signaltools.py
143 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
# Author: Travis Oliphant
# 1999 -- 2002
import operator
import math
import timeit
from scipy.spatial import cKDTree
from . import sigtools, dlti
from ._upfirdn import upfirdn, _output_len, _upfirdn_modes
from scipy import linalg, fft as sp_fft
from scipy.fft._helper import _init_nd_shape_and_axes
from scipy._lib._util import prod as _prod
import numpy as np
from scipy.special import lambertw
from .windows import get_window
from ._arraytools import axis_slice, axis_reverse, odd_ext, even_ext, const_ext
from .filter_design import cheby1, _validate_sos
from .fir_filter_design import firwin
from ._sosfilt import _sosfilt
import warnings
__all__ = ['correlate', 'correlate2d',
'convolve', 'convolve2d', 'fftconvolve', 'oaconvolve',
'order_filter', 'medfilt', 'medfilt2d', 'wiener', 'lfilter',
'lfiltic', 'sosfilt', 'deconvolve', 'hilbert', 'hilbert2',
'cmplx_sort', 'unique_roots', 'invres', 'invresz', 'residue',
'residuez', 'resample', 'resample_poly', 'detrend',
'lfilter_zi', 'sosfilt_zi', 'sosfiltfilt', 'choose_conv_method',
'filtfilt', 'decimate', 'vectorstrength']
_modedict = {'valid': 0, 'same': 1, 'full': 2}
_boundarydict = {'fill': 0, 'pad': 0, 'wrap': 2, 'circular': 2, 'symm': 1,
'symmetric': 1, 'reflect': 4}
def _valfrommode(mode):
try:
return _modedict[mode]
except KeyError:
raise ValueError("Acceptable mode flags are 'valid',"
" 'same', or 'full'.")
def _bvalfromboundary(boundary):
try:
return _boundarydict[boundary] << 2
except KeyError:
raise ValueError("Acceptable boundary flags are 'fill', 'circular' "
"(or 'wrap'), and 'symmetric' (or 'symm').")
def _inputs_swap_needed(mode, shape1, shape2, axes=None):
"""Determine if inputs arrays need to be swapped in `"valid"` mode.
If in `"valid"` mode, returns whether or not the input arrays need to be
swapped depending on whether `shape1` is at least as large as `shape2` in
every calculated dimension.
This is important for some of the correlation and convolution
implementations in this module, where the larger array input needs to come
before the smaller array input when operating in this mode.
Note that if the mode provided is not 'valid', False is immediately
returned.
"""
if mode != 'valid':
return False
if not shape1:
return False
if axes is None:
axes = range(len(shape1))
ok1 = all(shape1[i] >= shape2[i] for i in axes)
ok2 = all(shape2[i] >= shape1[i] for i in axes)
if not (ok1 or ok2):
raise ValueError("For 'valid' mode, one must be at least "
"as large as the other in every dimension")
return not ok1
def correlate(in1, in2, mode='full', method='auto'):
r"""
Cross-correlate two N-dimensional arrays.
Cross-correlate `in1` and `in2`, with the output size determined by the
`mode` argument.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear cross-correlation
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
method : str {'auto', 'direct', 'fft'}, optional
A string indicating which method to use to calculate the correlation.
``direct``
The correlation is determined directly from sums, the definition of
correlation.
``fft``
The Fast Fourier Transform is used to perform the correlation more
quickly (only available for numerical arrays.)
``auto``
Automatically chooses direct or Fourier method based on an estimate
of which is faster (default). See `convolve` Notes for more detail.
.. versionadded:: 0.19.0
Returns
-------
correlate : array
An N-dimensional array containing a subset of the discrete linear
cross-correlation of `in1` with `in2`.
See Also
--------
choose_conv_method : contains more documentation on `method`.
Notes
-----
The correlation z of two d-dimensional arrays x and y is defined as::
z[...,k,...] = sum[..., i_l, ...] x[..., i_l,...] * conj(y[..., i_l - k,...])
This way, if x and y are 1-D arrays and ``z = correlate(x, y, 'full')``
then
.. math::
z[k] = (x * y)(k - N + 1)
= \sum_{l=0}^{||x||-1}x_l y_{l-k+N-1}^{*}
for :math:`k = 0, 1, ..., ||x|| + ||y|| - 2`
where :math:`||x||` is the length of ``x``, :math:`N = \max(||x||,||y||)`,
and :math:`y_m` is 0 when m is outside the range of y.
``method='fft'`` only works for numerical arrays as it relies on
`fftconvolve`. In certain cases (i.e., arrays of objects or when
rounding integers can lose precision), ``method='direct'`` is always used.
When using "same" mode with even-length inputs, the outputs of `correlate`
and `correlate2d` differ: There is a 1-index offset between them.
Examples
--------
Implement a matched filter using cross-correlation, to recover a signal
that has passed through a noisy channel.
>>> from scipy import signal
>>> sig = np.repeat([0., 1., 1., 0., 1., 0., 0., 1.], 128)
>>> sig_noise = sig + np.random.randn(len(sig))
>>> corr = signal.correlate(sig_noise, np.ones(128), mode='same') / 128
>>> import matplotlib.pyplot as plt
>>> clock = np.arange(64, len(sig), 128)
>>> fig, (ax_orig, ax_noise, ax_corr) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.plot(clock, sig[clock], 'ro')
>>> ax_orig.set_title('Original signal')
>>> ax_noise.plot(sig_noise)
>>> ax_noise.set_title('Signal with noise')
>>> ax_corr.plot(corr)
>>> ax_corr.plot(clock, corr[clock], 'ro')
>>> ax_corr.axhline(0.5, ls=':')
>>> ax_corr.set_title('Cross-correlated with rectangular pulse')
>>> ax_orig.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()
"""
in1 = np.asarray(in1)
in2 = np.asarray(in2)
if in1.ndim == in2.ndim == 0:
return in1 * in2.conj()
elif in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
# Don't use _valfrommode, since correlate should not accept numeric modes
try:
val = _modedict[mode]
except KeyError:
raise ValueError("Acceptable mode flags are 'valid',"
" 'same', or 'full'.")
# this either calls fftconvolve or this function with method=='direct'
if method in ('fft', 'auto'):
return convolve(in1, _reverse_and_conj(in2), mode, method)
elif method == 'direct':
# fastpath to faster numpy.correlate for 1d inputs when possible
if _np_conv_ok(in1, in2, mode):
return np.correlate(in1, in2, mode)
# _correlateND is far slower when in2.size > in1.size, so swap them
# and then undo the effect afterward if mode == 'full'. Also, it fails
# with 'valid' mode if in2 is larger than in1, so swap those, too.
# Don't swap inputs for 'same' mode, since shape of in1 matters.
swapped_inputs = ((mode == 'full') and (in2.size > in1.size) or
_inputs_swap_needed(mode, in1.shape, in2.shape))
if swapped_inputs:
in1, in2 = in2, in1
if mode == 'valid':
ps = [i - j + 1 for i, j in zip(in1.shape, in2.shape)]
out = np.empty(ps, in1.dtype)
z = sigtools._correlateND(in1, in2, out, val)
else:
ps = [i + j - 1 for i, j in zip(in1.shape, in2.shape)]
# zero pad input
in1zpadded = np.zeros(ps, in1.dtype)
sc = tuple(slice(0, i) for i in in1.shape)
in1zpadded[sc] = in1.copy()
if mode == 'full':
out = np.empty(ps, in1.dtype)
elif mode == 'same':
out = np.empty(in1.shape, in1.dtype)
z = sigtools._correlateND(in1zpadded, in2, out, val)
if swapped_inputs:
# Reverse and conjugate to undo the effect of swapping inputs
z = _reverse_and_conj(z)
return z
else:
raise ValueError("Acceptable method flags are 'auto',"
" 'direct', or 'fft'.")
def _centered(arr, newshape):
# Return the center newshape portion of the array.
newshape = np.asarray(newshape)
currshape = np.array(arr.shape)
startind = (currshape - newshape) // 2
endind = startind + newshape
myslice = [slice(startind[k], endind[k]) for k in range(len(endind))]
return arr[tuple(myslice)]
def _init_freq_conv_axes(in1, in2, mode, axes, sorted_axes=False):
"""Handle the axes argument for frequency-domain convolution.
Returns the inputs and axes in a standard form, eliminating redundant axes,
swapping the inputs if necessary, and checking for various potential
errors.
Parameters
----------
in1 : array
First input.
in2 : array
Second input.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output.
See the documentation `fftconvolve` for more information.
axes : list of ints
Axes over which to compute the FFTs.
sorted_axes : bool, optional
If `True`, sort the axes.
Default is `False`, do not sort.
Returns
-------
in1 : array
The first input, possible swapped with the second input.
in2 : array
The second input, possible swapped with the first input.
axes : list of ints
Axes over which to compute the FFTs.
"""
s1 = in1.shape
s2 = in2.shape
noaxes = axes is None
_, axes = _init_nd_shape_and_axes(in1, shape=None, axes=axes)
if not noaxes and not len(axes):
raise ValueError("when provided, axes cannot be empty")
# Axes of length 1 can rely on broadcasting rules for multipy,
# no fft needed.
axes = [a for a in axes if s1[a] != 1 and s2[a] != 1]
if sorted_axes:
axes.sort()
if not all(s1[a] == s2[a] or s1[a] == 1 or s2[a] == 1
for a in range(in1.ndim) if a not in axes):
raise ValueError("incompatible shapes for in1 and in2:"
" {0} and {1}".format(s1, s2))
# Check that input sizes are compatible with 'valid' mode.
if _inputs_swap_needed(mode, s1, s2, axes=axes):
# Convolution is commutative; order doesn't have any effect on output.
in1, in2 = in2, in1
return in1, in2, axes
def _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=False):
"""Convolve two arrays in the frequency domain.
This function implements only base the FFT-related operations.
Specifically, it converts the signals to the frequency domain, multiplies
them, then converts them back to the time domain. Calculations of axes,
shapes, convolution mode, etc. are implemented in higher level-functions,
such as `fftconvolve` and `oaconvolve`. Those functions should be used
instead of this one.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
axes : array_like of ints
Axes over which to compute the FFTs.
shape : array_like of ints
The sizes of the FFTs.
calc_fast_len : bool, optional
If `True`, set each value of `shape` to the next fast FFT length.
Default is `False`, use `axes` as-is.
Returns
-------
out : array
An N-dimensional array containing the discrete linear convolution of
`in1` with `in2`.
"""
if not len(axes):
return in1 * in2
complex_result = (in1.dtype.kind == 'c' or in2.dtype.kind == 'c')
if calc_fast_len:
# Speed up FFT by padding to optimal size.
fshape = [
sp_fft.next_fast_len(shape[a], not complex_result) for a in axes]
else:
fshape = shape
if not complex_result:
fft, ifft = sp_fft.rfftn, sp_fft.irfftn
else:
fft, ifft = sp_fft.fftn, sp_fft.ifftn
sp1 = fft(in1, fshape, axes=axes)
sp2 = fft(in2, fshape, axes=axes)
ret = ifft(sp1 * sp2, fshape, axes=axes)
if calc_fast_len:
fslice = tuple([slice(sz) for sz in shape])
ret = ret[fslice]
return ret
def _apply_conv_mode(ret, s1, s2, mode, axes):
"""Calculate the convolution result shape based on the `mode` argument.
Returns the result sliced to the correct size for the given mode.
Parameters
----------
ret : array
The result array, with the appropriate shape for the 'full' mode.
s1 : list of int
The shape of the first input.
s2 : list of int
The shape of the second input.
mode : str {'full', 'valid', 'same'}
A string indicating the size of the output.
See the documentation `fftconvolve` for more information.
axes : list of ints
Axes over which to compute the convolution.
Returns
-------
ret : array
A copy of `res`, sliced to the correct size for the given `mode`.
"""
if mode == "full":
return ret.copy()
elif mode == "same":
return _centered(ret, s1).copy()
elif mode == "valid":
shape_valid = [ret.shape[a] if a not in axes else s1[a] - s2[a] + 1
for a in range(ret.ndim)]
return _centered(ret, shape_valid).copy()
else:
raise ValueError("acceptable mode flags are 'valid',"
" 'same', or 'full'")
def fftconvolve(in1, in2, mode="full", axes=None):
"""Convolve two N-dimensional arrays using FFT.
Convolve `in1` and `in2` using the fast Fourier transform method, with
the output size determined by the `mode` argument.
This is generally much faster than `convolve` for large arrays (n > ~500),
but can be slower when only a few output values are needed, and can only
output float arrays (int or object array inputs will be cast to float).
As of v0.19, `convolve` automatically chooses this method or the direct
method based on an estimation of which is faster.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
axes : int or array_like of ints or None, optional
Axes over which to compute the convolution.
The default is over all axes.
Returns
-------
out : array
An N-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
See Also
--------
convolve : Uses the direct convolution or FFT convolution algorithm
depending on which is faster.
oaconvolve : Uses the overlap-add method to do convolution, which is
generally faster when the input arrays are large and
significantly different in size.
Examples
--------
Autocorrelation of white noise is an impulse.
>>> from scipy import signal
>>> sig = np.random.randn(1000)
>>> autocorr = signal.fftconvolve(sig, sig[::-1], mode='full')
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)), autocorr)
>>> ax_mag.set_title('Autocorrelation')
>>> fig.tight_layout()
>>> fig.show()
Gaussian blur implemented using FFT convolution. Notice the dark borders
around the image, due to the zero-padding beyond its boundaries.
The `convolve2d` function allows for other types of image boundaries,
but is far slower.
>>> from scipy import misc
>>> face = misc.face(gray=True)
>>> kernel = np.outer(signal.gaussian(70, 8), signal.gaussian(70, 8))
>>> blurred = signal.fftconvolve(face, kernel, mode='same')
>>> fig, (ax_orig, ax_kernel, ax_blurred) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_kernel.imshow(kernel, cmap='gray')
>>> ax_kernel.set_title('Gaussian kernel')
>>> ax_kernel.set_axis_off()
>>> ax_blurred.imshow(blurred, cmap='gray')
>>> ax_blurred.set_title('Blurred')
>>> ax_blurred.set_axis_off()
>>> fig.show()
"""
in1 = np.asarray(in1)
in2 = np.asarray(in2)
if in1.ndim == in2.ndim == 0: # scalar inputs
return in1 * in2
elif in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
elif in1.size == 0 or in2.size == 0: # empty arrays
return np.array([])
in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes,
sorted_axes=False)
s1 = in1.shape
s2 = in2.shape
shape = [max((s1[i], s2[i])) if i not in axes else s1[i] + s2[i] - 1
for i in range(in1.ndim)]
ret = _freq_domain_conv(in1, in2, axes, shape, calc_fast_len=True)
return _apply_conv_mode(ret, s1, s2, mode, axes)
def _calc_oa_lens(s1, s2):
"""Calculate the optimal FFT lengths for overlapp-add convolution.
The calculation is done for a single dimension.
