance for two roots to be considered equal in terms of
        the distance between them. Default is 1e-3. See `unique_roots`
        for further details.
    rtype : {'avg', 'min', 'max'}, optional
        Method for computing a root to represent a group of identical roots.
        Default is 'avg'. See `unique_roots` for further details.

    Returns
    -------
    r : ndarray
        Residues corresponding to the poles. For repeated poles, the residues
        are ordered to correspond to ascending by power fractions.
    p : ndarray
        Poles ordered by magnitude in ascending order.
    k : ndarray
        Coefficients of the direct polynomial term.

    See Also
    --------
    invres, residuez, numpy.poly, unique_roots

    Notes
    -----
    The "deflation through subtraction" algorithm is used for
    computations --- method 6 in [1]_.

    The form of partial fraction expansion depends on poles multiplicity in
    the exact mathematical sense. However there is no way to exactly
    determine multiplicity of roots of a polynomial in numerical computing.
    Thus you should think of the result of `residue` with given `tol` as
    partial fraction expansion computed for the denominator composed of the
    computed poles with empirically determined multiplicity. The choice of
    `tol` can drastically change the result if there are close poles.

    References
    ----------
    .. [1] J. F. Mahoney, B. D. Sivazlian, "Partial fractions expansion: a
           review of computational methodology and efficiency", Journal of
           Computational and Applied Mathematics, Vol. 9, 1983.
    """
    b = np.asarray(b)
    a = np.asarray(a)
    if (np.issubdtype(b.dtype, np.complexfloating)
            or np.issubdtype(a.dtype, np.complexfloating)):
        b = b.astype(complex)
        a = a.astype(complex)
    else:
        b = b.astype(float)
        a = a.astype(float)

    b = np.trim_zeros(np.atleast_1d(b), 'f')
    a = np.trim_zeros(np.atleast_1d(a), 'f')

    if a.size == 0:
        raise ValueError("Denominator `a` is zero.")

    poles = np.roots(a)
    if b.size == 0:
        return np.zeros(poles.shape), cmplx_sort(poles)[0], np.array([])

    if len(b) < len(a):
        k = np.empty(0)
    else:
        k, b = np.polydiv(b, a)

    unique_poles, multiplicity = unique_roots(poles, tol=tol, rtype=rtype)
    unique_poles, order = cmplx_sort(unique_poles)
    multiplicity = multiplicity[order]

    residues = _compute_residues(unique_poles, multiplicity, b)

    index = 0
    for pole, mult in zip(unique_poles, multiplicity):
        poles[index:index + mult] = pole
        index += mult

    return residues / a[0], poles, k


def residuez(b, a, tol=1e-3, rtype='avg'):
    """Compute partial-fraction expansion of b(z) / a(z).

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

                b(z)     b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
        H(z) = ------ = ------------------------------------------
                a(z)     a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

    then the partial-fraction expansion H(z) is defined as::

                 r[0]                   r[-1]
         = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
           (1-p[0]z**(-1))         (1-p[-1]z**(-1))

    If there are any repeated roots (closer than `tol`), then the partial
    fraction expansion has terms like::

             r[i]              r[i+1]                    r[i+n-1]
        -------------- + ------------------ + ... + ------------------
        (1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n

    This function is used for polynomials in negative powers of z,
    such as digital filters in DSP.  For positive powers, use `residue`.

    See Notes of `residue` for details about the algorithm.

    Parameters
    ----------
    b : array_like
        Numerator polynomial coefficients.
    a : array_like
        Denominator polynomial coefficients.
    tol : float, optional
        The tolerance for two roots to be considered equal in terms of
        the distance between them. Default is 1e-3. See `unique_roots`
        for further details.
    rtype : {'avg', 'min', 'max'}, optional
        Method for computing a root to represent a group of identical roots.
        Default is 'avg'. See `unique_roots` for further details.

    Returns
    -------
    r : ndarray
        Residues corresponding to the poles. For repeated poles, the residues
        are ordered to correspond to ascending by power fractions.
    p : ndarray
        Poles ordered by magnitude in ascending order.
    k : ndarray
        Coefficients of the direct polynomial term.

    See Also
    --------
    invresz, residue, unique_roots
    """
    b = np.asarray(b)
    a = np.asarray(a)
    if (np.issubdtype(b.dtype, np.complexfloating)
            or np.issubdtype(a.dtype, np.complexfloating)):
        b = b.astype(complex)
        a = a.astype(complex)
    else:
        b = b.astype(float)
        a = a.astype(float)

    b = np.trim_zeros(np.atleast_1d(b), 'b')
    a = np.trim_zeros(np.atleast_1d(a), 'b')

    if a.size == 0:
        raise ValueError("Denominator `a` is zero.")
    elif a[0] == 0:
        raise ValueError("First coefficient of determinant `a` must be "
                         "non-zero.")

    poles = np.roots(a)
    if b.size == 0:
        return np.zeros(poles.shape), cmplx_sort(poles)[0], np.array([])

    b_rev = b[::-1]
    a_rev = a[::-1]

    if len(b_rev) < len(a_rev):
        k_rev = np.empty(0)
    else:
        k_rev, b_rev = np.polydiv(b_rev, a_rev)

    unique_poles, multiplicity = unique_roots(poles, tol=tol, rtype=rtype)
    unique_poles, order = cmplx_sort(unique_poles)
    multiplicity = multiplicity[order]

    residues = _compute_residues(1 / unique_poles, multiplicity, b_rev)

    index = 0
    powers = np.empty(len(residues), dtype=int)
    for pole, mult in zip(unique_poles, multiplicity):
        poles[index:index + mult] = pole
        powers[index:index + mult] = 1 + np.arange(mult)
        index += mult

    residues *= (-poles) ** powers / a_rev[0]

    return residues, poles, k_rev[::-1]


def _group_poles(poles, tol, rtype):
    if rtype in ['max', 'maximum']:
        reduce = np.max
    elif rtype in ['min', 'minimum']:
        reduce = np.min
    elif rtype in ['avg', 'mean']:
        reduce = np.mean
    else:
        raise ValueError("`rtype` must be one of "
                         "{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}")

    unique = []
    multiplicity = []

    pole = poles[0]
    block = [pole]
    for i in range(1, len(poles)):
        if abs(poles[i] - pole) <= tol:
            block.append(pole)
        else:
            unique.append(reduce(block))
            multiplicity.append(len(block))
            pole = poles[i]
            block = [pole]

    unique.append(reduce(block))
    multiplicity.append(len(block))

    return np.asarray(unique), np.asarray(multiplicity)


def invresz(r, p, k, tol=1e-3, rtype='avg'):
    """Compute b(z) and a(z) from partial fraction expansion.

    If `M` is the degree of numerator `b` and `N` the degree of denominator
    `a`::

                b(z)     b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
        H(z) = ------ = ------------------------------------------
                a(z)     a[0] + a[1] z**(-1) + ... + a[N] z**(-N)

    then the partial-fraction expansion H(z) is defined as::

                 r[0]                   r[-1]
         = --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
           (1-p[0]z**(-1))         (1-p[-1]z**(-1))

    If there are any repeated roots (closer than `tol`), then the partial
    fraction expansion has terms like::

             r[i]              r[i+1]                    r[i+n-1]
        -------------- + ------------------ + ... + ------------------
        (1-p[i]z**(-1))  (1-p[i]z**(-1))**2         (1-p[i]z**(-1))**n

    This function is used for polynomials in negative powers of z,
    such as digital filters in DSP.  For positive powers, use `invres`.