Parameters
----------
s1 : int
Size of the dimension for the first array.
s2 : int
Size of the dimension for the second array.
Returns
-------
block_size : int
The size of the FFT blocks.
overlap : int
The amount of overlap between two blocks.
in1_step : int
The size of each step for the first array.
in2_step : int
The size of each step for the first array.
"""
# Set up the arguments for the conventional FFT approach.
fallback = (s1+s2-1, None, s1, s2)
# Use conventional FFT convolve if sizes are same.
if s1 == s2 or s1 == 1 or s2 == 1:
return fallback
if s2 > s1:
s1, s2 = s2, s1
swapped = True
else:
swapped = False
# There cannot be a useful block size if s2 is more than half of s1.
if s2 >= s1/2:
return fallback
# Derivation of optimal block length
# For original formula see:
# https://en.wikipedia.org/wiki/Overlap-add_method
#
# Formula:
# K = overlap = s2-1
# N = block_size
# C = complexity
# e = exponential, exp(1)
#
# C = (N*(log2(N)+1))/(N-K)
# C = (N*log2(2N))/(N-K)
# C = N/(N-K) * log2(2N)
# C1 = N/(N-K)
# C2 = log2(2N) = ln(2N)/ln(2)
#
# dC1/dN = (1*(N-K)-N)/(N-K)^2 = -K/(N-K)^2
# dC2/dN = 2/(2*N*ln(2)) = 1/(N*ln(2))
#
# dC/dN = dC1/dN*C2 + dC2/dN*C1
# dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + N/(N*ln(2)*(N-K))
# dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + 1/(ln(2)*(N-K))
# dC/dN = -K*ln(2N)/(ln(2)*(N-K)^2) + (N-K)/(ln(2)*(N-K)^2)
# dC/dN = (-K*ln(2N) + (N-K)/(ln(2)*(N-K)^2)
# dC/dN = (N - K*ln(2N) - K)/(ln(2)*(N-K)^2)
#
# Solve for minimum, where dC/dN = 0
# 0 = (N - K*ln(2N) - K)/(ln(2)*(N-K)^2)
# 0 * ln(2)*(N-K)^2 = N - K*ln(2N) - K
# 0 = N - K*ln(2N) - K
# 0 = N - K*(ln(2N) + 1)
# 0 = N - K*ln(2Ne)
# N = K*ln(2Ne)
# N/K = ln(2Ne)
#
# e^(N/K) = e^ln(2Ne)
# e^(N/K) = 2Ne
# 1/e^(N/K) = 1/(2*N*e)
# e^(N/-K) = 1/(2*N*e)
# e^(N/-K) = K/N*1/(2*K*e)
# N/K*e^(N/-K) = 1/(2*e*K)
# N/-K*e^(N/-K) = -1/(2*e*K)
#
# Using Lambert W function
# https://en.wikipedia.org/wiki/Lambert_W_function
# x = W(y) It is the solution to y = x*e^x
# x = N/-K
# y = -1/(2*e*K)
#
# N/-K = W(-1/(2*e*K))
#
# N = -K*W(-1/(2*e*K))
overlap = s2-1
opt_size = -overlap*lambertw(-1/(2*math.e*overlap), k=-1).real
block_size = sp_fft.next_fast_len(math.ceil(opt_size))
# Use conventional FFT convolve if there is only going to be one block.
if block_size >= s1:
return fallback
if not swapped:
in1_step = block_size-s2+1
in2_step = s2
else:
in1_step = s2
in2_step = block_size-s2+1
return block_size, overlap, in1_step, in2_step
def oaconvolve(in1, in2, mode="full", axes=None):
"""Convolve two N-dimensional arrays using the overlap-add method.
Convolve `in1` and `in2` using the overlap-add method, with
the output size determined by the `mode` argument.
This is generally much faster than `convolve` for large arrays (n > ~500),
and generally much faster than `fftconvolve` when one array is much
larger than the other, but can be slower when only a few output values are
needed or when the arrays are very similar in shape, and can only
output float arrays (int or object array inputs will be cast to float).
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
axes : int or array_like of ints or None, optional
Axes over which to compute the convolution.
The default is over all axes.
Returns
-------
out : array
An N-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
See Also
--------
convolve : Uses the direct convolution or FFT convolution algorithm
depending on which is faster.
fftconvolve : An implementation of convolution using FFT.
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Convolve a 100,000 sample signal with a 512-sample filter.
>>> from scipy import signal
>>> sig = np.random.randn(100000)
>>> filt = signal.firwin(512, 0.01)
>>> fsig = signal.oaconvolve(sig, filt)
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag) = plt.subplots(2, 1)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('White noise')
>>> ax_mag.plot(fsig)
>>> ax_mag.set_title('Filtered noise')
>>> fig.tight_layout()
>>> fig.show()
References
----------
.. [1] Wikipedia, "Overlap-add_method".
https://en.wikipedia.org/wiki/Overlap-add_method
.. [2] Richard G. Lyons. Understanding Digital Signal Processing,
Third Edition, 2011. Chapter 13.10.
ISBN 13: 978-0137-02741-5
"""
in1 = np.asarray(in1)
in2 = np.asarray(in2)
if in1.ndim == in2.ndim == 0: # scalar inputs
return in1 * in2
elif in1.ndim != in2.ndim:
raise ValueError("in1 and in2 should have the same dimensionality")
elif in1.size == 0 or in2.size == 0: # empty arrays
return np.array([])
elif in1.shape == in2.shape: # Equivalent to fftconvolve
return fftconvolve(in1, in2, mode=mode, axes=axes)
in1, in2, axes = _init_freq_conv_axes(in1, in2, mode, axes,
sorted_axes=True)
s1 = in1.shape
s2 = in2.shape
if not axes:
ret = in1 * in2
return _apply_conv_mode(ret, s1, s2, mode, axes)
# Calculate this now since in1 is changed later
shape_final = [None if i not in axes else
s1[i] + s2[i] - 1 for i in range(in1.ndim)]
# Calculate the block sizes for the output, steps, first and second inputs.
# It is simpler to calculate them all together than doing them in separate
# loops due to all the special cases that need to be handled.
optimal_sizes = ((-1, -1, s1[i], s2[i]) if i not in axes else
_calc_oa_lens(s1[i], s2[i]) for i in range(in1.ndim))
block_size, overlaps, \
in1_step, in2_step = zip(*optimal_sizes)
# Fall back to fftconvolve if there is only one block in every dimension.
if in1_step == s1 and in2_step == s2:
return fftconvolve(in1, in2, mode=mode, axes=axes)
# Figure out the number of steps and padding.
# This would get too complicated in a list comprehension.
nsteps1 = []
nsteps2 = []
pad_size1 = []
pad_size2 = []
for i in range(in1.ndim):
if i not in axes:
pad_size1 += [(0, 0)]
pad_size2 += [(0, 0)]
continue
if s1[i] > in1_step[i]:
curnstep1 = math.ceil((s1[i]+1)/in1_step[i])
if (block_size[i] - overlaps[i])*curnstep1 < shape_final[i]:
curnstep1 += 1
curpad1 = curnstep1*in1_step[i] - s1[i]
else:
curnstep1 = 1
curpad1 = 0
if s2[i] > in2_step[i]:
curnstep2 = math.ceil((s2[i]+1)/in2_step[i])
if (block_size[i] - overlaps[i])*curnstep2 < shape_final[i]:
curnstep2 += 1
curpad2 = curnstep2*in2_step[i] - s2[i]
else:
curnstep2 = 1
curpad2 = 0
nsteps1 += [curnstep1]
nsteps2 += [curnstep2]
pad_size1 += [(0, curpad1)]
pad_size2 += [(0, curpad2)]
# Pad the array to a size that can be reshaped to the desired shape
# if necessary.
if not all(curpad == (0, 0) for curpad in pad_size1):
in1 = np.pad(in1, pad_size1, mode='constant', constant_values=0)
if not all(curpad == (0, 0) for curpad in pad_size2):
in2 = np.pad(in2, pad_size2, mode='constant', constant_values=0)
# Reshape the overlap-add parts to input block sizes.
split_axes = [iax+i for i, iax in enumerate(axes)]
fft_axes = [iax+1 for iax in split_axes]
# We need to put each new dimension before the corresponding dimension
# being reshaped in order to get the data in the right layout at the end.
reshape_size1 = list(in1_step)
reshape_size2 = list(in2_step)
for i, iax in enumerate(split_axes):
reshape_size1.insert(iax, nsteps1[i])
reshape_size2.insert(iax, nsteps2[i])
in1 = in1.reshape(*reshape_size1)
in2 = in2.reshape(*reshape_size2)
# Do the convolution.
fft_shape = [block_size[i] for i in axes]
ret = _freq_domain_conv(in1, in2, fft_axes, fft_shape, calc_fast_len=False)
# Do the overlap-add.
for ax, ax_fft, ax_split in zip(axes, fft_axes, split_axes):
overlap = overlaps[ax]
if overlap is None:
continue
ret, overpart = np.split(ret, [-overlap], ax_fft)
overpart = np.split(overpart, [-1], ax_split)[0]
ret_overpart = np.split(ret, [overlap], ax_fft)[0]
ret_overpart = np.split(ret_overpart, [1], ax_split)[1]
ret_overpart += overpart
# Reshape back to the correct dimensionality.
shape_ret = [ret.shape[i] if i not in fft_axes else
ret.shape[i]*ret.shape[i-1]
for i in range(ret.ndim) if i not in split_axes]
ret = ret.reshape(*shape_ret)
# Slice to the correct size.
slice_final = tuple([slice(islice) for islice in shape_final])
ret = ret[slice_final]
return _apply_conv_mode(ret, s1, s2, mode, axes)
def _numeric_arrays(arrays, kinds='buifc'):
"""
See if a list of arrays are all numeric.
Parameters
----------
ndarrays : array or list of arrays
arrays to check if numeric.
numeric_kinds : string-like
The dtypes of the arrays to be checked. If the dtype.kind of
the ndarrays are not in this string the function returns False and
otherwise returns True.
"""
if type(arrays) == np.ndarray:
return arrays.dtype.kind in kinds
for array_ in arrays:
if array_.dtype.kind not in kinds:
return False
return True
def _conv_ops(x_shape, h_shape, mode):
"""
Find the number of operations required for direct/fft methods of
convolution. The direct operations were recorded by making a dummy class to
record the number of operations by overriding ``__mul__`` and ``__add__``.
The FFT operations rely on the (well-known) computational complexity of the
FFT (and the implementation of ``_freq_domain_conv``).
"""
if mode == "full":
out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)]
elif mode == "valid":
out_shape = [abs(n - k) + 1 for n, k in zip(x_shape, h_shape)]
elif mode == "same":
out_shape = x_shape
else:
raise ValueError("Acceptable mode flags are 'valid',"
" 'same', or 'full', not mode={}".format(mode))
s1, s2 = x_shape, h_shape
if len(x_shape) == 1:
s1, s2 = s1[0], s2[0]
if mode == "full":
direct_ops = s1 * s2
elif mode == "valid":
direct_ops = (s2 - s1 + 1) * s1 if s2 >= s1 else (s1 - s2 + 1) * s2
elif mode == "same":
direct_ops = (s1 * s2 if s1 < s2 else
s1 * s2 - (s2 // 2) * ((s2 + 1) // 2))
else:
if mode == "full":
direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape)
elif mode == "valid":
direct_ops = min(_prod(s1), _prod(s2)) * _prod(out_shape)
elif mode == "same":
direct_ops = _prod(s1) * _prod(s2)
full_out_shape = [n + k - 1 for n, k in zip(x_shape, h_shape)]
N = _prod(full_out_shape)
fft_ops = 3 * N * np.log(N) # 3 separate FFTs of size full_out_shape
return fft_ops, direct_ops
def _fftconv_faster(x, h, mode):
"""
See if using fftconvolve or convolve is faster.
Parameters
----------
x : np.ndarray
Signal
h : np.ndarray
Kernel
mode : str
Mode passed to convolve
Returns
-------
fft_faster : bool
Notes
-----
See docstring of `choose_conv_method` for details on tuning hardware.
See pull request 11031 for more detail:
https://github.com/scipy/scipy/pull/11031.
"""
fft_ops, direct_ops = _conv_ops(x.shape, h.shape, mode)
offset = -1e-3 if x.ndim == 1 else -1e-4
constants = {
"valid": (1.89095737e-9, 2.1364985e-10, offset),
"full": (1.7649070e-9, 2.1414831e-10, offset),
"same": (3.2646654e-9, 2.8478277e-10, offset)
if h.size <= x.size
else (3.21635404e-9, 1.1773253e-8, -1e-5),
} if x.ndim == 1 else {
"valid": (1.85927e-9, 2.11242e-8, offset),
"full": (1.99817e-9, 1.66174e-8, offset),
"same": (2.04735e-9, 1.55367e-8, offset),
}
O_fft, O_direct, O_offset = constants[mode]
return O_fft * fft_ops < O_direct * direct_ops + O_offset
def _reverse_and_conj(x):
"""
Reverse array `x` in all dimensions and perform the complex conjugate
"""
reverse = (slice(None, None, -1),) * x.ndim
return x[reverse].conj()
def _np_conv_ok(volume, kernel, mode):
"""
See if numpy supports convolution of `volume` and `kernel` (i.e. both are
1D ndarrays and of the appropriate shape). NumPy's 'same' mode uses the
size of the larger input, while SciPy's uses the size of the first input.
Invalid mode strings will return False and be caught by the calling func.
"""
if volume.ndim == kernel.ndim == 1:
if mode in ('full', 'valid'):
return True
elif mode == 'same':
return volume.size >= kernel.size
else:
return False
def _timeit_fast(stmt="pass", setup="pass", repeat=3):
"""
Returns the time the statement/function took, in seconds.
Faster, less precise version of IPython's timeit. `stmt` can be a statement
written as a string or a callable.
Will do only 1 loop (like IPython's timeit) with no repetitions
(unlike IPython) for very slow functions. For fast functions, only does
enough loops to take 5 ms, which seems to produce similar results (on
Windows at least), and avoids doing an extraneous cycle that isn't
measured.
"""
timer = timeit.Timer(stmt, setup)
# determine number of calls per rep so total time for 1 rep >= 5 ms
x = 0
for p in range(0, 10):
number = 10**p
x = timer.timeit(number) # seconds
if x >= 5e-3 / 10: # 5 ms for final test, 1/10th that for this one
break
if x > 1: # second
# If it's macroscopic, don't bother with repetitions
best = x
else:
number *= 10
r = timer.repeat(repeat, number)
best = min(r)
sec = best / number
return sec
def choose_conv_method(in1, in2, mode='full', measure=False):
"""
Find the fastest convolution/correlation method.
This primarily exists to be called during the ``method='auto'`` option in
`convolve` and `correlate`. It can also be used to determine the value of
``method`` for many different convolutions of the same dtype/shape.
In addition, it supports timing the convolution to adapt the value of
``method`` to a particular set of inputs and/or hardware.
Parameters
----------
in1 : array_like
The first argument passed into the convolution function.
in2 : array_like
The second argument passed into the convolution function.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
measure : bool, optional
If True, run and time the convolution of `in1` and `in2` with both
methods and return the fastest. If False (default), predict the fastest
method using precomputed values.
Returns
-------
method : str
A string indicating which convolution method is fastest, either
'direct' or 'fft'
times : dict, optional
A dictionary containing the times (in seconds) needed for each method.
This value is only returned if ``measure=True``.
See Also
--------
convolve
correlate
Notes
-----
Generally, this method is 99% accurate for 2D signals and 85% accurate
for 1D signals for randomly chosen input sizes. For precision, use
``measure=True`` to find the fastest method by timing the convolution.
This can be used to avoid the minimal overhead of finding the fastest
``method`` later, or to adapt the value of ``method`` to a particular set
of inputs.
Experiments were run on an Amazon EC2 r5a.2xlarge machine to test this
function. These experiments measured the ratio between the time required
when using ``method='auto'`` and the time required for the fastest method
(i.e., ``ratio = time_auto / min(time_fft, time_direct)``). In these
experiments, we found:
* There is a 95% chance of this ratio being less than 1.5 for 1D signals
and a 99% chance of being less than 2.5 for 2D signals.
* The ratio was always less than 2.5/5 for 1D/2D signals respectively.
* This function is most inaccurate for 1D convolutions that take between 1
and 10 milliseconds with ``method='direct'``. A good proxy for this
(at least in our experiments) is ``1e6 <= in1.size * in2.size <= 1e7``.
The 2D results almost certainly generalize to 3D/4D/etc because the
implementation is the same (the 1D implementation is different).
All the numbers above are specific to the EC2 machine. However, we did find
that this function generalizes fairly decently across hardware. The speed
tests were of similar quality (and even slightly better) than the same
tests performed on the machine to tune this function's numbers (a mid-2014
15-inch MacBook Pro with 16GB RAM and a 2.5GHz Intel i7 processor).
There are cases when `fftconvolve` supports the inputs but this function
returns `direct` (e.g., to protect against floating point integer
precision).
.. versionadded:: 0.19
Examples
--------
Estimate the fastest method for a given input:
>>> from scipy import signal
>>> img = np.random.rand(32, 32)
>>> filter = np.random.rand(8, 8)
>>> method = signal.choose_conv_method(img, filter, mode='same')
>>> method
'fft'
This can then be applied to other arrays of the same dtype and shape:
>>> img2 = np.random.rand(32, 32)
>>> filter2 = np.random.rand(8, 8)
>>> corr2 = signal.correlate(img2, filter2, mode='same', method=method)
>>> conv2 = signal.convolve(img2, filter2, mode='same', method=method)
The output of this function (``method``) works with `correlate` and
`convolve`.
"""
volume = np.asarray(in1)
kernel = np.asarray(in2)
if measure:
times = {}
for method in ['fft', 'direct']:
times[method] = _timeit_fast(lambda: convolve(volume, kernel,
mode=mode, method=method))
chosen_method = 'fft' if times['fft'] < times['direct'] else 'direct'
return chosen_method, times
# for integer input,
# catch when more precision required than float provides (representing an
# integer as float can lose precision in fftconvolve if larger than 2**52)
if any([_numeric_arrays([x], kinds='ui') for x in [volume, kernel]]):
max_value = int(np.abs(volume).max()) * int(np.abs(kernel).max())
max_value *= int(min(volume.size, kernel.size))
if max_value > 2**np.finfo('float').nmant - 1:
return 'direct'
if _numeric_arrays([volume, kernel], kinds='b'):
return 'direct'
if _numeric_arrays([volume, kernel]):
if _fftconv_faster(volume, kernel, mode):
return 'fft'
return 'direct'
def convolve(in1, in2, mode='full', method='auto'):
"""
Convolve two N-dimensional arrays.
Convolve `in1` and `in2`, with the output size determined by the
`mode` argument.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
method : str {'auto', 'direct', 'fft'}, optional
A string indicating which method to use to calculate the convolution.
``direct``
The convolution is determined directly from sums, the definition of
convolution.
``fft``
The Fourier Transform is used to perform the convolution by calling
`fftconvolve`.
``auto``
Automatically chooses direct or Fourier method based on an estimate
of which is faster (default). See Notes for more detail.
.. versionadded:: 0.19.0
Returns
-------
convolve : array
An N-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
See Also
--------
numpy.polymul : performs polynomial multiplication (same operation, but
also accepts poly1d objects)
choose_conv_method : chooses the fastest appropriate convolution method
fftconvolve : Always uses the FFT method.
oaconvolve : Uses the overlap-add method to do convolution, which is
generally faster when the input arrays are large and
significantly different in size.
Notes
-----
By default, `convolve` and `correlate` use ``method='auto'``, which calls
`choose_conv_method` to choose the fastest method using pre-computed
values (`choose_conv_method` can also measure real-world timing with a
keyword argument). Because `fftconvolve` relies on floating point numbers,
there are certain constraints that may force `method=direct` (more detail
in `choose_conv_method` docstring).
Examples
--------
Smooth a square pulse using a Hann window:
>>> from scipy import signal
>>> sig = np.repeat([0., 1., 0.], 100)
>>> win = signal.hann(50)
>>> filtered = signal.convolve(sig, win, mode='same') / sum(win)
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_win, ax_filt) = plt.subplots(3, 1, sharex=True)
>>> ax_orig.plot(sig)
>>> ax_orig.set_title('Original pulse')
>>> ax_orig.margins(0, 0.1)
>>> ax_win.plot(win)
>>> ax_win.set_title('Filter impulse response')
>>> ax_win.margins(0, 0.1)
>>> ax_filt.plot(filtered)
>>> ax_filt.set_title('Filtered signal')
>>> ax_filt.margins(0, 0.1)
>>> fig.tight_layout()
>>> fig.show()
"""
volume = np.asarray(in1)
kernel = np.asarray(in2)
if volume.ndim == kernel.ndim == 0:
return volume * kernel
elif volume.ndim != kernel.ndim:
raise ValueError("volume and kernel should have the same "
"dimensionality")
if _inputs_swap_needed(mode, volume.shape, kernel.shape):
# Convolution is commutative; order doesn't have any effect on output
volume, kernel = kernel, volume
if method == 'auto':
method = choose_conv_method(volume, kernel, mode=mode)
if method == 'fft':
out = fftconvolve(volume, kernel, mode=mode)
result_type = np.result_type(volume, kernel)
if result_type.kind in {'u', 'i'}:
out = np.around(out)
return out.astype(result_type)
elif method == 'direct':
# fastpath to faster numpy.convolve for 1d inputs when possible
if _np_conv_ok(volume, kernel, mode):
return np.convolve(volume, kernel, mode)
return correlate(volume, _reverse_and_conj(kernel), mode, 'direct')
else:
raise ValueError("Acceptable method flags are 'auto',"
" 'direct', or 'fft'.")
def order_filter(a, domain, rank):
"""
Perform an order filter on an N-D array.
Perform an order filter on the array in. The domain argument acts as a
mask centered over each pixel. The non-zero elements of domain are
used to select elements surrounding each input pixel which are placed
in a list. The list is sorted, and the output for that pixel is the
element corresponding to rank in the sorted list.
Parameters
----------
a : ndarray
The N-dimensional input array.
domain : array_like
A mask array with the same number of dimensions as `a`.
Each dimension should have an odd number of elements.
rank : int
A non-negative integer which selects the element from the
sorted list (0 corresponds to the smallest element, 1 is the
next smallest element, etc.).
Returns
-------
out : ndarray
The results of the order filter in an array with the same
shape as `a`.
Examples
--------
>>> from scipy import signal
>>> x = np.arange(25).reshape(5, 5)
>>> domain = np.identity(3)
>>> x
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14],
[15, 16, 17, 18, 19],
[20, 21, 22, 23, 24]])
>>> signal.order_filter(x, domain, 0)
array([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 2., 0.],
[ 0., 5., 6., 7., 0.],
[ 0., 10., 11., 12., 0.],
[ 0., 0., 0., 0., 0.]])
>>> signal.order_filter(x, domain, 2)
array([[ 6., 7., 8., 9., 4.],
[ 11., 12., 13., 14., 9.],
[ 16., 17., 18., 19., 14.],
[ 21., 22., 23., 24., 19.],
[ 20., 21., 22., 23., 24.]])
"""
domain = np.asarray(domain)
size = domain.shape
for k in range(len(size)):
if (size[k] % 2) != 1:
raise ValueError("Each dimension of domain argument "
" should have an odd number of elements.")
return sigtools._order_filterND(a, domain, rank)
def medfilt(volume, kernel_size=None):
"""
Perform a median filter on an N-dimensional array.
Apply a median filter to the input array using a local window-size
given by `kernel_size`. The array will automatically be zero-padded.
Parameters
----------
volume : array_like
An N-dimensional input array.
kernel_size : array_like, optional
A scalar or an N-length list giving the size of the median filter
window in each dimension. Elements of `kernel_size` should be odd.
If `kernel_size` is a scalar, then this scalar is used as the size in
each dimension. Default size is 3 for each dimension.
Returns
-------
out : ndarray
An array the same size as input containing the median filtered
result.
Warns
-----
UserWarning
If array size is smaller than kernel size along any dimension
See Also
--------
scipy.ndimage.median_filter
Notes
-------
The more general function `scipy.ndimage.median_filter` has a more
efficient implementation of a median filter and therefore runs much faster.
"""
volume = np.atleast_1d(volume)
if kernel_size is None:
kernel_size = [3] * volume.ndim
kernel_size = np.asarray(kernel_size)
if kernel_size.shape == ():
kernel_size = np.repeat(kernel_size.item(), volume.ndim)
for k in range(volume.ndim):
if (kernel_size[k] % 2) != 1:
raise ValueError("Each element of kernel_size should be odd.")
if any(k > s for k, s in zip(kernel_size, volume.shape)):
warnings.warn('kernel_size exceeds volume extent: the volume will be '
'zero-padded.')
domain = np.ones(kernel_size)
numels = np.prod(kernel_size, axis=0)
order = numels // 2
return sigtools._order_filterND(volume, domain, order)
def wiener(im, mysize=None, noise=None):
"""
Perform a Wiener filter on an N-dimensional array.
Apply a Wiener filter to the N-dimensional array `im`.
Parameters
----------
im : ndarray
An N-dimensional array.
mysize : int or array_like, optional
A scalar or an N-length list giving the size of the Wiener filter
window in each dimension. Elements of mysize should be odd.
If mysize is a scalar, then this scalar is used as the size
in each dimension.
noise : float, optional
The noise-power to use. If None, then noise is estimated as the
average of the local variance of the input.
Returns
-------
out : ndarray
Wiener filtered result with the same shape as `im`.
Examples
--------
>>> from scipy.misc import face
>>> from scipy.signal.signaltools import wiener
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> img = np.random.random((40, 40)) #Create a random image
>>> filtered_img = wiener(img, (5, 5)) #Filter the image
>>> f, (plot1, plot2) = plt.subplots(1, 2)
>>> plot1.imshow(img)
>>> plot2.imshow(filtered_img)
>>> plt.show()
Notes
-----
This implementation is similar to wiener2 in Matlab/Octave.
For more details see [1]_
References
----------
.. [1] Lim, Jae S., Two-Dimensional Signal and Image Processing,
Englewood Cliffs, NJ, Prentice Hall, 1990, p. 548.
"""
im = np.asarray(im)
if mysize is None:
mysize = [3] * im.ndim
mysize = np.asarray(mysize)
if mysize.shape == ():
mysize = np.repeat(mysize.item(), im.ndim)
# Estimate the local mean
lMean = correlate(im, np.ones(mysize), 'same') / np.prod(mysize, axis=0)
# Estimate the local variance
lVar = (correlate(im ** 2, np.ones(mysize), 'same') /
np.prod(mysize, axis=0) - lMean ** 2)
# Estimate the noise power if needed.
if noise is None:
noise = np.mean(np.ravel(lVar), axis=0)
res = (im - lMean)
res *= (1 - noise / lVar)
res += lMean
out = np.where(lVar < noise, lMean, res)
return out
def convolve2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
"""
Convolve two 2-dimensional arrays.
Convolve `in1` and `in2` with output size determined by `mode`, and
boundary conditions determined by `boundary` and `fillvalue`.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear convolution
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
boundary : str {'fill', 'wrap', 'symm'}, optional
A flag indicating how to handle boundaries:
``fill``
pad input arrays with fillvalue. (default)
``wrap``
circular boundary conditions.
``symm``
symmetrical boundary conditions.
fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0.
Returns
-------
out : ndarray
A 2-dimensional array containing a subset of the discrete linear
convolution of `in1` with `in2`.
Examples
--------
Compute the gradient of an image by 2D convolution with a complex Scharr
operator. (Horizontal operator is real, vertical is imaginary.) Use
symmetric boundary condition to avoid creating edges at the image
boundaries.
>>> from scipy import signal
>>> from scipy import misc
>>> ascent = misc.ascent()
>>> scharr = np.array([[ -3-3j, 0-10j, +3 -3j],
... [-10+0j, 0+ 0j, +10 +0j],
... [ -3+3j, 0+10j, +3 +3j]]) # Gx + j*Gy
>>> grad = signal.convolve2d(ascent, scharr, boundary='symm', mode='same')
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_mag, ax_ang) = plt.subplots(3, 1, figsize=(6, 15))
>>> ax_orig.imshow(ascent, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_mag.imshow(np.absolute(grad), cmap='gray')
>>> ax_mag.set_title('Gradient magnitude')
>>> ax_mag.set_axis_off()
>>> ax_ang.imshow(np.angle(grad), cmap='hsv') # hsv is cyclic, like angles
>>> ax_ang.set_title('Gradient orientation')
>>> ax_ang.set_axis_off()
>>> fig.show()
"""
in1 = np.asarray(in1)
in2 = np.asarray(in2)
if not in1.ndim == in2.ndim == 2:
raise ValueError('convolve2d inputs must both be 2-D arrays')
if _inputs_swap_needed(mode, in1.shape, in2.shape):
in1, in2 = in2, in1
val = _valfrommode(mode)
bval = _bvalfromboundary(boundary)
out = sigtools._convolve2d(in1, in2, 1, val, bval, fillvalue)
return out
def correlate2d(in1, in2, mode='full', boundary='fill', fillvalue=0):
"""
Cross-correlate two 2-dimensional arrays.
Cross correlate `in1` and `in2` with output size determined by `mode`, and
boundary conditions determined by `boundary` and `fillvalue`.
Parameters
----------
in1 : array_like
First input.
in2 : array_like
Second input. Should have the same number of dimensions as `in1`.
mode : str {'full', 'valid', 'same'}, optional
A string indicating the size of the output:
``full``
The output is the full discrete linear cross-correlation
of the inputs. (Default)
``valid``
The output consists only of those elements that do not
rely on the zero-padding. In 'valid' mode, either `in1` or `in2`
must be at least as large as the other in every dimension.