    Parameters
    ----------
    r : array_like
        Residues corresponding to the poles. For repeated poles, the residues
        must be ordered to correspond to ascending by power fractions.
    p : array_like
        Poles. Equal poles must be adjacent.
    k : array_like
        Coefficients of the direct polynomial term.
    tol : float, optional
        The tolerance for two roots to be considered equal in terms of
        the distance between them. Default is 1e-3. See `unique_roots`
        for further details.
    rtype : {'avg', 'min', 'max'}, optional
        Method for computing a root to represent a group of identical roots.
        Default is 'avg'. See `unique_roots` for further details.

    Returns
    -------
    b : ndarray
        Numerator polynomial coefficients.
    a : ndarray
        Denominator polynomial coefficients.

    See Also
    --------
    residuez, unique_roots, invres

    """
    r = np.atleast_1d(r)
    p = np.atleast_1d(p)
    k = np.trim_zeros(np.atleast_1d(k), 'b')

    unique_poles, multiplicity = _group_poles(p, tol, rtype)
    factors, denominator = _compute_factors(unique_poles, multiplicity,
                                            include_powers=True)

    if len(k) == 0:
        numerator = 0
    else:
        numerator = np.polymul(k[::-1], denominator[::-1])

    for residue, factor in zip(r, factors):
        numerator = np.polyadd(numerator, residue * factor[::-1])

    return numerator[::-1], denominator


def resample(x, num, t=None, axis=0, window=None, domain='time'):
    """
    Resample `x` to `num` samples using Fourier method along the given axis.

    The resampled signal starts at the same value as `x` but is sampled
    with a spacing of ``len(x) / num * (spacing of x)``.  Because a
    Fourier method is used, the signal is assumed to be periodic.

    Parameters
    ----------
    x : array_like
        The data to be resampled.
    num : int
        The number of samples in the resampled signal.
    t : array_like, optional
        If `t` is given, it is assumed to be the equally spaced sample
        positions associated with the signal data in `x`.
    axis : int, optional
        The axis of `x` that is resampled.  Default is 0.
    window : array_like, callable, string, float, or tuple, optional
        Specifies the window applied to the signal in the Fourier
        domain.  See below for details.
    domain : string, optional
        A string indicating the domain of the input `x`:
        ``time`` Consider the input `x` as time-domain (Default),
        ``freq`` Consider the input `x` as frequency-domain.

    Returns
    -------
    resampled_x or (resampled_x, resampled_t)
        Either the resampled array, or, if `t` was given, a tuple
        containing the resampled array and the corresponding resampled
        positions.

    See Also
    --------
    decimate : Downsample the signal after applying an FIR or IIR filter.
    resample_poly : Resample using polyphase filtering and an FIR filter.

    Notes
    -----
    The argument `window` controls a Fourier-domain window that tapers
    the Fourier spectrum before zero-padding to alleviate ringing in
    the resampled values for sampled signals you didn't intend to be
    interpreted as band-limited.

    If `window` is a function, then it is called with a vector of inputs
    indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ).

    If `window` is an array of the same length as `x.shape[axis]` it is
    assumed to be the window to be applied directly in the Fourier
    domain (with dc and low-frequency first).

    For any other type of `window`, the function `scipy.signal.get_window`
    is called to generate the window.

    The first sample of the returned vector is the same as the first
    sample of the input vector.  The spacing between samples is changed
    from ``dx`` to ``dx * len(x) / num``.

    If `t` is not None, then it is used solely to calculate the resampled
    positions `resampled_t`

    As noted, `resample` uses FFT transformations, which can be very
    slow if the number of input or output samples is large and prime;
    see `scipy.fft.fft`.

    Examples
    --------
    Note that the end of the resampled data rises to meet the first
    sample of the next cycle:

    >>> from scipy import signal

    >>> x = np.linspace(0, 10, 20, endpoint=False)
    >>> y = np.cos(-x**2/6.0)
    >>> f = signal.resample(y, 100)
    >>> xnew = np.linspace(0, 10, 100, endpoint=False)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro')
    >>> plt.legend(['data', 'resampled'], loc='best')
    >>> plt.show()
    """

    if domain not in ('time', 'freq'):
        raise ValueError("Acceptable domain flags are 'time' or"
                         " 'freq', not domain={}".format(domain))

    x = np.asarray(x)
    Nx = x.shape[axis]

    # Check if we can use faster real FFT
    real_input = np.isrealobj(x)

    if domain == 'time':
        # Forward transform
        if real_input:
            X = sp_fft.rfft(x, axis=axis)
        else:  # Full complex FFT
            X = sp_fft.fft(x, axis=axis)
    else:  # domain == 'freq'
        X = x

    # Apply window to spectrum
    if window is not None:
        if callable(window):
            W = window(sp_fft.fftfreq(Nx))
        elif isinstance(window, np.ndarray):
            if window.shape != (Nx,):
                raise ValueError('window must have the same length as data')
            W = window
        else:
            W = sp_fft.ifftshift(get_window(window, Nx))

        newshape_W = [1] * x.ndim
        newshape_W[axis] = X.shape[axis]
        if real_input:
            # Fold the window back on itself to mimic complex behavior
            W_real = W.copy()
            W_real[1:] += W_real[-1:0:-1]
            W_real[1:] *= 0.5
            X *= W_real[:newshape_W[axis]].reshape(newshape_W)
        else:
            X *= W.reshape(newshape_W)

    # Copy each half of the original spectrum to the output spectrum, either
    # truncating high frequences (downsampling) or zero-padding them
    # (upsampling)

    # Placeholder array for output spectrum
    newshape = list(x.shape)
    if real_input:
        newshape[axis] = num // 2 + 1
    else:
        newshape[axis] = num
    Y = np.zeros(newshape, X.dtype)

    # Copy positive frequency components (and Nyquist, if present)
    N = min(num, Nx)
    nyq = N // 2 + 1  # Slice index that includes Nyquist if present
    sl = [slice(None)] * x.ndim
    sl[axis] = slice(0, nyq)
    Y[tuple(sl)] = X[tuple(sl)]
    if not real_input:
        # Copy negative frequency components
        if N > 2:  # (slice expression doesn't collapse to empty array)
            sl[axis] = slice(nyq - N, None)
            Y[tuple(sl)] = X[tuple(sl)]

    # Split/join Nyquist component(s) if present
    # So far we have set Y[+N/2]=X[+N/2]
    if N % 2 == 0:
        if num < Nx:  # downsampling
            if real_input:
                sl[axis] = slice(N//2, N//2 + 1)
                Y[tuple(sl)] *= 2.
            else:
                # select the component of Y at frequency +N/2,
                # add the component of X at -N/2
                sl[axis] = slice(-N//2, -N//2 + 1)
                Y[tuple(sl)] += X[tuple(sl)]
        elif Nx < num:  # upsampling
            # select the component at frequency +N/2 and halve it
            sl[axis] = slice(N//2, N//2 + 1)
            Y[tuple(sl)] *= 0.5
            if not real_input:
                temp = Y[tuple(sl)]
                # set the component at -N/2 equal to the component at +N/2
                sl[axis] = slice(num-N//2, num-N//2 + 1)
                Y[tuple(sl)] = temp

    # Inverse transform
    if real_input:
        y = sp_fft.irfft(Y, num, axis=axis)
    else:
        y = sp_fft.ifft(Y, axis=axis, overwrite_x=True)

    y *= (float(num) / float(Nx))

    if t is None:
        return y
    else:
        new_t = np.arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0]
        return y, new_t


def resample_poly(x, up, down, axis=0, window=('kaiser', 5.0),
                  padtype='constant', cval=None):
    """
    Resample `x` along the given axis using polyphase filtering.