``same``
The output is the same size as `in1`, centered
with respect to the 'full' output.
boundary : str {'fill', 'wrap', 'symm'}, optional
A flag indicating how to handle boundaries:
``fill``
pad input arrays with fillvalue. (default)
``wrap``
circular boundary conditions.
``symm``
symmetrical boundary conditions.
fillvalue : scalar, optional
Value to fill pad input arrays with. Default is 0.
Returns
-------
correlate2d : ndarray
A 2-dimensional array containing a subset of the discrete linear
cross-correlation of `in1` with `in2`.
Notes
-----
When using "same" mode with even-length inputs, the outputs of `correlate`
and `correlate2d` differ: There is a 1-index offset between them.
Examples
--------
Use 2D cross-correlation to find the location of a template in a noisy
image:
>>> from scipy import signal
>>> from scipy import misc
>>> face = misc.face(gray=True) - misc.face(gray=True).mean()
>>> template = np.copy(face[300:365, 670:750]) # right eye
>>> template -= template.mean()
>>> face = face + np.random.randn(*face.shape) * 50 # add noise
>>> corr = signal.correlate2d(face, template, boundary='symm', mode='same')
>>> y, x = np.unravel_index(np.argmax(corr), corr.shape) # find the match
>>> import matplotlib.pyplot as plt
>>> fig, (ax_orig, ax_template, ax_corr) = plt.subplots(3, 1,
... figsize=(6, 15))
>>> ax_orig.imshow(face, cmap='gray')
>>> ax_orig.set_title('Original')
>>> ax_orig.set_axis_off()
>>> ax_template.imshow(template, cmap='gray')
>>> ax_template.set_title('Template')
>>> ax_template.set_axis_off()
>>> ax_corr.imshow(corr, cmap='gray')
>>> ax_corr.set_title('Cross-correlation')
>>> ax_corr.set_axis_off()
>>> ax_orig.plot(x, y, 'ro')
>>> fig.show()
"""
in1 = np.asarray(in1)
in2 = np.asarray(in2)
if not in1.ndim == in2.ndim == 2:
raise ValueError('correlate2d inputs must both be 2-D arrays')
swapped_inputs = _inputs_swap_needed(mode, in1.shape, in2.shape)
if swapped_inputs:
in1, in2 = in2, in1
val = _valfrommode(mode)
bval = _bvalfromboundary(boundary)
out = sigtools._convolve2d(in1, in2.conj(), 0, val, bval, fillvalue)
if swapped_inputs:
out = out[::-1, ::-1]
return out
def medfilt2d(input, kernel_size=3):
"""
Median filter a 2-dimensional array.
Apply a median filter to the `input` array using a local window-size
given by `kernel_size` (must be odd). The array is zero-padded
automatically.
Parameters
----------
input : array_like
A 2-dimensional input array.
kernel_size : array_like, optional
A scalar or a list of length 2, giving the size of the
median filter window in each dimension. Elements of
`kernel_size` should be odd. If `kernel_size` is a scalar,
then this scalar is used as the size in each dimension.
Default is a kernel of size (3, 3).
Returns
-------
out : ndarray
An array the same size as input containing the median filtered
result.
See also
--------
scipy.ndimage.median_filter
Notes
-------
The more general function `scipy.ndimage.median_filter` has a more
efficient implementation of a median filter and therefore runs much faster.
"""
image = np.asarray(input)
if kernel_size is None:
kernel_size = [3] * 2
kernel_size = np.asarray(kernel_size)
if kernel_size.shape == ():
kernel_size = np.repeat(kernel_size.item(), 2)
for size in kernel_size:
if (size % 2) != 1:
raise ValueError("Each element of kernel_size should be odd.")
return sigtools._medfilt2d(image, kernel_size)
def lfilter(b, a, x, axis=-1, zi=None):
"""
Filter data along one-dimension with an IIR or FIR filter.
Filter a data sequence, `x`, using a digital filter. This works for many
fundamental data types (including Object type). The filter is a direct
form II transposed implementation of the standard difference equation
(see Notes).
The function `sosfilt` (and filter design using ``output='sos'``) should be
preferred over `lfilter` for most filtering tasks, as second-order sections
have fewer numerical problems.
Parameters
----------
b : array_like
The numerator coefficient vector in a 1-D sequence.
a : array_like
The denominator coefficient vector in a 1-D sequence. If ``a[0]``
is not 1, then both `a` and `b` are normalized by ``a[0]``.
x : array_like
An N-dimensional input array.
axis : int, optional
The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.
zi : array_like, optional
Initial conditions for the filter delays. It is a vector
(or array of vectors for an N-dimensional input) of length
``max(len(a), len(b)) - 1``. If `zi` is None or is not given then
initial rest is assumed. See `lfiltic` for more information.
Returns
-------
y : array
The output of the digital filter.
zf : array, optional
If `zi` is None, this is not returned, otherwise, `zf` holds the
final filter delay values.
See Also
--------
lfiltic : Construct initial conditions for `lfilter`.
lfilter_zi : Compute initial state (steady state of step response) for
`lfilter`.
filtfilt : A forward-backward filter, to obtain a filter with linear phase.
savgol_filter : A Savitzky-Golay filter.
sosfilt: Filter data using cascaded second-order sections.
sosfiltfilt: A forward-backward filter using second-order sections.
Notes
-----
The filter function is implemented as a direct II transposed structure.
This means that the filter implements::
a[0]*y[n] = b[0]*x[n] + b[1]*x[n-1] + ... + b[M]*x[n-M]
- a[1]*y[n-1] - ... - a[N]*y[n-N]
where `M` is the degree of the numerator, `N` is the degree of the
denominator, and `n` is the sample number. It is implemented using
the following difference equations (assuming M = N)::
a[0]*y[n] = b[0] * x[n] + d[0][n-1]
d[0][n] = b[1] * x[n] - a[1] * y[n] + d[1][n-1]
d[1][n] = b[2] * x[n] - a[2] * y[n] + d[2][n-1]
...
d[N-2][n] = b[N-1]*x[n] - a[N-1]*y[n] + d[N-1][n-1]
d[N-1][n] = b[N] * x[n] - a[N] * y[n]
where `d` are the state variables.
The rational transfer function describing this filter in the
z-transform domain is::
-1 -M
b[0] + b[1]z + ... + b[M] z
Y(z) = -------------------------------- X(z)
-1 -N
a[0] + a[1]z + ... + a[N] z
Examples
--------
Generate a noisy signal to be filtered:
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> t = np.linspace(-1, 1, 201)
>>> x = (np.sin(2*np.pi*0.75*t*(1-t) + 2.1) +
... 0.1*np.sin(2*np.pi*1.25*t + 1) +
... 0.18*np.cos(2*np.pi*3.85*t))
>>> xn = x + np.random.randn(len(t)) * 0.08
Create an order 3 lowpass butterworth filter:
>>> b, a = signal.butter(3, 0.05)
Apply the filter to xn. Use lfilter_zi to choose the initial condition of
the filter:
>>> zi = signal.lfilter_zi(b, a)
>>> z, _ = signal.lfilter(b, a, xn, zi=zi*xn[0])
Apply the filter again, to have a result filtered at an order the same as
filtfilt:
>>> z2, _ = signal.lfilter(b, a, z, zi=zi*z[0])
Use filtfilt to apply the filter:
>>> y = signal.filtfilt(b, a, xn)
Plot the original signal and the various filtered versions:
>>> plt.figure
>>> plt.plot(t, xn, 'b', alpha=0.75)
>>> plt.plot(t, z, 'r--', t, z2, 'r', t, y, 'k')
>>> plt.legend(('noisy signal', 'lfilter, once', 'lfilter, twice',
... 'filtfilt'), loc='best')
>>> plt.grid(True)
>>> plt.show()
"""
a = np.atleast_1d(a)
if len(a) == 1:
# This path only supports types fdgFDGO to mirror _linear_filter below.
# Any of b, a, x, or zi can set the dtype, but there is no default
# casting of other types; instead a NotImplementedError is raised.
b = np.asarray(b)
a = np.asarray(a)
if b.ndim != 1 and a.ndim != 1:
raise ValueError('object of too small depth for desired array')
x = _validate_x(x)
inputs = [b, a, x]
if zi is not None:
# _linear_filter does not broadcast zi, but does do expansion of
# singleton dims.
zi = np.asarray(zi)
if zi.ndim != x.ndim:
raise ValueError('object of too small depth for desired array')
expected_shape = list(x.shape)
expected_shape[axis] = b.shape[0] - 1
expected_shape = tuple(expected_shape)
# check the trivial case where zi is the right shape first
if zi.shape != expected_shape:
strides = zi.ndim * [None]
if axis < 0:
axis += zi.ndim
for k in range(zi.ndim):
if k == axis and zi.shape[k] == expected_shape[k]:
strides[k] = zi.strides[k]
elif k != axis and zi.shape[k] == expected_shape[k]:
strides[k] = zi.strides[k]
elif k != axis and zi.shape[k] == 1:
strides[k] = 0
else:
raise ValueError('Unexpected shape for zi: expected '
'%s, found %s.' %
(expected_shape, zi.shape))
zi = np.lib.stride_tricks.as_strided(zi, expected_shape,
strides)
inputs.append(zi)
dtype = np.result_type(*inputs)
if dtype.char not in 'fdgFDGO':
raise NotImplementedError("input type '%s' not supported" % dtype)
b = np.array(b, dtype=dtype)
a = np.array(a, dtype=dtype, copy=False)
b /= a[0]
x = np.array(x, dtype=dtype, copy=False)
out_full = np.apply_along_axis(lambda y: np.convolve(b, y), axis, x)
ind = out_full.ndim * [slice(None)]
if zi is not None:
ind[axis] = slice(zi.shape[axis])
out_full[tuple(ind)] += zi
ind[axis] = slice(out_full.shape[axis] - len(b) + 1)
out = out_full[tuple(ind)]
if zi is None:
return out
else:
ind[axis] = slice(out_full.shape[axis] - len(b) + 1, None)
zf = out_full[tuple(ind)]
return out, zf
else:
if zi is None:
return sigtools._linear_filter(b, a, x, axis)
else:
return sigtools._linear_filter(b, a, x, axis, zi)
def lfiltic(b, a, y, x=None):
"""
Construct initial conditions for lfilter given input and output vectors.
Given a linear filter (b, a) and initial conditions on the output `y`
and the input `x`, return the initial conditions on the state vector zi
which is used by `lfilter` to generate the output given the input.
Parameters
----------
b : array_like
Linear filter term.
a : array_like
Linear filter term.
y : array_like
Initial conditions.
If ``N = len(a) - 1``, then ``y = {y[-1], y[-2], ..., y[-N]}``.
If `y` is too short, it is padded with zeros.
x : array_like, optional
Initial conditions.
If ``M = len(b) - 1``, then ``x = {x[-1], x[-2], ..., x[-M]}``.
If `x` is not given, its initial conditions are assumed zero.
If `x` is too short, it is padded with zeros.
Returns
-------
zi : ndarray
The state vector ``zi = {z_0[-1], z_1[-1], ..., z_K-1[-1]}``,
where ``K = max(M, N)``.
See Also
--------
lfilter, lfilter_zi
"""
N = np.size(a) - 1
M = np.size(b) - 1
K = max(M, N)
y = np.asarray(y)
if y.dtype.kind in 'bui':
# ensure calculations are floating point
y = y.astype(np.float64)
zi = np.zeros(K, y.dtype)
if x is None:
x = np.zeros(M, y.dtype)
else:
x = np.asarray(x)
L = np.size(x)
if L < M:
x = np.r_[x, np.zeros(M - L)]
L = np.size(y)
if L < N:
y = np.r_[y, np.zeros(N - L)]
for m in range(M):
zi[m] = np.sum(b[m + 1:] * x[:M - m], axis=0)
for m in range(N):
zi[m] -= np.sum(a[m + 1:] * y[:N - m], axis=0)
return zi
def deconvolve(signal, divisor):
"""Deconvolves ``divisor`` out of ``signal`` using inverse filtering.
Returns the quotient and remainder such that
``signal = convolve(divisor, quotient) + remainder``
Parameters
----------
signal : array_like
Signal data, typically a recorded signal
divisor : array_like
Divisor data, typically an impulse response or filter that was
applied to the original signal
Returns
-------
quotient : ndarray
Quotient, typically the recovered original signal
remainder : ndarray
Remainder
Examples
--------
Deconvolve a signal that's been filtered:
>>> from scipy import signal
>>> original = [0, 1, 0, 0, 1, 1, 0, 0]
>>> impulse_response = [2, 1]
>>> recorded = signal.convolve(impulse_response, original)
>>> recorded
array([0, 2, 1, 0, 2, 3, 1, 0, 0])
>>> recovered, remainder = signal.deconvolve(recorded, impulse_response)
>>> recovered
array([ 0., 1., 0., 0., 1., 1., 0., 0.])
See Also
--------
numpy.polydiv : performs polynomial division (same operation, but
also accepts poly1d objects)
"""
num = np.atleast_1d(signal)
den = np.atleast_1d(divisor)
N = len(num)
D = len(den)
if D > N:
quot = []
rem = num
else:
input = np.zeros(N - D + 1, float)
input[0] = 1
quot = lfilter(num, den, input)
rem = num - convolve(den, quot, mode='full')
return quot, rem
def hilbert(x, N=None, axis=-1):
"""
Compute the analytic signal, using the Hilbert transform.
The transformation is done along the last axis by default.
Parameters
----------
x : array_like
Signal data. Must be real.
N : int, optional
Number of Fourier components. Default: ``x.shape[axis]``
axis : int, optional
Axis along which to do the transformation. Default: -1.
Returns
-------
xa : ndarray
Analytic signal of `x`, of each 1-D array along `axis`
Notes
-----
The analytic signal ``x_a(t)`` of signal ``x(t)`` is:
.. math:: x_a = F^{-1}(F(x) 2U) = x + i y
where `F` is the Fourier transform, `U` the unit step function,
and `y` the Hilbert transform of `x`. [1]_
In other words, the negative half of the frequency spectrum is zeroed
out, turning the real-valued signal into a complex signal. The Hilbert
transformed signal can be obtained from ``np.imag(hilbert(x))``, and the
original signal from ``np.real(hilbert(x))``.
Examples
---------
In this example we use the Hilbert transform to determine the amplitude
envelope and instantaneous frequency of an amplitude-modulated signal.
>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.signal import hilbert, chirp
>>> duration = 1.0
>>> fs = 400.0
>>> samples = int(fs*duration)
>>> t = np.arange(samples) / fs
We create a chirp of which the frequency increases from 20 Hz to 100 Hz and
apply an amplitude modulation.
>>> signal = chirp(t, 20.0, t[-1], 100.0)
>>> signal *= (1.0 + 0.5 * np.sin(2.0*np.pi*3.0*t) )
The amplitude envelope is given by magnitude of the analytic signal. The
instantaneous frequency can be obtained by differentiating the
instantaneous phase in respect to time. The instantaneous phase corresponds
to the phase angle of the analytic signal.