    The signal `x` is upsampled by the factor `up`, a zero-phase low-pass
    FIR filter is applied, and then it is downsampled by the factor `down`.
    The resulting sample rate is ``up / down`` times the original sample
    rate. By default, values beyond the boundary of the signal are assumed
    to be zero during the filtering step.

    Parameters
    ----------
    x : array_like
        The data to be resampled.
    up : int
        The upsampling factor.
    down : int
        The downsampling factor.
    axis : int, optional
        The axis of `x` that is resampled. Default is 0.
    window : string, tuple, or array_like, optional
        Desired window to use to design the low-pass filter, or the FIR filter
        coefficients to employ. See below for details.
    padtype : string, optional
        `constant`, `line`, `mean`, `median`, `maximum`, `minimum` or any of
        the other signal extension modes supported by `scipy.signal.upfirdn`.
        Changes assumptions on values beyond the boundary. If `constant`,
        assumed to be `cval` (default zero). If `line` assumed to continue a
        linear trend defined by the first and last points. `mean`, `median`,
        `maximum` and `minimum` work as in `np.pad` and assume that the values
        beyond the boundary are the mean, median, maximum or minimum
        respectively of the array along the axis.

        .. versionadded:: 1.4.0
    cval : float, optional
        Value to use if `padtype='constant'`. Default is zero.

        .. versionadded:: 1.4.0

    Returns
    -------
    resampled_x : array
        The resampled array.

    See Also
    --------
    decimate : Downsample the signal after applying an FIR or IIR filter.
    resample : Resample up or down using the FFT method.

    Notes
    -----
    This polyphase method will likely be faster than the Fourier method
    in `scipy.signal.resample` when the number of samples is large and
    prime, or when the number of samples is large and `up` and `down`
    share a large greatest common denominator. The length of the FIR
    filter used will depend on ``max(up, down) // gcd(up, down)``, and
    the number of operations during polyphase filtering will depend on
    the filter length and `down` (see `scipy.signal.upfirdn` for details).

    The argument `window` specifies the FIR low-pass filter design.

    If `window` is an array_like it is assumed to be the FIR filter
    coefficients. Note that the FIR filter is applied after the upsampling
    step, so it should be designed to operate on a signal at a sampling
    frequency higher than the original by a factor of `up//gcd(up, down)`.
    This function's output will be centered with respect to this array, so it
    is best to pass a symmetric filter with an odd number of samples if, as
    is usually the case, a zero-phase filter is desired.

    For any other type of `window`, the functions `scipy.signal.get_window`
    and `scipy.signal.firwin` are called to generate the appropriate filter
    coefficients.

    The first sample of the returned vector is the same as the first
    sample of the input vector. The spacing between samples is changed
    from ``dx`` to ``dx * down / float(up)``.

    Examples
    --------
    By default, the end of the resampled data rises to meet the first
    sample of the next cycle for the FFT method, and gets closer to zero
    for the polyphase method:

    >>> from scipy import signal

    >>> x = np.linspace(0, 10, 20, endpoint=False)
    >>> y = np.cos(-x**2/6.0)
    >>> f_fft = signal.resample(y, 100)
    >>> f_poly = signal.resample_poly(y, 100, 20)
    >>> xnew = np.linspace(0, 10, 100, endpoint=False)

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-')
    >>> plt.plot(x, y, 'ko-')
    >>> plt.plot(10, y[0], 'bo', 10, 0., 'ro')  # boundaries
    >>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
    >>> plt.show()

    This default behaviour can be changed by using the padtype option:

    >>> import numpy as np
    >>> from scipy import signal

    >>> N = 5
    >>> x = np.linspace(0, 1, N, endpoint=False)
    >>> y = 2 + x**2 - 1.7*np.sin(x) + .2*np.cos(11*x)
    >>> y2 = 1 + x**3 + 0.1*np.sin(x) + .1*np.cos(11*x)
    >>> Y = np.stack([y, y2], axis=-1)
    >>> up = 4
    >>> xr = np.linspace(0, 1, N*up, endpoint=False)

    >>> y2 = signal.resample_poly(Y, up, 1, padtype='constant')
    >>> y3 = signal.resample_poly(Y, up, 1, padtype='mean')
    >>> y4 = signal.resample_poly(Y, up, 1, padtype='line')

    >>> import matplotlib.pyplot as plt
    >>> for i in [0,1]:
    ...     plt.figure()
    ...     plt.plot(xr, y4[:,i], 'g.', label='line')
    ...     plt.plot(xr, y3[:,i], 'y.', label='mean')
    ...     plt.plot(xr, y2[:,i], 'r.', label='constant')
    ...     plt.plot(x, Y[:,i], 'k-')
    ...     plt.legend()
    >>> plt.show()

    """
    x = np.asarray(x)
    if up != int(up):
        raise ValueError("up must be an integer")
    if down != int(down):
        raise ValueError("down must be an integer")
    up = int(up)
    down = int(down)
    if up < 1 or down < 1:
        raise ValueError('up and down must be >= 1')
    if cval is not None and padtype != 'constant':
        raise ValueError('cval has no effect when padtype is ', padtype)

    # Determine our up and down factors
    # Use a rational approximation to save computation time on really long
    # signals
    g_ = math.gcd(up, down)
    up //= g_
    down //= g_
    if up == down == 1:
        return x.copy()
    n_in = x.shape[axis]
    n_out = n_in * up
    n_out = n_out // down + bool(n_out % down)

    if isinstance(window, (list, np.ndarray)):
        window = np.array(window)  # use array to force a copy (we modify it)
        if window.ndim > 1:
            raise ValueError('window must be 1-D')
        half_len = (window.size - 1) // 2
        h = window
    else:
        # Design a linear-phase low-pass FIR filter
        max_rate = max(up, down)
        f_c = 1. / max_rate  # cutoff of FIR filter (rel. to Nyquist)
        half_len = 10 * max_rate  # reasonable cutoff for our sinc-like function
        h = firwin(2 * half_len + 1, f_c, window=window)
    h *= up

    # Zero-pad our filter to put the output samples at the center
    n_pre_pad = (down - half_len % down)
    n_post_pad = 0
    n_pre_remove = (half_len + n_pre_pad) // down
    # We should rarely need to do this given our filter lengths...
    while _output_len(len(h) + n_pre_pad + n_post_pad, n_in,
                      up, down) < n_out + n_pre_remove:
        n_post_pad += 1
    h = np.concatenate((np.zeros(n_pre_pad, dtype=h.dtype), h,
                        np.zeros(n_post_pad, dtype=h.dtype)))
    n_pre_remove_end = n_pre_remove + n_out

    # Remove background depending on the padtype option
    funcs = {'mean': np.mean, 'median': np.median,
             'minimum': np.amin, 'maximum': np.amax}
    upfirdn_kwargs = {'mode': 'constant', 'cval': 0}
    if padtype in funcs:
        background_values = funcs[padtype](x, axis=axis, keepdims=True)
    elif padtype in _upfirdn_modes:
        upfirdn_kwargs = {'mode': padtype}
        if padtype == 'constant':
            if cval is None:
                cval = 0
            upfirdn_kwargs['cval'] = cval
    else:
        raise ValueError(
            'padtype must be one of: maximum, mean, median, minimum, ' +
            ', '.join(_upfirdn_modes))

    if padtype in funcs:
        x = x - background_values

    # filter then remove excess
    y = upfirdn(h, x, up, down, axis=axis, **upfirdn_kwargs)
    keep = [slice(None), ]*x.ndim
    keep[axis] = slice(n_pre_remove, n_pre_remove_end)
    y_keep = y[tuple(keep)]

    # Add background back
    if padtype in funcs:
        y_keep += background_values

    return y_keep


def vectorstrength(events, period):
    '''
    Determine the vector strength of the events corresponding to the given
    period.