>>> analytic_signal = hilbert(signal)
>>> amplitude_envelope = np.abs(analytic_signal)
>>> instantaneous_phase = np.unwrap(np.angle(analytic_signal))
>>> instantaneous_frequency = (np.diff(instantaneous_phase) /
... (2.0*np.pi) * fs)
>>> fig = plt.figure()
>>> ax0 = fig.add_subplot(211)
>>> ax0.plot(t, signal, label='signal')
>>> ax0.plot(t, amplitude_envelope, label='envelope')
>>> ax0.set_xlabel("time in seconds")
>>> ax0.legend()
>>> ax1 = fig.add_subplot(212)
>>> ax1.plot(t[1:], instantaneous_frequency)
>>> ax1.set_xlabel("time in seconds")
>>> ax1.set_ylim(0.0, 120.0)
References
----------
.. [1] Wikipedia, "Analytic signal".
https://en.wikipedia.org/wiki/Analytic_signal
.. [2] Leon Cohen, "Time-Frequency Analysis", 1995. Chapter 2.
.. [3] Alan V. Oppenheim, Ronald W. Schafer. Discrete-Time Signal
Processing, Third Edition, 2009. Chapter 12.
ISBN 13: 978-1292-02572-8
"""
x = np.asarray(x)
if np.iscomplexobj(x):
raise ValueError("x must be real.")
if N is None:
N = x.shape[axis]
if N <= 0:
raise ValueError("N must be positive.")
Xf = sp_fft.fft(x, N, axis=axis)
h = np.zeros(N)
if N % 2 == 0:
h[0] = h[N // 2] = 1
h[1:N // 2] = 2
else:
h[0] = 1
h[1:(N + 1) // 2] = 2
if x.ndim > 1:
ind = [np.newaxis] * x.ndim
ind[axis] = slice(None)
h = h[tuple(ind)]
x = sp_fft.ifft(Xf * h, axis=axis)
return x
def hilbert2(x, N=None):
"""
Compute the '2-D' analytic signal of `x`
Parameters
----------
x : array_like
2-D signal data.
N : int or tuple of two ints, optional
Number of Fourier components. Default is ``x.shape``
Returns
-------
xa : ndarray
Analytic signal of `x` taken along axes (0,1).
References
----------
.. [1] Wikipedia, "Analytic signal",
https://en.wikipedia.org/wiki/Analytic_signal
"""
x = np.atleast_2d(x)
if x.ndim > 2:
raise ValueError("x must be 2-D.")
if np.iscomplexobj(x):
raise ValueError("x must be real.")
if N is None:
N = x.shape
elif isinstance(N, int):
if N <= 0:
raise ValueError("N must be positive.")
N = (N, N)
elif len(N) != 2 or np.any(np.asarray(N) <= 0):
raise ValueError("When given as a tuple, N must hold exactly "
"two positive integers")
Xf = sp_fft.fft2(x, N, axes=(0, 1))
h1 = np.zeros(N[0], 'd')
h2 = np.zeros(N[1], 'd')
for p in range(2):
h = eval("h%d" % (p + 1))
N1 = N[p]
if N1 % 2 == 0:
h[0] = h[N1 // 2] = 1
h[1:N1 // 2] = 2
else:
h[0] = 1
h[1:(N1 + 1) // 2] = 2
exec("h%d = h" % (p + 1), globals(), locals())
h = h1[:, np.newaxis] * h2[np.newaxis, :]
k = x.ndim
while k > 2:
h = h[:, np.newaxis]
k -= 1
x = sp_fft.ifft2(Xf * h, axes=(0, 1))
return x
def cmplx_sort(p):
"""Sort roots based on magnitude.
Parameters
----------
p : array_like
The roots to sort, as a 1-D array.
Returns
-------
p_sorted : ndarray
Sorted roots.
indx : ndarray
Array of indices needed to sort the input `p`.
Examples
--------
>>> from scipy import signal
>>> vals = [1, 4, 1+1.j, 3]
>>> p_sorted, indx = signal.cmplx_sort(vals)
>>> p_sorted
array([1.+0.j, 1.+1.j, 3.+0.j, 4.+0.j])
>>> indx
array([0, 2, 3, 1])
"""
p = np.asarray(p)
indx = np.argsort(abs(p))
return np.take(p, indx, 0), indx
def unique_roots(p, tol=1e-3, rtype='min'):
"""Determine unique roots and their multiplicities from a list of roots.
Parameters
----------
p : array_like
The list of roots.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. Refer to Notes about
the details on roots grouping.
rtype : {'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}, optional
How to determine the returned root if multiple roots are within
`tol` of each other.
- 'max', 'maximum': pick the maximum of those roots
- 'min', 'minimum': pick the minimum of those roots
- 'avg', 'mean': take the average of those roots
When finding minimum or maximum among complex roots they are compared
first by the real part and then by the imaginary part.
Returns
-------
unique : ndarray
The list of unique roots.
multiplicity : ndarray
The multiplicity of each root.
Notes
-----
If we have 3 roots ``a``, ``b`` and ``c``, such that ``a`` is close to
``b`` and ``b`` is close to ``c`` (distance is less than `tol`), then it
doesn't necessarily mean that ``a`` is close to ``c``. It means that roots
grouping is not unique. In this function we use "greedy" grouping going
through the roots in the order they are given in the input `p`.
This utility function is not specific to roots but can be used for any
sequence of values for which uniqueness and multiplicity has to be
determined. For a more general routine, see `numpy.unique`.
Examples
--------
>>> from scipy import signal
>>> vals = [0, 1.3, 1.31, 2.8, 1.25, 2.2, 10.3]
>>> uniq, mult = signal.unique_roots(vals, tol=2e-2, rtype='avg')
Check which roots have multiplicity larger than 1:
>>> uniq[mult > 1]
array([ 1.305])
"""
if rtype in ['max', 'maximum']:
reduce = np.max
elif rtype in ['min', 'minimum']:
reduce = np.min
elif rtype in ['avg', 'mean']:
reduce = np.mean
else:
raise ValueError("`rtype` must be one of "
"{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}")
p = np.asarray(p)
points = np.empty((len(p), 2))
points[:, 0] = np.real(p)
points[:, 1] = np.imag(p)
tree = cKDTree(points)
p_unique = []
p_multiplicity = []
used = np.zeros(len(p), dtype=bool)
for i in range(len(p)):
if used[i]:
continue
group = tree.query_ball_point(points[i], tol)
group = [x for x in group if not used[x]]
p_unique.append(reduce(p[group]))
p_multiplicity.append(len(group))
used[group] = True
return np.asarray(p_unique), np.asarray(p_multiplicity)
def invres(r, p, k, tol=1e-3, rtype='avg'):
"""Compute b(s) and a(s) from partial fraction expansion.
If `M` is the degree of numerator `b` and `N` the degree of denominator
`a`::
b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = ------------------------------------------
a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]
then the partial-fraction expansion H(s) is defined as::
r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer together than `tol`), then H(s)
has terms like::
r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n
This function is used for polynomials in positive powers of s or z,
such as analog filters or digital filters in controls engineering. For
negative powers of z (typical for digital filters in DSP), use `invresz`.
Parameters
----------
r : array_like
Residues corresponding to the poles. For repeated poles, the residues
must be ordered to correspond to ascending by power fractions.
p : array_like
Poles. Equal poles must be adjacent.
k : array_like
Coefficients of the direct polynomial term.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See `unique_roots`
for further details.
rtype : {'avg', 'min', 'max'}, optional
Method for computing a root to represent a group of identical roots.
Default is 'avg'. See `unique_roots` for further details.
Returns
-------
b : ndarray
Numerator polynomial coefficients.
a : ndarray
Denominator polynomial coefficients.
See Also
--------
residue, invresz, unique_roots
"""
r = np.atleast_1d(r)
p = np.atleast_1d(p)
k = np.trim_zeros(np.atleast_1d(k), 'f')
unique_poles, multiplicity = _group_poles(p, tol, rtype)
factors, denominator = _compute_factors(unique_poles, multiplicity,
include_powers=True)
if len(k) == 0:
numerator = 0
else:
numerator = np.polymul(k, denominator)
for residue, factor in zip(r, factors):
numerator = np.polyadd(numerator, residue * factor)
return numerator, denominator
def _compute_factors(roots, multiplicity, include_powers=False):
"""Compute the total polynomial divided by factors for each root."""
current = np.array([1])
suffixes = [current]
for pole, mult in zip(roots[-1:0:-1], multiplicity[-1:0:-1]):
monomial = np.array([1, -pole])
for _ in range(mult):
current = np.polymul(current, monomial)
suffixes.append(current)
suffixes = suffixes[::-1]
factors = []
current = np.array([1])
for pole, mult, suffix in zip(roots, multiplicity, suffixes):
monomial = np.array([1, -pole])
block = []
for i in range(mult):
if i == 0 or include_powers:
block.append(np.polymul(current, suffix))
current = np.polymul(current, monomial)
factors.extend(reversed(block))
return factors, current
def _compute_residues(poles, multiplicity, numerator):
denominator_factors, _ = _compute_factors(poles, multiplicity)
numerator = numerator.astype(poles.dtype)
residues = []
for pole, mult, factor in zip(poles, multiplicity,
denominator_factors):
if mult == 1:
residues.append(np.polyval(numerator, pole) /
np.polyval(factor, pole))
else:
numer = numerator.copy()
monomial = np.array([1, -pole])
factor, d = np.polydiv(factor, monomial)
block = []
for _ in range(mult):
numer, n = np.polydiv(numer, monomial)
r = n[0] / d[0]
numer = np.polysub(numer, r * factor)
block.append(r)
residues.extend(reversed(block))
return np.asarray(residues)
def residue(b, a, tol=1e-3, rtype='avg'):
"""Compute partial-fraction expansion of b(s) / a(s).
If `M` is the degree of numerator `b` and `N` the degree of denominator
`a`::
b(s) b[0] s**(M) + b[1] s**(M-1) + ... + b[M]
H(s) = ------ = ------------------------------------------
a(s) a[0] s**(N) + a[1] s**(N-1) + ... + a[N]
then the partial-fraction expansion H(s) is defined as::
r[0] r[1] r[-1]
= -------- + -------- + ... + --------- + k(s)
(s-p[0]) (s-p[1]) (s-p[-1])
If there are any repeated roots (closer together than `tol`), then H(s)
has terms like::
r[i] r[i+1] r[i+n-1]
-------- + ----------- + ... + -----------
(s-p[i]) (s-p[i])**2 (s-p[i])**n
This function is used for polynomials in positive powers of s or z,
such as analog filters or digital filters in controls engineering. For
negative powers of z (typical for digital filters in DSP), use `residuez`.
See Notes for details about the algorithm.
Parameters
----------
b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See `unique_roots`
for further details.
rtype : {'avg', 'min', 'max'}, optional
Method for computing a root to represent a group of identical roots.
Default is 'avg'. See `unique_roots` for further details.
Returns
-------
r : ndarray
Residues corresponding to the poles. For repeated poles, the residues
are ordered to correspond to ascending by power fractions.
p : ndarray
Poles ordered by magnitude in ascending order.
k : ndarray
Coefficients of the direct polynomial term.
See Also
--------
invres, residuez, numpy.poly, unique_roots
Notes
-----
The "deflation through subtraction" algorithm is used for
computations --- method 6 in [1]_.
The form of partial fraction expansion depends on poles multiplicity in
the exact mathematical sense. However there is no way to exactly
determine multiplicity of roots of a polynomial in numerical computing.
Thus you should think of the result of `residue` with given `tol` as
partial fraction expansion computed for the denominator composed of the
computed poles with empirically determined multiplicity. The choice of
`tol` can drastically change the result if there are close poles.
References
----------
.. [1] J. F. Mahoney, B. D. Sivazlian, "Partial fractions expansion: a
review of computational methodology and efficiency", Journal of
Computational and Applied Mathematics, Vol. 9, 1983.
"""
b = np.asarray(b)
a = np.asarray(a)
if (np.issubdtype(b.dtype, np.complexfloating)
or np.issubdtype(a.dtype, np.complexfloating)):
b = b.astype(complex)
a = a.astype(complex)
else:
b = b.astype(float)
a = a.astype(float)
b = np.trim_zeros(np.atleast_1d(b), 'f')
a = np.trim_zeros(np.atleast_1d(a), 'f')
if a.size == 0:
raise ValueError("Denominator `a` is zero.")
poles = np.roots(a)
if b.size == 0:
return np.zeros(poles.shape), cmplx_sort(poles)[0], np.array([])
if len(b) < len(a):
k = np.empty(0)
else:
k, b = np.polydiv(b, a)
unique_poles, multiplicity = unique_roots(poles, tol=tol, rtype=rtype)
unique_poles, order = cmplx_sort(unique_poles)
multiplicity = multiplicity[order]
residues = _compute_residues(unique_poles, multiplicity, b)
index = 0
for pole, mult in zip(unique_poles, multiplicity):
poles[index:index + mult] = pole
index += mult
return residues / a[0], poles, k
def residuez(b, a, tol=1e-3, rtype='avg'):
"""Compute partial-fraction expansion of b(z) / a(z).
If `M` is the degree of numerator `b` and `N` the degree of denominator
`a`::
b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------
a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)
then the partial-fraction expansion H(z) is defined as::
r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))
If there are any repeated roots (closer than `tol`), then the partial
fraction expansion has terms like::
r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
This function is used for polynomials in negative powers of z,
such as digital filters in DSP. For positive powers, use `residue`.
See Notes of `residue` for details about the algorithm.
Parameters
----------
b : array_like
Numerator polynomial coefficients.
a : array_like
Denominator polynomial coefficients.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See `unique_roots`
for further details.
rtype : {'avg', 'min', 'max'}, optional
Method for computing a root to represent a group of identical roots.
Default is 'avg'. See `unique_roots` for further details.
Returns
-------
r : ndarray
Residues corresponding to the poles. For repeated poles, the residues
are ordered to correspond to ascending by power fractions.
p : ndarray
Poles ordered by magnitude in ascending order.
k : ndarray
Coefficients of the direct polynomial term.
See Also
--------
invresz, residue, unique_roots
"""
b = np.asarray(b)
a = np.asarray(a)
if (np.issubdtype(b.dtype, np.complexfloating)
or np.issubdtype(a.dtype, np.complexfloating)):
b = b.astype(complex)
a = a.astype(complex)
else:
b = b.astype(float)
a = a.astype(float)
b = np.trim_zeros(np.atleast_1d(b), 'b')
a = np.trim_zeros(np.atleast_1d(a), 'b')
if a.size == 0:
raise ValueError("Denominator `a` is zero.")
elif a[0] == 0:
raise ValueError("First coefficient of determinant `a` must be "
"non-zero.")
poles = np.roots(a)
if b.size == 0:
return np.zeros(poles.shape), cmplx_sort(poles)[0], np.array([])
b_rev = b[::-1]
a_rev = a[::-1]
if len(b_rev) < len(a_rev):
k_rev = np.empty(0)
else:
k_rev, b_rev = np.polydiv(b_rev, a_rev)
unique_poles, multiplicity = unique_roots(poles, tol=tol, rtype=rtype)
unique_poles, order = cmplx_sort(unique_poles)
multiplicity = multiplicity[order]
residues = _compute_residues(1 / unique_poles, multiplicity, b_rev)
index = 0
powers = np.empty(len(residues), dtype=int)
for pole, mult in zip(unique_poles, multiplicity):
poles[index:index + mult] = pole
powers[index:index + mult] = 1 + np.arange(mult)
index += mult
residues *= (-poles) ** powers / a_rev[0]
return residues, poles, k_rev[::-1]
def _group_poles(poles, tol, rtype):
if rtype in ['max', 'maximum']:
reduce = np.max
elif rtype in ['min', 'minimum']:
reduce = np.min
elif rtype in ['avg', 'mean']:
reduce = np.mean
else:
raise ValueError("`rtype` must be one of "
"{'max', 'maximum', 'min', 'minimum', 'avg', 'mean'}")
unique = []
multiplicity = []
pole = poles[0]
block = [pole]
for i in range(1, len(poles)):
if abs(poles[i] - pole) <= tol:
block.append(pole)
else:
unique.append(reduce(block))
multiplicity.append(len(block))
pole = poles[i]
block = [pole]
unique.append(reduce(block))
multiplicity.append(len(block))
return np.asarray(unique), np.asarray(multiplicity)
def invresz(r, p, k, tol=1e-3, rtype='avg'):
"""Compute b(z) and a(z) from partial fraction expansion.
If `M` is the degree of numerator `b` and `N` the degree of denominator
`a`::
b(z) b[0] + b[1] z**(-1) + ... + b[M] z**(-M)
H(z) = ------ = ------------------------------------------
a(z) a[0] + a[1] z**(-1) + ... + a[N] z**(-N)
then the partial-fraction expansion H(z) is defined as::
r[0] r[-1]
= --------------- + ... + ---------------- + k[0] + k[1]z**(-1) ...
(1-p[0]z**(-1)) (1-p[-1]z**(-1))
If there are any repeated roots (closer than `tol`), then the partial
fraction expansion has terms like::
r[i] r[i+1] r[i+n-1]
-------------- + ------------------ + ... + ------------------
(1-p[i]z**(-1)) (1-p[i]z**(-1))**2 (1-p[i]z**(-1))**n
This function is used for polynomials in negative powers of z,
such as digital filters in DSP. For positive powers, use `invres`.
Parameters
----------
r : array_like
Residues corresponding to the poles. For repeated poles, the residues
must be ordered to correspond to ascending by power fractions.
p : array_like
Poles. Equal poles must be adjacent.
k : array_like
Coefficients of the direct polynomial term.
tol : float, optional
The tolerance for two roots to be considered equal in terms of
the distance between them. Default is 1e-3. See `unique_roots`
for further details.
rtype : {'avg', 'min', 'max'}, optional
Method for computing a root to represent a group of identical roots.
Default is 'avg'. See `unique_roots` for further details.
Returns
-------
b : ndarray
Numerator polynomial coefficients.
a : ndarray
Denominator polynomial coefficients.
See Also
--------
residuez, unique_roots, invres
"""
r = np.atleast_1d(r)
p = np.atleast_1d(p)
k = np.trim_zeros(np.atleast_1d(k), 'b')
unique_poles, multiplicity = _group_poles(p, tol, rtype)
factors, denominator = _compute_factors(unique_poles, multiplicity,
include_powers=True)
if len(k) == 0:
numerator = 0
else:
numerator = np.polymul(k[::-1], denominator[::-1])
for residue, factor in zip(r, factors):
numerator = np.polyadd(numerator, residue * factor[::-1])
return numerator[::-1], denominator
def resample(x, num, t=None, axis=0, window=None, domain='time'):
"""
Resample `x` to `num` samples using Fourier method along the given axis.
The resampled signal starts at the same value as `x` but is sampled
with a spacing of ``len(x) / num * (spacing of x)``. Because a
Fourier method is used, the signal is assumed to be periodic.
Parameters
----------
x : array_like
The data to be resampled.
num : int
The number of samples in the resampled signal.
t : array_like, optional
If `t` is given, it is assumed to be the equally spaced sample
positions associated with the signal data in `x`.
axis : int, optional
The axis of `x` that is resampled. Default is 0.
window : array_like, callable, string, float, or tuple, optional
Specifies the window applied to the signal in the Fourier
domain. See below for details.
domain : string, optional
A string indicating the domain of the input `x`:
``time`` Consider the input `x` as time-domain (Default),
``freq`` Consider the input `x` as frequency-domain.
Returns
-------
resampled_x or (resampled_x, resampled_t)
Either the resampled array, or, if `t` was given, a tuple
containing the resampled array and the corresponding resampled
positions.
See Also
--------
decimate : Downsample the signal after applying an FIR or IIR filter.
resample_poly : Resample using polyphase filtering and an FIR filter.
Notes
-----
The argument `window` controls a Fourier-domain window that tapers
the Fourier spectrum before zero-padding to alleviate ringing in
the resampled values for sampled signals you didn't intend to be
interpreted as band-limited.
If `window` is a function, then it is called with a vector of inputs
indicating the frequency bins (i.e. fftfreq(x.shape[axis]) ).
If `window` is an array of the same length as `x.shape[axis]` it is
assumed to be the window to be applied directly in the Fourier
domain (with dc and low-frequency first).
For any other type of `window`, the function `scipy.signal.get_window`
is called to generate the window.
The first sample of the returned vector is the same as the first
sample of the input vector. The spacing between samples is changed
from ``dx`` to ``dx * len(x) / num``.
If `t` is not None, then it is used solely to calculate the resampled
positions `resampled_t`
As noted, `resample` uses FFT transformations, which can be very
slow if the number of input or output samples is large and prime;
see `scipy.fft.fft`.
Examples
--------
Note that the end of the resampled data rises to meet the first
sample of the next cycle:
>>> from scipy import signal
>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f = signal.resample(y, 100)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)
>>> import matplotlib.pyplot as plt
>>> plt.plot(x, y, 'go-', xnew, f, '.-', 10, y[0], 'ro')
>>> plt.legend(['data', 'resampled'], loc='best')
>>> plt.show()
"""
if domain not in ('time', 'freq'):
raise ValueError("Acceptable domain flags are 'time' or"
" 'freq', not domain={}".format(domain))
x = np.asarray(x)
Nx = x.shape[axis]
# Check if we can use faster real FFT
real_input = np.isrealobj(x)
if domain == 'time':
# Forward transform
if real_input:
X = sp_fft.rfft(x, axis=axis)
else: # Full complex FFT
X = sp_fft.fft(x, axis=axis)
else: # domain == 'freq'
X = x
# Apply window to spectrum
if window is not None:
if callable(window):
W = window(sp_fft.fftfreq(Nx))
elif isinstance(window, np.ndarray):
if window.shape != (Nx,):
raise ValueError('window must have the same length as data')
W = window
else:
W = sp_fft.ifftshift(get_window(window, Nx))
newshape_W = [1] * x.ndim
newshape_W[axis] = X.shape[axis]
if real_input:
# Fold the window back on itself to mimic complex behavior
W_real = W.copy()
W_real[1:] += W_real[-1:0:-1]
W_real[1:] *= 0.5
X *= W_real[:newshape_W[axis]].reshape(newshape_W)
else:
X *= W.reshape(newshape_W)
# Copy each half of the original spectrum to the output spectrum, either
# truncating high frequences (downsampling) or zero-padding them
# (upsampling)
# Placeholder array for output spectrum
newshape = list(x.shape)
if real_input:
newshape[axis] = num // 2 + 1
else:
newshape[axis] = num
Y = np.zeros(newshape, X.dtype)
# Copy positive frequency components (and Nyquist, if present)
N = min(num, Nx)
nyq = N // 2 + 1 # Slice index that includes Nyquist if present
sl = [slice(None)] * x.ndim
sl[axis] = slice(0, nyq)
Y[tuple(sl)] = X[tuple(sl)]
if not real_input:
# Copy negative frequency components
if N > 2: # (slice expression doesn't collapse to empty array)
sl[axis] = slice(nyq - N, None)
Y[tuple(sl)] = X[tuple(sl)]
# Split/join Nyquist component(s) if present
# So far we have set Y[+N/2]=X[+N/2]
if N % 2 == 0:
if num < Nx: # downsampling
if real_input:
sl[axis] = slice(N//2, N//2 + 1)
Y[tuple(sl)] *= 2.
else:
# select the component of Y at frequency +N/2,
# add the component of X at -N/2
sl[axis] = slice(-N//2, -N//2 + 1)
Y[tuple(sl)] += X[tuple(sl)]
elif Nx < num: # upsampling
# select the component at frequency +N/2 and halve it
sl[axis] = slice(N//2, N//2 + 1)
Y[tuple(sl)] *= 0.5
if not real_input:
temp = Y[tuple(sl)]
# set the component at -N/2 equal to the component at +N/2
sl[axis] = slice(num-N//2, num-N//2 + 1)
Y[tuple(sl)] = temp
# Inverse transform
if real_input:
y = sp_fft.irfft(Y, num, axis=axis)
else:
y = sp_fft.ifft(Y, axis=axis, overwrite_x=True)
y *= (float(num) / float(Nx))
if t is None:
return y
else:
new_t = np.arange(0, num) * (t[1] - t[0]) * Nx / float(num) + t[0]
return y, new_t
def resample_poly(x, up, down, axis=0, window=('kaiser', 5.0),
padtype='constant', cval=None):
"""
Resample `x` along the given axis using polyphase filtering.
The signal `x` is upsampled by the factor `up`, a zero-phase low-pass
FIR filter is applied, and then it is downsampled by the factor `down`.
The resulting sample rate is ``up / down`` times the original sample
rate. By default, values beyond the boundary of the signal are assumed
to be zero during the filtering step.
Parameters
----------
x : array_like
The data to be resampled.
up : int
The upsampling factor.
down : int
The downsampling factor.
axis : int, optional
The axis of `x` that is resampled. Default is 0.
window : string, tuple, or array_like, optional
Desired window to use to design the low-pass filter, or the FIR filter
coefficients to employ. See below for details.
padtype : string, optional
`constant`, `line`, `mean`, `median`, `maximum`, `minimum` or any of
the other signal extension modes supported by `scipy.signal.upfirdn`.
Changes assumptions on values beyond the boundary. If `constant`,
assumed to be `cval` (default zero). If `line` assumed to continue a
linear trend defined by the first and last points. `mean`, `median`,
`maximum` and `minimum` work as in `np.pad` and assume that the values
beyond the boundary are the mean, median, maximum or minimum
respectively of the array along the axis.
.. versionadded:: 1.4.0
cval : float, optional
Value to use if `padtype='constant'`. Default is zero.
.. versionadded:: 1.4.0
Returns
-------
resampled_x : array
The resampled array.
See Also
--------
decimate : Downsample the signal after applying an FIR or IIR filter.
resample : Resample up or down using the FFT method.
Notes
-----
This polyphase method will likely be faster than the Fourier method
in `scipy.signal.resample` when the number of samples is large and
prime, or when the number of samples is large and `up` and `down`
share a large greatest common denominator. The length of the FIR
filter used will depend on ``max(up, down) // gcd(up, down)``, and
the number of operations during polyphase filtering will depend on
the filter length and `down` (see `scipy.signal.upfirdn` for details).
The argument `window` specifies the FIR low-pass filter design.
If `window` is an array_like it is assumed to be the FIR filter
coefficients. Note that the FIR filter is applied after the upsampling
step, so it should be designed to operate on a signal at a sampling
frequency higher than the original by a factor of `up//gcd(up, down)`.
This function's output will be centered with respect to this array, so it
is best to pass a symmetric filter with an odd number of samples if, as
is usually the case, a zero-phase filter is desired.
For any other type of `window`, the functions `scipy.signal.get_window`
and `scipy.signal.firwin` are called to generate the appropriate filter
coefficients.
The first sample of the returned vector is the same as the first
sample of the input vector. The spacing between samples is changed
from ``dx`` to ``dx * down / float(up)``.
Examples
--------
By default, the end of the resampled data rises to meet the first
sample of the next cycle for the FFT method, and gets closer to zero
for the polyphase method:
>>> from scipy import signal
>>> x = np.linspace(0, 10, 20, endpoint=False)
>>> y = np.cos(-x**2/6.0)
>>> f_fft = signal.resample(y, 100)
>>> f_poly = signal.resample_poly(y, 100, 20)
>>> xnew = np.linspace(0, 10, 100, endpoint=False)
>>> import matplotlib.pyplot as plt
>>> plt.plot(xnew, f_fft, 'b.-', xnew, f_poly, 'r.-')
>>> plt.plot(x, y, 'ko-')
>>> plt.plot(10, y[0], 'bo', 10, 0., 'ro') # boundaries
>>> plt.legend(['resample', 'resamp_poly', 'data'], loc='best')
>>> plt.show()
This default behaviour can be changed by using the padtype option:
>>> import numpy as np
>>> from scipy import signal
>>> N = 5
>>> x = np.linspace(0, 1, N, endpoint=False)
>>> y = 2 + x**2 - 1.7*np.sin(x) + .2*np.cos(11*x)
>>> y2 = 1 + x**3 + 0.1*np.sin(x) + .1*np.cos(11*x)
>>> Y = np.stack([y, y2], axis=-1)
>>> up = 4
>>> xr = np.linspace(0, 1, N*up, endpoint=False)
>>> y2 = signal.resample_poly(Y, up, 1, padtype='constant')
>>> y3 = signal.resample_poly(Y, up, 1, padtype='mean')
>>> y4 = signal.resample_poly(Y, up, 1, padtype='line')
>>> import matplotlib.pyplot as plt
>>> for i in [0,1]:
... plt.figure()
... plt.plot(xr, y4[:,i], 'g.', label='line')
... plt.plot(xr, y3[:,i], 'y.', label='mean')
... plt.plot(xr, y2[:,i], 'r.', label='constant')
... plt.plot(x, Y[:,i], 'k-')
... plt.legend()
>>> plt.show()
"""
x = np.asarray(x)
if up != int(up):
raise ValueError("up must be an integer")
if down != int(down):
raise ValueError("down must be an integer")
up = int(up)
down = int(down)
if up < 1 or down < 1:
raise ValueError('up and down must be >= 1')
if cval is not None and padtype != 'constant':
raise ValueError('cval has no effect when padtype is ', padtype)
# Determine our up and down factors
# Use a rational approximation to save computation time on really long
# signals
g_ = math.gcd(up, down)
up //= g_
down //= g_
if up == down == 1:
return x.copy()
n_in = x.shape[axis]
n_out = n_in * up
n_out = n_out // down + bool(n_out % down)
if isinstance(window, (list, np.ndarray)):
window = np.array(window) # use array to force a copy (we modify it)
if window.ndim > 1:
raise ValueError('window must be 1-D')
half_len = (window.size - 1) // 2
h = window
else:
# Design a linear-phase low-pass FIR filter
max_rate = max(up, down)
f_c = 1. / max_rate # cutoff of FIR filter (rel. to Nyquist)
half_len = 10 * max_rate # reasonable cutoff for our sinc-like function
h = firwin(2 * half_len + 1, f_c, window=window)
h *= up
# Zero-pad our filter to put the output samples at the center
n_pre_pad = (down - half_len % down)
n_post_pad = 0
n_pre_remove = (half_len + n_pre_pad) // down
# We should rarely need to do this given our filter lengths...
while _output_len(len(h) + n_pre_pad + n_post_pad, n_in,
up, down) < n_out + n_pre_remove:
n_post_pad += 1
h = np.concatenate((np.zeros(n_pre_pad, dtype=h.dtype), h,
np.zeros(n_post_pad, dtype=h.dtype)))
n_pre_remove_end = n_pre_remove + n_out
# Remove background depending on the padtype option
funcs = {'mean': np.mean, 'median': np.median,
'minimum': np.amin, 'maximum': np.amax}
upfirdn_kwargs = {'mode': 'constant', 'cval': 0}
if padtype in funcs:
background_values = funcs[padtype](x, axis=axis, keepdims=True)
elif padtype in _upfirdn_modes:
upfirdn_kwargs = {'mode': padtype}
if padtype == 'constant':
if cval is None:
cval = 0
upfirdn_kwargs['cval'] = cval
else:
raise ValueError(
'padtype must be one of: maximum, mean, median, minimum, ' +
', '.join(_upfirdn_modes))
if padtype in funcs:
x = x - background_values
# filter then remove excess
y = upfirdn(h, x, up, down, axis=axis, **upfirdn_kwargs)
keep = [slice(None), ]*x.ndim
keep[axis] = slice(n_pre_remove, n_pre_remove_end)
y_keep = y[tuple(keep)]
# Add background back
if padtype in funcs:
y_keep += background_values
return y_keep
def vectorstrength(events, period):
'''
Determine the vector strength of the events corresponding to the given
period.