    The vector strength is a measure of phase synchrony, how well the
    timing of the events is synchronized to a single period of a periodic
    signal.

    If multiple periods are used, calculate the vector strength of each.
    This is called the "resonating vector strength".

    Parameters
    ----------
    events : 1D array_like
        An array of time points containing the timing of the events.
    period : float or array_like
        The period of the signal that the events should synchronize to.
        The period is in the same units as `events`.  It can also be an array
        of periods, in which case the outputs are arrays of the same length.

    Returns
    -------
    strength : float or 1D array
        The strength of the synchronization.  1.0 is perfect synchronization
        and 0.0 is no synchronization.  If `period` is an array, this is also
        an array with each element containing the vector strength at the
        corresponding period.
    phase : float or array
        The phase that the events are most strongly synchronized to in radians.
        If `period` is an array, this is also an array with each element
        containing the phase for the corresponding period.

    References
    ----------
    van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector
        strength: Auditory system, electric fish, and noise.
        Chaos 21, 047508 (2011);
        :doi:`10.1063/1.3670512`.
    van Hemmen, JL.  Vector strength after Goldberg, Brown, and von Mises:
        biological and mathematical perspectives.  Biol Cybern.
        2013 Aug;107(4):385-96. :doi:`10.1007/s00422-013-0561-7`.
    van Hemmen, JL and Vollmayr, AN.  Resonating vector strength: what happens
        when we vary the "probing" frequency while keeping the spike times
        fixed.  Biol Cybern. 2013 Aug;107(4):491-94.
        :doi:`10.1007/s00422-013-0560-8`.
    '''
    events = np.asarray(events)
    period = np.asarray(period)
    if events.ndim > 1:
        raise ValueError('events cannot have dimensions more than 1')
    if period.ndim > 1:
        raise ValueError('period cannot have dimensions more than 1')

    # we need to know later if period was originally a scalar
    scalarperiod = not period.ndim

    events = np.atleast_2d(events)
    period = np.atleast_2d(period)
    if (period <= 0).any():
        raise ValueError('periods must be positive')

    # this converts the times to vectors
    vectors = np.exp(np.dot(2j*np.pi/period.T, events))

    # the vector strength is just the magnitude of the mean of the vectors
    # the vector phase is the angle of the mean of the vectors
    vectormean = np.mean(vectors, axis=1)
    strength = abs(vectormean)
    phase = np.angle(vectormean)

    # if the original period was a scalar, return scalars
    if scalarperiod:
        strength = strength[0]
        phase = phase[0]
    return strength, phase


def detrend(data, axis=-1, type='linear', bp=0, overwrite_data=False):
    """
    Remove linear trend along axis from data.

    Parameters
    ----------
    data : array_like
        The input data.
    axis : int, optional
        The axis along which to detrend the data. By default this is the
        last axis (-1).
    type : {'linear', 'constant'}, optional
        The type of detrending. If ``type == 'linear'`` (default),
        the result of a linear least-squares fit to `data` is subtracted
        from `data`.
        If ``type == 'constant'``, only the mean of `data` is subtracted.
    bp : array_like of ints, optional
        A sequence of break points. If given, an individual linear fit is
        performed for each part of `data` between two break points.
        Break points are specified as indices into `data`. This parameter
        only has an effect when ``type == 'linear'``.
    overwrite_data : bool, optional
        If True, perform in place detrending and avoid a copy. Default is False

    Returns
    -------
    ret : ndarray
        The detrended input data.

    Examples
    --------
    >>> from scipy import signal
    >>> randgen = np.random.RandomState(9)
    >>> npoints = 1000
    >>> noise = randgen.randn(npoints)
    >>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
    >>> (signal.detrend(x) - noise).max() < 0.01
    True

    """
    if type not in ['linear', 'l', 'constant', 'c']:
        raise ValueError("Trend type must be 'linear' or 'constant'.")
    data = np.asarray(data)
    dtype = data.dtype.char
    if dtype not in 'dfDF':
        dtype = 'd'
    if type in ['constant', 'c']:
        ret = data - np.expand_dims(np.mean(data, axis), axis)
        return ret
    else:
        dshape = data.shape
        N = dshape[axis]
        bp = np.sort(np.unique(np.r_[0, bp, N]))
        if np.any(bp > N):
            raise ValueError("Breakpoints must be less than length "
                             "of data along given axis.")
        Nreg = len(bp) - 1
        # Restructure data so that axis is along first dimension and
        #  all other dimensions are collapsed into second dimension
        rnk = len(dshape)
        if axis < 0:
            axis = axis + rnk
        newdims = np.r_[axis, 0:axis, axis + 1:rnk]
        newdata = np.reshape(np.transpose(data, tuple(newdims)),
                             (N, _prod(dshape) // N))
        if not overwrite_data:
            newdata = newdata.copy()  # make sure we have a copy
        if newdata.dtype.char not in 'dfDF':
            newdata = newdata.astype(dtype)
        # Find leastsq fit and remove it for each piece
        for m in range(Nreg):
            Npts = bp[m + 1] - bp[m]
            A = np.ones((Npts, 2), dtype)
            A[:, 0] = np.cast[dtype](np.arange(1, Npts + 1) * 1.0 / Npts)
            sl = slice(bp[m], bp[m + 1])
            coef, resids, rank, s = linalg.lstsq(A, newdata[sl])
            newdata[sl] = newdata[sl] - np.dot(A, coef)
        # Put data back in original shape.
        tdshape = np.take(dshape, newdims, 0)
        ret = np.reshape(newdata, tuple(tdshape))
        vals = list(range(1, rnk))
        olddims = vals[:axis] + [0] + vals[axis:]
        ret = np.transpose(ret, tuple(olddims))
        return ret


def lfilter_zi(b, a):
    """
    Construct initial conditions for lfilter for step response steady-state.

    Compute an initial state `zi` for the `lfilter` function that corresponds
    to the steady state of the step response.

    A typical use of this function is to set the initial state so that the
    output of the filter starts at the same value as the first element of
    the signal to be filtered.

    Parameters
    ----------
    b, a : array_like (1-D)
        The IIR filter coefficients. See `lfilter` for more
        information.

    Returns
    -------
    zi : 1-D ndarray
        The initial state for the filter.

    See Also
    --------
    lfilter, lfiltic, filtfilt

    Notes
    -----
    A linear filter with order m has a state space representation (A, B, C, D),
    for which the output y of the filter can be expressed as::

        z(n+1) = A*z(n) + B*x(n)
        y(n)   = C*z(n) + D*x(n)

    where z(n) is a vector of length m, A has shape (m, m), B has shape
    (m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is
    a scalar).  lfilter_zi solves::

        zi = A*zi + B

    In other words, it finds the initial condition for which the response
    to an input of all ones is a constant.