The vector strength is a measure of phase synchrony, how well the
timing of the events is synchronized to a single period of a periodic
signal.
If multiple periods are used, calculate the vector strength of each.
This is called the "resonating vector strength".
Parameters
----------
events : 1D array_like
An array of time points containing the timing of the events.
period : float or array_like
The period of the signal that the events should synchronize to.
The period is in the same units as `events`. It can also be an array
of periods, in which case the outputs are arrays of the same length.
Returns
-------
strength : float or 1D array
The strength of the synchronization. 1.0 is perfect synchronization
and 0.0 is no synchronization. If `period` is an array, this is also
an array with each element containing the vector strength at the
corresponding period.
phase : float or array
The phase that the events are most strongly synchronized to in radians.
If `period` is an array, this is also an array with each element
containing the phase for the corresponding period.
References
----------
van Hemmen, JL, Longtin, A, and Vollmayr, AN. Testing resonating vector
strength: Auditory system, electric fish, and noise.
Chaos 21, 047508 (2011);
:doi:`10.1063/1.3670512`.
van Hemmen, JL. Vector strength after Goldberg, Brown, and von Mises:
biological and mathematical perspectives. Biol Cybern.
2013 Aug;107(4):385-96. :doi:`10.1007/s00422-013-0561-7`.
van Hemmen, JL and Vollmayr, AN. Resonating vector strength: what happens
when we vary the "probing" frequency while keeping the spike times
fixed. Biol Cybern. 2013 Aug;107(4):491-94.
:doi:`10.1007/s00422-013-0560-8`.
'''
events = np.asarray(events)
period = np.asarray(period)
if events.ndim > 1:
raise ValueError('events cannot have dimensions more than 1')
if period.ndim > 1:
raise ValueError('period cannot have dimensions more than 1')
# we need to know later if period was originally a scalar
scalarperiod = not period.ndim
events = np.atleast_2d(events)
period = np.atleast_2d(period)
if (period <= 0).any():
raise ValueError('periods must be positive')
# this converts the times to vectors
vectors = np.exp(np.dot(2j*np.pi/period.T, events))
# the vector strength is just the magnitude of the mean of the vectors
# the vector phase is the angle of the mean of the vectors
vectormean = np.mean(vectors, axis=1)
strength = abs(vectormean)
phase = np.angle(vectormean)
# if the original period was a scalar, return scalars
if scalarperiod:
strength = strength[0]
phase = phase[0]
return strength, phase
def detrend(data, axis=-1, type='linear', bp=0, overwrite_data=False):
"""
Remove linear trend along axis from data.
Parameters
----------
data : array_like
The input data.
axis : int, optional
The axis along which to detrend the data. By default this is the
last axis (-1).
type : {'linear', 'constant'}, optional
The type of detrending. If ``type == 'linear'`` (default),
the result of a linear least-squares fit to `data` is subtracted
from `data`.
If ``type == 'constant'``, only the mean of `data` is subtracted.
bp : array_like of ints, optional
A sequence of break points. If given, an individual linear fit is
performed for each part of `data` between two break points.
Break points are specified as indices into `data`. This parameter
only has an effect when ``type == 'linear'``.
overwrite_data : bool, optional
If True, perform in place detrending and avoid a copy. Default is False
Returns
-------
ret : ndarray
The detrended input data.
Examples
--------
>>> from scipy import signal
>>> randgen = np.random.RandomState(9)
>>> npoints = 1000
>>> noise = randgen.randn(npoints)
>>> x = 3 + 2*np.linspace(0, 1, npoints) + noise
>>> (signal.detrend(x) - noise).max() < 0.01
True
"""
if type not in ['linear', 'l', 'constant', 'c']:
raise ValueError("Trend type must be 'linear' or 'constant'.")
data = np.asarray(data)
dtype = data.dtype.char
if dtype not in 'dfDF':
dtype = 'd'
if type in ['constant', 'c']:
ret = data - np.expand_dims(np.mean(data, axis), axis)
return ret
else:
dshape = data.shape
N = dshape[axis]
bp = np.sort(np.unique(np.r_[0, bp, N]))
if np.any(bp > N):
raise ValueError("Breakpoints must be less than length "
"of data along given axis.")
Nreg = len(bp) - 1
# Restructure data so that axis is along first dimension and
# all other dimensions are collapsed into second dimension
rnk = len(dshape)
if axis < 0:
axis = axis + rnk
newdims = np.r_[axis, 0:axis, axis + 1:rnk]
newdata = np.reshape(np.transpose(data, tuple(newdims)),
(N, _prod(dshape) // N))
if not overwrite_data:
newdata = newdata.copy() # make sure we have a copy
if newdata.dtype.char not in 'dfDF':
newdata = newdata.astype(dtype)
# Find leastsq fit and remove it for each piece
for m in range(Nreg):
Npts = bp[m + 1] - bp[m]
A = np.ones((Npts, 2), dtype)
A[:, 0] = np.cast[dtype](np.arange(1, Npts + 1) * 1.0 / Npts)
sl = slice(bp[m], bp[m + 1])
coef, resids, rank, s = linalg.lstsq(A, newdata[sl])
newdata[sl] = newdata[sl] - np.dot(A, coef)
# Put data back in original shape.
tdshape = np.take(dshape, newdims, 0)
ret = np.reshape(newdata, tuple(tdshape))
vals = list(range(1, rnk))
olddims = vals[:axis] + [0] + vals[axis:]
ret = np.transpose(ret, tuple(olddims))
return ret
def lfilter_zi(b, a):
"""
Construct initial conditions for lfilter for step response steady-state.
Compute an initial state `zi` for the `lfilter` function that corresponds
to the steady state of the step response.
A typical use of this function is to set the initial state so that the
output of the filter starts at the same value as the first element of
the signal to be filtered.
Parameters
----------
b, a : array_like (1-D)
The IIR filter coefficients. See `lfilter` for more
information.
Returns
-------
zi : 1-D ndarray
The initial state for the filter.
See Also
--------
lfilter, lfiltic, filtfilt
Notes
-----
A linear filter with order m has a state space representation (A, B, C, D),
for which the output y of the filter can be expressed as::
z(n+1) = A*z(n) + B*x(n)
y(n) = C*z(n) + D*x(n)
where z(n) is a vector of length m, A has shape (m, m), B has shape
(m, 1), C has shape (1, m) and D has shape (1, 1) (assuming x(n) is
a scalar). lfilter_zi solves::
zi = A*zi + B
In other words, it finds the initial condition for which the response
to an input of all ones is a constant.
Given the filter coefficients `a` and `b`, the state space matrices
for the transposed direct form II implementation of the linear filter,
which is the implementation used by scipy.signal.lfilter, are::
A = scipy.linalg.companion(a).T
B = b[1:] - a[1:]*b[0]
assuming `a[0]` is 1.0; if `a[0]` is not 1, `a` and `b` are first
divided by a[0].
Examples
--------
The following code creates a lowpass Butterworth filter. Then it
applies that filter to an array whose values are all 1.0; the
output is also all 1.0, as expected for a lowpass filter. If the
`zi` argument of `lfilter` had not been given, the output would have
shown the transient signal.
>>> from numpy import array, ones
>>> from scipy.signal import lfilter, lfilter_zi, butter
>>> b, a = butter(5, 0.25)
>>> zi = lfilter_zi(b, a)
>>> y, zo = lfilter(b, a, ones(10), zi=zi)
>>> y
array([1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
Another example:
>>> x = array([0.5, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0])
>>> y, zf = lfilter(b, a, x, zi=zi*x[0])
>>> y
array([ 0.5 , 0.5 , 0.5 , 0.49836039, 0.48610528,
0.44399389, 0.35505241])
Note that the `zi` argument to `lfilter` was computed using
`lfilter_zi` and scaled by `x[0]`. Then the output `y` has no
transient until the input drops from 0.5 to 0.0.
"""
# FIXME: Can this function be replaced with an appropriate
# use of lfiltic? For example, when b,a = butter(N,Wn),
# lfiltic(b, a, y=numpy.ones_like(a), x=numpy.ones_like(b)).
#
# We could use scipy.signal.normalize, but it uses warnings in
# cases where a ValueError is more appropriate, and it allows
# b to be 2D.
b = np.atleast_1d(b)
if b.ndim != 1:
raise ValueError("Numerator b must be 1-D.")
a = np.atleast_1d(a)
if a.ndim != 1:
raise ValueError("Denominator a must be 1-D.")
while len(a) > 1 and a[0] == 0.0:
a = a[1:]
if a.size < 1:
raise ValueError("There must be at least one nonzero `a` coefficient.")
if a[0] != 1.0:
# Normalize the coefficients so a[0] == 1.
b = b / a[0]
a = a / a[0]
n = max(len(a), len(b))
# Pad a or b with zeros so they are the same length.
if len(a) < n:
a = np.r_[a, np.zeros(n - len(a))]
elif len(b) < n:
b = np.r_[b, np.zeros(n - len(b))]
IminusA = np.eye(n - 1) - linalg.companion(a).T
B = b[1:] - a[1:] * b[0]
# Solve zi = A*zi + B
zi = np.linalg.solve(IminusA, B)
# For future reference: we could also use the following
# explicit formulas to solve the linear system:
#
# zi = np.zeros(n - 1)
# zi[0] = B.sum() / IminusA[:,0].sum()
# asum = 1.0
# csum = 0.0
# for k in range(1,n-1):
# asum += a[k]
# csum += b[k] - a[k]*b[0]
# zi[k] = asum*zi[0] - csum
return zi
def sosfilt_zi(sos):
"""
Construct initial conditions for sosfilt for step response steady-state.
Compute an initial state `zi` for the `sosfilt` function that corresponds
to the steady state of the step response.
A typical use of this function is to set the initial state so that the
output of the filter starts at the same value as the first element of
the signal to be filtered.
Parameters
----------
sos : array_like
Array of second-order filter coefficients, must have shape
``(n_sections, 6)``. See `sosfilt` for the SOS filter format
specification.
Returns
-------
zi : ndarray
Initial conditions suitable for use with ``sosfilt``, shape
``(n_sections, 2)``.
See Also
--------
sosfilt, zpk2sos
Notes
-----
.. versionadded:: 0.16.0
Examples
--------
Filter a rectangular pulse that begins at time 0, with and without
the use of the `zi` argument of `scipy.signal.sosfilt`.
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> sos = signal.butter(9, 0.125, output='sos')
>>> zi = signal.sosfilt_zi(sos)
>>> x = (np.arange(250) < 100).astype(int)
>>> f1 = signal.sosfilt(sos, x)
>>> f2, zo = signal.sosfilt(sos, x, zi=zi)
>>> plt.plot(x, 'k--', label='x')
>>> plt.plot(f1, 'b', alpha=0.5, linewidth=2, label='filtered')
>>> plt.plot(f2, 'g', alpha=0.25, linewidth=4, label='filtered with zi')
>>> plt.legend(loc='best')
>>> plt.show()
"""
sos = np.asarray(sos)
if sos.ndim != 2 or sos.shape[1] != 6:
raise ValueError('sos must be shape (n_sections, 6)')
n_sections = sos.shape[0]
zi = np.empty((n_sections, 2))
scale = 1.0
for section in range(n_sections):
b = sos[section, :3]
a = sos[section, 3:]
zi[section] = scale * lfilter_zi(b, a)
# If H(z) = B(z)/A(z) is this section's transfer function, then
# b.sum()/a.sum() is H(1), the gain at omega=0. That's the steady
# state value of this section's step response.
scale *= b.sum() / a.sum()
return zi
def _filtfilt_gust(b, a, x, axis=-1, irlen=None):
"""Forward-backward IIR filter that uses Gustafsson's method.
Apply the IIR filter defined by `(b,a)` to `x` twice, first forward
then backward, using Gustafsson's initial conditions [1]_.
Let ``y_fb`` be the result of filtering first forward and then backward,
and let ``y_bf`` be the result of filtering first backward then forward.
Gustafsson's method is to compute initial conditions for the forward
pass and the backward pass such that ``y_fb == y_bf``.
Parameters
----------
b : scalar or 1-D ndarray
Numerator coefficients of the filter.
a : scalar or 1-D ndarray
Denominator coefficients of the filter.
x : ndarray
Data to be filtered.
axis : int, optional
Axis of `x` to be filtered. Default is -1.
irlen : int or None, optional
The length of the nonnegligible part of the impulse response.
If `irlen` is None, or if the length of the signal is less than
``2 * irlen``, then no part of the impulse response is ignored.
Returns
-------
y : ndarray
The filtered data.
x0 : ndarray
Initial condition for the forward filter.
x1 : ndarray
Initial condition for the backward filter.
Notes
-----
Typically the return values `x0` and `x1` are not needed by the
caller. The intended use of these return values is in unit tests.
References
----------
.. [1] F. Gustaffson. Determining the initial states in forward-backward
filtering. Transactions on Signal Processing, 46(4):988-992, 1996.