    Given the filter coefficients `a` and `b`, the state space matrices
    for the transposed direct form II implementation of the linear filter,
    which is the implementation used by scipy.signal.lfilter, are::

        A = scipy.linalg.companion(a).T
        B = b[1:] - a[1:]*b[0]

    assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first
    divided by a[0].

    Examples
    --------
    The following code creates a lowpass Butterworth filter. Then it
    applies that filter to an array whose values are all 1.0; the
    output is also all 1.0, as expected for a lowpass filter.  If the
    `zi` argument of `lfilter` had not been given, the output would have
    shown the transient signal.

    >>> from numpy import array, ones
    >>> from scipy.signal import lfilter, lfilter_zi, butter
    >>> b, a = butter(5, 0.25)
    >>> zi = lfilter_zi(b, a)
    >>> y, zo = lfilter(b, a, ones(10), zi=zi)
    >>> y
    array([1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.,  1.])

    Another example:

    >>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
    >>> y, zf = lfilter(b, a, x, zi=zi*x[0])
    >>> y
    array([ 0.5       ,  0.5       ,  0.5       ,  0.49836039,  0.48610528,
        0.44399389,  0.35505241])

    Note that the `zi` argument to `lfilter` was computed using
    `lfilter_zi` and scaled by `x[0]`.  Then the output `y` has no
    transient until the input drops from 0.5 to 0.0.

    """

    # FIXME: Can this function be replaced with an appropriate
    # use of lfiltic?  For example, when b,a = butter(N,Wn),
    #    lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)).
    #

    # We could use scipy.signal.normalize, but it uses warnings in
    # cases where a ValueError is more appropriate, and it allows
    # b to be 2D.
    b = np.atleast_1d(b)
    if b.ndim != 1:
        raise ValueError("Numerator b must be 1-D.")
    a = np.atleast_1d(a)
    if a.ndim != 1:
        raise ValueError("Denominator a must be 1-D.")

    while len(a) > 1 and a[0] == 0.0:
        a = a[1:]
    if a.size < 1:
        raise ValueError("There must be at least one nonzero `a` coefficient.")

    if a[0] != 1.0:
        # Normalize the coefficients so a[0] == 1.
        b = b / a[0]
        a = a / a[0]

    n = max(len(a), len(b))

    # Pad a or b with zeros so they are the same length.
    if len(a) < n:
        a = np.r_[a, np.zeros(n - len(a))]
    elif len(b) < n:
        b = np.r_[b, np.zeros(n - len(b))]

    IminusA = np.eye(n - 1) - linalg.companion(a).T
    B = b[1:] - a[1:] * b[0]
    # Solve zi = A*zi + B
    zi = np.linalg.solve(IminusA, B)

    # For future reference: we could also use the following
    # explicit formulas to solve the linear system:
    #
    # zi = np.zeros(n - 1)
    # zi[0] = B.sum() / IminusA[:,0].sum()
    # asum = 1.0
    # csum = 0.0
    # for k in range(1,n-1):
    #     asum += a[k]
    #     csum += b[k] - a[k]*b[0]
    #     zi[k] = asum*zi[0] - csum

    return zi


def sosfilt_zi(sos):
    """
    Construct initial conditions for sosfilt for step response steady-state.

    Compute an initial state `zi` for the `sosfilt` function that corresponds
    to the steady state of the step response.

    A typical use of this function is to set the initial state so that the
    output of the filter starts at the same value as the first element of
    the signal to be filtered.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. See `sosfilt` for the SOS filter format
        specification.

    Returns
    -------
    zi : ndarray
        Initial conditions suitable for use with ``sosfilt``, shape
        ``(n_sections, 2)``.

    See Also
    --------
    sosfilt, zpk2sos

    Notes
    -----
    .. versionadded:: 0.16.0

    Examples
    --------
    Filter a rectangular pulse that begins at time 0, with and without
    the use of the `zi` argument of `scipy.signal.sosfilt`.

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> sos = signal.butter(9, 0.125, output='sos')
    >>> zi = signal.sosfilt_zi(sos)
    >>> x = (np.arange(250) < 100).astype(int)
    >>> f1 = signal.sosfilt(sos, x)
    >>> f2, zo = signal.sosfilt(sos, x, zi=zi)

    >>> plt.plot(x, 'k--', label='x')
    >>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
    >>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
    >>> plt.legend(loc='best')
    >>> plt.show()

    """
    sos = np.asarray(sos)
    if sos.ndim != 2 or sos.shape[1] != 6:
        raise ValueError('sos must be shape (n_sections, 6)')

    n_sections = sos.shape[0]
    zi = np.empty((n_sections, 2))
    scale = 1.0
    for section in range(n_sections):
        b = sos[section, :3]
        a = sos[section, 3:]
        zi[section] = scale * lfilter_zi(b, a)
        # If H(z) = B(z)/A(z) is this section's transfer function, then
        # b.sum()/a.sum() is H(1), the gain at omega=0.  That's the steady
        # state value of this section's step response.
        scale *= b.sum() / a.sum()

    return zi


def _filtfilt_gust(b, a, x, axis=-1, irlen=None):
    """Forward-backward IIR filter that uses Gustafsson's method.

    Apply the IIR filter defined by `(b,a)` to `x` twice, first forward
    then backward, using Gustafsson's initial conditions [1]_.

    Let ``y_fb`` be the result of filtering first forward and then backward,
    and let ``y_bf`` be the result of filtering first backward then forward.
    Gustafsson's method is to compute initial conditions for the forward
    pass and the backward pass such that ``y_fb == y_bf``.

    Parameters
    ----------
    b : scalar or 1-D ndarray
        Numerator coefficients of the filter.
    a : scalar or 1-D ndarray
        Denominator coefficients of the filter.
    x : ndarray
        Data to be filtered.
    axis : int, optional
        Axis of `x` to be filtered.  Default is -1.
    irlen : int or None, optional
        The length of the nonnegligible part of the impulse response.
        If `irlen` is None, or if the length of the signal is less than
        ``2 * irlen``, then no part of the impulse response is ignored.

    Returns
    -------
    y : ndarray
        The filtered data.
    x0 : ndarray
        Initial condition for the forward filter.
    x1 : ndarray
        Initial condition for the backward filter.

    Notes
    -----
    Typically the return values `x0` and `x1` are not needed by the
    caller.  The intended use of these return values is in unit tests.

    References
    ----------
    .. [1] F. Gustaffson. Determining the initial states in forward-backward
           filtering. Transactions on Signal Processing, 46(4):988-992, 1996.

    """
    # In the comments, "Gustafsson's paper" and [1] refer to the
    # paper referenced in the docstring.

    b = np.atleast_1d(b)
    a = np.atleast_1d(a)

    order = max(len(b), len(a)) - 1
    if order == 0:
        # The filter is just scalar multiplication, with no state.
        scale = (b[0] / a[0])**2
        y = scale * x
        return y, np.array([]), np.array([])

    if axis != -1 or axis != x.ndim - 1:
        # Move the axis containing the data to the end.
        x = np.swapaxes(x, axis, x.ndim - 1)

    # n is the number of samples in the data to be filtered.
    n = x.shape[-1]

    if irlen is None or n <= 2*irlen:
        m = n
    else:
        m = irlen

    # Create Obs, the observability matrix (called O in the paper).
    # This matrix can be interpreted as the operator that propagates
    # an arbitrary initial state to the output, assuming the input is
    # zero.
    # In Gustafsson's paper, the forward and backward filters are not
    # necessarily the same, so he has both O_f and O_b.  We use the same
    # filter in both directions, so we only need O. The same comment
    # applies to S below.
    Obs = np.zeros((m, order))
    zi = np.zeros(order)
    zi[0] = 1
    Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0]
    for k in range(1, order):
        Obs[k:, k] = Obs[:-k, 0]

    # Obsr is O^R (Gustafsson's notation for row-reversed O)
    Obsr = Obs[::-1]

    # Create S.  S is the matrix that applies the filter to the reversed
    # propagated initial conditions.  That is,
    #     out = S.dot(zi)
    # is the same as
    #     tmp, _ = lfilter(b, a, zeros(), zi=zi)  # Propagate ICs.
    #     out = lfilter(b, a, tmp[::-1])          # Reverse and filter.

    # Equations (5) & (6) of [1]
    S = lfilter(b, a, Obs[::-1], axis=0)

    # Sr is S^R (row-reversed S)
    Sr = S[::-1]

    # M is [(S^R - O), (O^R - S)]
    if m == n:
        M = np.hstack((Sr - Obs, Obsr - S))
    else:
        # Matrix described in section IV of [1].
        M = np.zeros((2*m, 2*order))
        M[:m, :order] = Sr - Obs
        M[m:, order:] = Obsr - S

    # Naive forward-backward and backward-forward filters.
    # These have large transients because the filters use zero initial
    # conditions.
    y_f = lfilter(b, a, x)
    y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1]

    y_b = lfilter(b, a, x[..., ::-1])[..., ::-1]
    y_bf = lfilter(b, a, y_b)

    delta_y_bf_fb = y_bf - y_fb
    if m == n:
        delta = delta_y_bf_fb
    else:
        start_m = delta_y_bf_fb[..., :m]
        end_m = delta_y_bf_fb[..., -m:]
        delta = np.concatenate((start_m, end_m), axis=-1)

    # ic_opt holds the "optimal" initial conditions.
    # The following code computes the result shown in the formula
    # of the paper between equations (6) and (7).
    if delta.ndim == 1:
        ic_opt = linalg.lstsq(M, delta)[0]
    else:
        # Reshape delta so it can be used as an array of multiple
        # right-hand-sides in linalg.lstsq.
        delta2d = delta.reshape(-1, delta.shape[-1]).T
        ic_opt0 = linalg.lstsq(M, delta2d)[0].T
        ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],))

    # Now compute the filtered signal using equation (7) of [1].
    # First, form [S^R, O^R] and call it W.
    if m == n:
        W = np.hstack((Sr, Obsr))
    else:
        W = np.zeros((2*m, 2*order))
        W[:m, :order] = Sr
        W[m:, order:] = Obsr

    # Equation (7) of [1] says
    #     Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt]
    # `wic` is (almost) the product on the right.
    # W has shape (m, 2*order), and ic_opt has shape (..., 2*order),
    # so we can't use W.dot(ic_opt).  Instead, we dot ic_opt with W.T,
    # so wic has shape (..., m).
    wic = ic_opt.dot(W.T)

    # `wic` is "almost" the product of W and the optimal ICs in equation
    # (7)--if we're using a truncated impulse response (m < n), `wic`
    # contains only the adjustments required for the ends of the signal.
    # Here we form y_opt, taking this into account if necessary.
    y_opt = y_fb
    if m == n:
        y_opt += wic
    else:
        y_opt[..., :m] += wic[..., :m]
        y_opt[..., -m:] += wic[..., -m:]

    x0 = ic_opt[..., :order]
    x1 = ic_opt[..., -order:]
    if axis != -1 or axis != x.ndim - 1:
        # Restore the data axis to its original position.
        x0 = np.swapaxes(x0, axis, x.ndim - 1)
        x1 = np.swapaxes(x1, axis, x.ndim - 1)
        y_opt = np.swapaxes(y_opt, axis, x.ndim - 1)

    return y_opt, x0, x1


def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad',
             irlen=None):
    """
    Apply a digital filter forward and backward to a signal.

    This function applies a linear digital filter twice, once forward and
    once backwards.  The combined filter has zero phase and a filter order
    twice that of the original.

    The function provides options for handling the edges of the signal.

    The function `sosfiltfilt` (and filter design using ``output='sos'``)
    should be preferred over `filtfilt` for most filtering tasks, as
    second-order sections have fewer numerical problems.

    Parameters
    ----------
    b : (N,) array_like
        The numerator coefficient vector of the filter.
    a : (N,) array_like
        The denominator coefficient vector of the filter.  If ``a[0]``
        is not 1, then both `a` and `b` are normalized by ``a[0]``.
    x : array_like
        The array of data to be filtered.
    axis : int, optional
        The axis of `x` to which the filter is applied.
        Default is -1.
    padtype : str or None, optional
        Must be 'odd', 'even', 'constant', or None.  This determines the
        type of extension to use for the padded signal to which the filter
        is applied.  If `padtype` is None, no padding is used.  The default
        is 'odd'.
    padlen : int or None, optional
        The number of elements by which to extend `x` at both ends of
        `axis` before applying the filter.  This value must be less than
        ``x.shape[axis] - 1``.  ``padlen=0`` implies no padding.
        The default value is ``3 * max(len(a), len(b))``.
    method : str, optional
        Determines the method for handling the edges of the signal, either
        "pad" or "gust".  When `method` is "pad", the signal is padded; the
        type of padding is determined by `padtype` and `padlen`, and `irlen`
        is ignored.  When `method` is "gust", Gustafsson's method is used,
        and `padtype` and `padlen` are ignored.
    irlen : int or None, optional
        When `method` is "gust", `irlen` specifies the length of the
        impulse response of the filter.  If `irlen` is None, no part
        of the impulse response is ignored.  For a long signal, specifying
        `irlen` can significantly improve the performance of the filter.

    Returns
    -------
    y : ndarray
        The filtered output with the same shape as `x`.

    See Also
    --------
    sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt

    Notes
    -----
    When `method` is "pad", the function pads the data along the given axis
    in one of three ways: odd, even or constant.  The odd and even extensions
    have the corresponding symmetry about the end point of the data.  The
    constant extension extends the data with the values at the end points. On
    both the forward and backward passes, the initial condition of the
    filter is found by using `lfilter_zi` and scaling it by the end point of
    the extended data.

    When `method` is "gust", Gustafsson's method [1]_ is used.  Initial
    conditions are chosen for the forward and backward passes so that the
    forward-backward filter gives the same result as the backward-forward
    filter.

    The option to use Gustaffson's method was added in scipy version 0.16.0.

    References
    ----------
    .. [1] F. Gustaffson, "Determining the initial states in forward-backward
           filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992,
           1996.

    Examples
    --------
    The examples will use several functions from `scipy.signal`.

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    First we create a one second signal that is the sum of two pure sine
    waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz.

    >>> t = np.linspace(0, 1.0, 2001)
    >>> xlow = np.sin(2 * np.pi * 5 * t)
    >>> xhigh = np.sin(2 * np.pi * 250 * t)
    >>> x = xlow + xhigh

    Now create a lowpass Butterworth filter with a cutoff of 0.125 times
    the Nyquist frequency, or 125 Hz, and apply it to ``x`` with `filtfilt`.
    The result should be approximately ``xlow``, with no phase shift.

    >>> b, a = signal.butter(8, 0.125)
    >>> y = signal.filtfilt(b, a, x, padlen=150)
    >>> np.abs(y - xlow).max()
    9.1086182074789912e-06

    We get a fairly clean result for this artificial example because
    the odd extension is exact, and with the moderately long padding,
    the filter's transients have dissipated by the time the actual data
    is reached.  In general, transient effects at the edges are
    unavoidable.

    The following example demonstrates the option ``method="gust"``.

    First, create a filter.

    >>> b, a = signal.ellip(4, 0.01, 120, 0.125)  # Filter to be applied.
    >>> np.random.seed(123456)

    `sig` is a random input signal to be filtered.

    >>> n = 60
    >>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum()

    Apply `filtfilt` to `sig`, once using the Gustafsson method, and
    once using padding, and plot the results for comparison.

    >>> fgust = signal.filtfilt(b, a, sig, method="gust")
    >>> fpad = signal.filtfilt(b, a, sig, padlen=50)
    >>> plt.plot(sig, 'k-', label='input')
    >>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
    >>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
    >>> plt.legend(loc='best')
    >>> plt.show()

    The `irlen` argument can be used to improve the performance
    of Gustafsson's method.

    Estimate the impulse response length of the filter.

    >>> z, p, k = signal.tf2zpk(b, a)
    >>> eps = 1e-9
    >>> r = np.max(np.abs(p))
    >>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
    >>> approx_impulse_len
    137

    Apply the filter to a longer signal, with and without the `irlen`
    argument.  The difference between `y1` and `y2` is small.  For long
    signals, using `irlen` gives a significant performance improvement.

    >>> x = np.random.randn(5000)
    >>> y1 = signal.filtfilt(b, a, x, method='gust')
    >>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len)
    >>> print(np.max(np.abs(y1 - y2)))
    1.80056858312e-10

    """
    b = np.atleast_1d(b)
    a = np.atleast_1d(a)
    x = np.asarray(x)

    if method not in ["pad", "gust"]:
        raise ValueError("method must be 'pad' or 'gust'.")

    if method == "gust":
        y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen)
        return y

    # method == "pad"
    edge, ext = _validate_pad(padtype, padlen, x, axis,
                              ntaps=max(len(a), len(b)))

    # Get the steady state of the filter's step response.
    zi = lfilter_zi(b, a)

    # Reshape zi and create x0 so that zi*x0 broadcasts
    # to the correct value for the 'zi' keyword argument
    # to lfilter.
    zi_shape = [1] * x.ndim
    zi_shape[axis] = zi.size
    zi = np.reshape(zi, zi_shape)
    x0 = axis_slice(ext, stop=1, axis=axis)

    # Forward filter.
    (y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0)

    # Backward filter.
    # Create y0 so zi*y0 broadcasts appropriately.
    y0 = axis_slice(y, start=-1, axis=axis)
    (y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0)

    # Reverse y.
    y = axis_reverse(y, axis=axis)

    if edge > 0:
        # Slice the actual signal from the extended signal.
        y = axis_slice(y, start=edge, stop=-edge, axis=axis)

    return y


def _validate_pad(padtype, padlen, x, axis, ntaps):
    """Helper to validate padding for filtfilt"""
    if padtype not in ['even', 'odd', 'constant', None]:
        raise ValueError(("Unknown value '%s' given to padtype.  padtype "
                          "must be 'even', 'odd', 'constant', or None.") %
                         padtype)

    if padtype is None:
        padlen = 0

    if padlen is None:
        # Original padding; preserved for backwards compatibility.
        edge = ntaps * 3
    else:
        edge = padlen

    # x's 'axis' dimension must be bigger than edge.
    if x.shape[axis] <= edge:
        raise ValueError("The length of the input vector x must be greater "
                         "than padlen, which is %d." % edge)

    if padtype is not None and edge > 0:
        # Make an extension of length `edge` at each
        # end of the input array.
        if padtype == 'even':
            ext = even_ext(x, edge, axis=axis)
        elif padtype == 'odd':
            ext = odd_ext(x, edge, axis=axis)
        else:
            ext = const_ext(x, edge, axis=axis)
    else:
        ext = x
    return edge, ext


def _validate_x(x):
    x = np.asarray(x)
    if x.ndim == 0:
        raise ValueError('x must be at least 1-D')
    return x


def sosfilt(sos, x, axis=-1, zi=None):
    """
    Filter data along one dimension using cascaded second-order sections.

    Filter a data sequence, `x`, using a digital IIR filter defined by
    `sos`.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. Each row corresponds to a second-order
        section, with the first three columns providing the numerator
        coefficients and the last three providing the denominator
        coefficients.
    x : array_like
        An N-dimensional input array.
    axis : int, optional
        The axis of the input data array along which to apply the
        linear filter. The filter is applied to each subarray along
        this axis.  Default is -1.
    zi : array_like, optional
        Initial conditions for the cascaded filter delays.  It is a (at
        least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where
        ``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]``
        replaced by 2.  If `zi` is None or is not given then initial rest
        (i.e. all zeros) is assumed.
        Note that these initial conditions are *not* the same as the initial
        conditions given by `lfiltic` or `lfilter_zi`.

    Returns
    -------
    y : ndarray
        The output of the digital filter.
    zf : ndarray, optional
        If `zi` is None, this is not returned, otherwise, `zf` holds the
        final filter delay values.

    See Also
    --------
    zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz

    Notes
    -----
    The filter function is implemented as a series of second-order filters
    with direct-form II transposed structure. It is designed to minimize
    numerical precision errors for high-order filters.

    .. versionadded:: 0.16.0

    Examples
    --------
    Plot a 13th-order filter's impulse response using both `lfilter` and
    `sosfilt`, showing the instability that results from trying to do a
    13th-order filter in a single stage (the numerical error pushes some poles
    outside of the unit circle):

    >>> import matplotlib.pyplot as plt
    >>> from scipy import signal
    >>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
    >>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
    >>> x = signal.unit_impulse(700)
    >>> y_tf = signal.lfilter(b, a, x)
    >>> y_sos = signal.sosfilt(sos, x)
    >>> plt.plot(y_tf, 'r', label='TF')
    >>> plt.plot(y_sos, 'k', label='SOS')
    >>> plt.legend(loc='best')
    >>> plt.show()

    """
    x = _validate_x(x)
    sos, n_sections = _validate_sos(sos)
    x_zi_shape = list(x.shape)
    x_zi_shape[axis] = 2
    x_zi_shape = tuple([n_sections] + x_zi_shape)
    inputs = [sos, x]
    if zi is not None:
        inputs.append(np.asarray(zi))
    dtype = np.result_type(*inputs)
    if dtype.char not in 'fdgFDGO':
        raise NotImplementedError("input type '%s' not supported" % dtype)
    if zi is not None:
        zi = np.array(zi, dtype)  # make a copy so that we can operate in place
        if zi.shape != x_zi_shape:
            raise ValueError('Invalid zi shape. With axis=%r, an input with '
                             'shape %r, and an sos array with %d sections, zi '
                             'must have shape %r, got %r.' %
                             (axis, x.shape, n_sections, x_zi_shape, zi.shape))
        return_zi = True
    else:
        zi = np.zeros(x_zi_shape, dtype=dtype)
        return_zi = False
    axis = axis % x.ndim  # make positive
    x = np.moveaxis(x, axis, -1)
    zi = np.moveaxis(zi, [0, axis + 1], [-2, -1])
    x_shape, zi_shape = x.shape, zi.shape
    x = np.reshape(x, (-1, x.shape[-1]))
    x = np.array(x, dtype, order='C')  # make a copy, can modify in place
    zi = np.ascontiguousarray(np.reshape(zi, (-1, n_sections, 2)))
    sos = sos.astype(dtype, copy=False)
    _sosfilt(sos, x, zi)
    x.shape = x_shape
    x = np.moveaxis(x, -1, axis)
    if return_zi:
        zi.shape = zi_shape
        zi = np.moveaxis(zi, [-2, -1], [0, axis + 1])
        out = (x, zi)
    else:
        out = x
    return out


def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None):
    """
    A forward-backward digital filter using cascaded second-order sections.

    See `filtfilt` for more complete information about this method.

    Parameters
    ----------
    sos : array_like
        Array of second-order filter coefficients, must have shape
        ``(n_sections, 6)``. Each row corresponds to a second-order
        section, with the first three columns providing the numerator
        coefficients and the last three providing the denominator
        coefficients.
    x : array_like
        The array of data to be filtered.
    axis : int, optional
        The axis of `x` to which the filter is applied.
        Default is -1.
    padtype : str or None, optional
        Must be 'odd', 'even', 'constant', or None.  This determines the
        type of extension to use for the padded signal to which the filter
        is applied.  If `padtype` is None, no padding is used.  The default
        is 'odd'.
    padlen : int or None, optional
        The number of elements by which to extend `x` at both ends of
        `axis` before applying the filter.  This value must be less than
        ``x.shape[axis] - 1``.  ``padlen=0`` implies no padding.
        The default value is::

            3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
                                        (sos[:, 5] == 0).sum()))

        The extra subtraction at the end attempts to compensate for poles
        and zeros at the origin (e.g. for odd-order filters) to yield
        equivalent estimates of `padlen` to those of `filtfilt` for
        second-order section filters built with `scipy.signal` functions.

    Returns
    -------
    y : ndarray
        The filtered output with the same shape as `x`.

    See Also
    --------
    filtfilt, sosfilt, sosfilt_zi, sosfreqz

    Notes
    -----
    .. versionadded:: 0.18.0

    Examples
    --------
    >>> from scipy.signal import sosfiltfilt, butter
    >>> import matplotlib.pyplot as plt

    Create an interesting signal to filter.

    >>> n = 201
    >>> t = np.linspace(0, 1, n)
    >>> np.random.seed(123)
    >>> x = 1 + (t < 0.5) - 0.25*t**2 + 0.05*np.random.randn(n)

    Create a lowpass Butterworth filter, and use it to filter `x`.

    >>> sos = butter(4, 0.125, output='sos')
    >>> y = sosfiltfilt(sos, x)

    For comparison, apply an 8th order filter using `sosfilt`.  The filter
    is initialized using the mean of the first four values of `x`.

    >>> from scipy.signal import sosfilt, sosfilt_zi
    >>> sos8 = butter(8, 0.125, output='sos')
    >>> zi = x[:4].mean() * sosfilt_zi(sos8)
    >>> y2, zo = sosfilt(sos8, x, zi=zi)

    Plot the results.  Note that the phase of `y` matches the input, while
    `y2` has a significant phase delay.

    >>> plt.plot(t, x, alpha=0.5, label='x(t)')
    >>> plt.plot(t, y, label='y(t)')
    >>> plt.plot(t, y2, label='y2(t)')
    >>> plt.legend(framealpha=1, shadow=True)
    >>> plt.grid(alpha=0.25)
    >>> plt.xlabel('t')
    >>> plt.show()

    """
    sos, n_sections = _validate_sos(sos)
    x = _validate_x(x)

    # `method` is "pad"...
    ntaps = 2 * n_sections + 1
    ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())
    edge, ext = _validate_pad(padtype, padlen, x, axis,
                              ntaps=ntaps)

    # These steps follow the same form as filtfilt with modifications
    zi = sosfilt_zi(sos)  # shape (n_sections, 2) --> (n_sections, ..., 2, ...)
    zi_shape = [1] * x.ndim
    zi_shape[axis] = 2
    zi.shape = [n_sections] + zi_shape
    x_0 = axis_slice(ext, stop=1, axis=axis)
    (y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0)
    y_0 = axis_slice(y, start=-1, axis=axis)
    (y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0)
    y = axis_reverse(y, axis=axis)
    if edge > 0:
        y = axis_slice(y, start=edge, stop=-edge, axis=axis)
    return y


def decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True):
    """
    Downsample the signal after applying an anti-aliasing filter.

    By default, an order 8 Chebyshev type I filter is used. A 30 point FIR
    filter with Hamming window is used if `ftype` is 'fir'.

    Parameters
    ----------
    x : array_like
        The signal to be downsampled, as an N-dimensional array.
    q : int
        The downsampling factor. When using IIR downsampling, it is recommended
        to call `decimate` multiple times for downsampling factors higher than
        13.
    n : int, optional
        The order of the filter (1 less than the length for 'fir'). Defaults to
        8 for 'iir' and 20 times the downsampling factor for 'fir'.
    ftype : str {'iir', 'fir'} or ``dlti`` instance, optional
        If 'iir' or 'fir', specifies the type of lowpass filter. If an instance
        of an `dlti` object, uses that object to filter before downsampling.
    axis : int, optional
        The axis along which to decimate.
    zero_phase : bool, optional
        Prevent phase shift by filtering with `filtfilt` instead of `lfilter`
        when using an IIR filter, and shifting the outputs back by the filter's
        group delay when using an FIR filter. The default value of ``True`` is
        recommended, since a phase shift is generally not desired.

        .. versionadded:: 0.18.0

    Returns
    -------
    y : ndarray
        The down-sampled signal.

    See Also
    --------
    resample : Resample up or down using the FFT method.
    resample_poly : Resample using polyphase filtering and an FIR filter.

    Notes
    -----
    The ``zero_phase`` keyword was added in 0.18.0.
    The possibility to use instances of ``dlti`` as ``ftype`` was added in
    0.18.0.
    """

    x = np.asarray(x)
    q = operator.index(q)

    if n is not None:
        n = operator.index(n)

    if ftype == 'fir':
        if n is None:
            half_len = 10 * q  # reasonable cutoff for our sinc-like function
            n = 2 * half_len
        b, a = firwin(n+1, 1. / q, window='hamming'), 1.
    elif ftype == 'iir':
        if n is None:
            n = 8
        system = dlti(*cheby1(n, 0.05, 0.8 / q))
        b, a = system.num, system.den
    elif isinstance(ftype, dlti):
        system = ftype._as_tf()  # Avoids copying if already in TF form
        b, a = system.num, system.den
    else:
        raise ValueError('invalid ftype')

    sl = [slice(None)] * x.ndim
    a = np.asarray(a)

    if a.size == 1:  # FIR case
        b = b / a
        if zero_phase:
            y = resample_poly(x, 1, q, axis=axis, window=b)
        else:
            # upfirdn is generally faster than lfilter by a factor equal to the
            # downsampling factor, since it only calculates the needed outputs
            n_out = x.shape[axis] // q + bool(x.shape[axis] % q)
            y = upfirdn(b, x, up=1, down=q, axis=axis)
            sl[axis] = slice(None, n_out, None)

    else:  # IIR case
        if zero_phase:
            y = filtfilt(b, a, x, axis=axis)
        else:
            y = lfilter(b, a, x, axis=axis)
        sl[axis] = slice(None, None, q)

    return y[tuple(sl)]