"""
# In the comments, "Gustafsson's paper" and [1] refer to the
# paper referenced in the docstring.
b = np.atleast_1d(b)
a = np.atleast_1d(a)
order = max(len(b), len(a)) - 1
if order == 0:
# The filter is just scalar multiplication, with no state.
scale = (b[0] / a[0])**2
y = scale * x
return y, np.array([]), np.array([])
if axis != -1 or axis != x.ndim - 1:
# Move the axis containing the data to the end.
x = np.swapaxes(x, axis, x.ndim - 1)
# n is the number of samples in the data to be filtered.
n = x.shape[-1]
if irlen is None or n <= 2*irlen:
m = n
else:
m = irlen
# Create Obs, the observability matrix (called O in the paper).
# This matrix can be interpreted as the operator that propagates
# an arbitrary initial state to the output, assuming the input is
# zero.
# In Gustafsson's paper, the forward and backward filters are not
# necessarily the same, so he has both O_f and O_b. We use the same
# filter in both directions, so we only need O. The same comment
# applies to S below.
Obs = np.zeros((m, order))
zi = np.zeros(order)
zi[0] = 1
Obs[:, 0] = lfilter(b, a, np.zeros(m), zi=zi)[0]
for k in range(1, order):
Obs[k:, k] = Obs[:-k, 0]
# Obsr is O^R (Gustafsson's notation for row-reversed O)
Obsr = Obs[::-1]
# Create S. S is the matrix that applies the filter to the reversed
# propagated initial conditions. That is,
# out = S.dot(zi)
# is the same as
# tmp, _ = lfilter(b, a, zeros(), zi=zi) # Propagate ICs.
# out = lfilter(b, a, tmp[::-1]) # Reverse and filter.
# Equations (5) & (6) of [1]
S = lfilter(b, a, Obs[::-1], axis=0)
# Sr is S^R (row-reversed S)
Sr = S[::-1]
# M is [(S^R - O), (O^R - S)]
if m == n:
M = np.hstack((Sr - Obs, Obsr - S))
else:
# Matrix described in section IV of [1].
M = np.zeros((2*m, 2*order))
M[:m, :order] = Sr - Obs
M[m:, order:] = Obsr - S
# Naive forward-backward and backward-forward filters.
# These have large transients because the filters use zero initial
# conditions.
y_f = lfilter(b, a, x)
y_fb = lfilter(b, a, y_f[..., ::-1])[..., ::-1]
y_b = lfilter(b, a, x[..., ::-1])[..., ::-1]
y_bf = lfilter(b, a, y_b)
delta_y_bf_fb = y_bf - y_fb
if m == n:
delta = delta_y_bf_fb
else:
start_m = delta_y_bf_fb[..., :m]
end_m = delta_y_bf_fb[..., -m:]
delta = np.concatenate((start_m, end_m), axis=-1)
# ic_opt holds the "optimal" initial conditions.
# The following code computes the result shown in the formula
# of the paper between equations (6) and (7).
if delta.ndim == 1:
ic_opt = linalg.lstsq(M, delta)[0]
else:
# Reshape delta so it can be used as an array of multiple
# right-hand-sides in linalg.lstsq.
delta2d = delta.reshape(-1, delta.shape[-1]).T
ic_opt0 = linalg.lstsq(M, delta2d)[0].T
ic_opt = ic_opt0.reshape(delta.shape[:-1] + (M.shape[-1],))
# Now compute the filtered signal using equation (7) of [1].
# First, form [S^R, O^R] and call it W.
if m == n:
W = np.hstack((Sr, Obsr))
else:
W = np.zeros((2*m, 2*order))
W[:m, :order] = Sr
W[m:, order:] = Obsr
# Equation (7) of [1] says
# Y_fb^opt = Y_fb^0 + W * [x_0^opt; x_{N-1}^opt]
# `wic` is (almost) the product on the right.
# W has shape (m, 2*order), and ic_opt has shape (..., 2*order),
# so we can't use W.dot(ic_opt). Instead, we dot ic_opt with W.T,
# so wic has shape (..., m).
wic = ic_opt.dot(W.T)
# `wic` is "almost" the product of W and the optimal ICs in equation
# (7)--if we're using a truncated impulse response (m < n), `wic`
# contains only the adjustments required for the ends of the signal.
# Here we form y_opt, taking this into account if necessary.
y_opt = y_fb
if m == n:
y_opt += wic
else:
y_opt[..., :m] += wic[..., :m]
y_opt[..., -m:] += wic[..., -m:]
x0 = ic_opt[..., :order]
x1 = ic_opt[..., -order:]
if axis != -1 or axis != x.ndim - 1:
# Restore the data axis to its original position.
x0 = np.swapaxes(x0, axis, x.ndim - 1)
x1 = np.swapaxes(x1, axis, x.ndim - 1)
y_opt = np.swapaxes(y_opt, axis, x.ndim - 1)
return y_opt, x0, x1
def filtfilt(b, a, x, axis=-1, padtype='odd', padlen=None, method='pad',
irlen=None):
"""
Apply a digital filter forward and backward to a signal.
This function applies a linear digital filter twice, once forward and
once backwards. The combined filter has zero phase and a filter order
twice that of the original.
The function provides options for handling the edges of the signal.
The function `sosfiltfilt` (and filter design using ``output='sos'``)
should be preferred over `filtfilt` for most filtering tasks, as
second-order sections have fewer numerical problems.
Parameters
----------
b : (N,) array_like
The numerator coefficient vector of the filter.
a : (N,) array_like
The denominator coefficient vector of the filter. If ``a[0]``
is not 1, then both `a` and `b` are normalized by ``a[0]``.
x : array_like
The array of data to be filtered.
axis : int, optional
The axis of `x` to which the filter is applied.
Default is -1.
padtype : str or None, optional
Must be 'odd', 'even', 'constant', or None. This determines the
type of extension to use for the padded signal to which the filter
is applied. If `padtype` is None, no padding is used. The default
is 'odd'.
padlen : int or None, optional
The number of elements by which to extend `x` at both ends of
`axis` before applying the filter. This value must be less than
``x.shape[axis] - 1``. ``padlen=0`` implies no padding.
The default value is ``3 * max(len(a), len(b))``.
method : str, optional
Determines the method for handling the edges of the signal, either
"pad" or "gust". When `method` is "pad", the signal is padded; the
type of padding is determined by `padtype` and `padlen`, and `irlen`
is ignored. When `method` is "gust", Gustafsson's method is used,
and `padtype` and `padlen` are ignored.
irlen : int or None, optional
When `method` is "gust", `irlen` specifies the length of the
impulse response of the filter. If `irlen` is None, no part
of the impulse response is ignored. For a long signal, specifying
`irlen` can significantly improve the performance of the filter.
Returns
-------
y : ndarray
The filtered output with the same shape as `x`.
See Also
--------
sosfiltfilt, lfilter_zi, lfilter, lfiltic, savgol_filter, sosfilt
Notes
-----
When `method` is "pad", the function pads the data along the given axis
in one of three ways: odd, even or constant. The odd and even extensions
have the corresponding symmetry about the end point of the data. The
constant extension extends the data with the values at the end points. On
both the forward and backward passes, the initial condition of the
filter is found by using `lfilter_zi` and scaling it by the end point of
the extended data.
When `method` is "gust", Gustafsson's method [1]_ is used. Initial
conditions are chosen for the forward and backward passes so that the
forward-backward filter gives the same result as the backward-forward
filter.
The option to use Gustaffson's method was added in scipy version 0.16.0.
References
----------
.. [1] F. Gustaffson, "Determining the initial states in forward-backward
filtering", Transactions on Signal Processing, Vol. 46, pp. 988-992,
1996.
Examples
--------
The examples will use several functions from `scipy.signal`.
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
First we create a one second signal that is the sum of two pure sine
waves, with frequencies 5 Hz and 250 Hz, sampled at 2000 Hz.
>>> t = np.linspace(0, 1.0, 2001)
>>> xlow = np.sin(2 * np.pi * 5 * t)
>>> xhigh = np.sin(2 * np.pi * 250 * t)
>>> x = xlow + xhigh
Now create a lowpass Butterworth filter with a cutoff of 0.125 times
the Nyquist frequency, or 125 Hz, and apply it to ``x`` with `filtfilt`.
The result should be approximately ``xlow``, with no phase shift.
>>> b, a = signal.butter(8, 0.125)
>>> y = signal.filtfilt(b, a, x, padlen=150)
>>> np.abs(y - xlow).max()
9.1086182074789912e-06
We get a fairly clean result for this artificial example because
the odd extension is exact, and with the moderately long padding,
the filter's transients have dissipated by the time the actual data
is reached. In general, transient effects at the edges are
unavoidable.
The following example demonstrates the option ``method="gust"``.
First, create a filter.
>>> b, a = signal.ellip(4, 0.01, 120, 0.125) # Filter to be applied.
>>> np.random.seed(123456)
`sig` is a random input signal to be filtered.
>>> n = 60
>>> sig = np.random.randn(n)**3 + 3*np.random.randn(n).cumsum()
Apply `filtfilt` to `sig`, once using the Gustafsson method, and
once using padding, and plot the results for comparison.
>>> fgust = signal.filtfilt(b, a, sig, method="gust")
>>> fpad = signal.filtfilt(b, a, sig, padlen=50)
>>> plt.plot(sig, 'k-', label='input')
>>> plt.plot(fgust, 'b-', linewidth=4, label='gust')
>>> plt.plot(fpad, 'c-', linewidth=1.5, label='pad')
>>> plt.legend(loc='best')
>>> plt.show()
The `irlen` argument can be used to improve the performance
of Gustafsson's method.
Estimate the impulse response length of the filter.
>>> z, p, k = signal.tf2zpk(b, a)
>>> eps = 1e-9
>>> r = np.max(np.abs(p))
>>> approx_impulse_len = int(np.ceil(np.log(eps) / np.log(r)))
>>> approx_impulse_len
137
Apply the filter to a longer signal, with and without the `irlen`
argument. The difference between `y1` and `y2` is small. For long
signals, using `irlen` gives a significant performance improvement.
>>> x = np.random.randn(5000)
>>> y1 = signal.filtfilt(b, a, x, method='gust')
>>> y2 = signal.filtfilt(b, a, x, method='gust', irlen=approx_impulse_len)
>>> print(np.max(np.abs(y1 - y2)))
1.80056858312e-10
"""
b = np.atleast_1d(b)
a = np.atleast_1d(a)
x = np.asarray(x)
if method not in ["pad", "gust"]:
raise ValueError("method must be 'pad' or 'gust'.")
if method == "gust":
y, z1, z2 = _filtfilt_gust(b, a, x, axis=axis, irlen=irlen)
return y
# method == "pad"
edge, ext = _validate_pad(padtype, padlen, x, axis,
ntaps=max(len(a), len(b)))
# Get the steady state of the filter's step response.
zi = lfilter_zi(b, a)
# Reshape zi and create x0 so that zi*x0 broadcasts
# to the correct value for the 'zi' keyword argument
# to lfilter.
zi_shape = [1] * x.ndim
zi_shape[axis] = zi.size
zi = np.reshape(zi, zi_shape)
x0 = axis_slice(ext, stop=1, axis=axis)
# Forward filter.
(y, zf) = lfilter(b, a, ext, axis=axis, zi=zi * x0)
# Backward filter.
# Create y0 so zi*y0 broadcasts appropriately.
y0 = axis_slice(y, start=-1, axis=axis)
(y, zf) = lfilter(b, a, axis_reverse(y, axis=axis), axis=axis, zi=zi * y0)
# Reverse y.
y = axis_reverse(y, axis=axis)
if edge > 0:
# Slice the actual signal from the extended signal.
y = axis_slice(y, start=edge, stop=-edge, axis=axis)
return y
def _validate_pad(padtype, padlen, x, axis, ntaps):
"""Helper to validate padding for filtfilt"""
if padtype not in ['even', 'odd', 'constant', None]:
raise ValueError(("Unknown value '%s' given to padtype. padtype "
"must be 'even', 'odd', 'constant', or None.") %
padtype)
if padtype is None:
padlen = 0
if padlen is None:
# Original padding; preserved for backwards compatibility.
edge = ntaps * 3
else:
edge = padlen
# x's 'axis' dimension must be bigger than edge.
if x.shape[axis] <= edge:
raise ValueError("The length of the input vector x must be greater "
"than padlen, which is %d." % edge)
if padtype is not None and edge > 0:
# Make an extension of length `edge` at each
# end of the input array.
if padtype == 'even':
ext = even_ext(x, edge, axis=axis)
elif padtype == 'odd':
ext = odd_ext(x, edge, axis=axis)
else:
ext = const_ext(x, edge, axis=axis)
else:
ext = x
return edge, ext
def _validate_x(x):
x = np.asarray(x)
if x.ndim == 0:
raise ValueError('x must be at least 1-D')
return x
def sosfilt(sos, x, axis=-1, zi=None):
"""
Filter data along one dimension using cascaded second-order sections.
Filter a data sequence, `x`, using a digital IIR filter defined by
`sos`.
Parameters
----------
sos : array_like
Array of second-order filter coefficients, must have shape
``(n_sections, 6)``. Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.
x : array_like
An N-dimensional input array.
axis : int, optional
The axis of the input data array along which to apply the
linear filter. The filter is applied to each subarray along
this axis. Default is -1.
zi : array_like, optional
Initial conditions for the cascaded filter delays. It is a (at
least 2D) vector of shape ``(n_sections, ..., 2, ...)``, where
``..., 2, ...`` denotes the shape of `x`, but with ``x.shape[axis]``
replaced by 2. If `zi` is None or is not given then initial rest
(i.e. all zeros) is assumed.
Note that these initial conditions are *not* the same as the initial
conditions given by `lfiltic` or `lfilter_zi`.
Returns
-------
y : ndarray
The output of the digital filter.
zf : ndarray, optional
If `zi` is None, this is not returned, otherwise, `zf` holds the
final filter delay values.
See Also
--------
zpk2sos, sos2zpk, sosfilt_zi, sosfiltfilt, sosfreqz
Notes
-----
The filter function is implemented as a series of second-order filters
with direct-form II transposed structure. It is designed to minimize
numerical precision errors for high-order filters.
.. versionadded:: 0.16.0
Examples
--------
Plot a 13th-order filter's impulse response using both `lfilter` and
`sosfilt`, showing the instability that results from trying to do a
13th-order filter in a single stage (the numerical error pushes some poles
outside of the unit circle):
>>> import matplotlib.pyplot as plt
>>> from scipy import signal
>>> b, a = signal.ellip(13, 0.009, 80, 0.05, output='ba')
>>> sos = signal.ellip(13, 0.009, 80, 0.05, output='sos')
>>> x = signal.unit_impulse(700)
>>> y_tf = signal.lfilter(b, a, x)
>>> y_sos = signal.sosfilt(sos, x)
>>> plt.plot(y_tf, 'r', label='TF')
>>> plt.plot(y_sos, 'k', label='SOS')
>>> plt.legend(loc='best')
>>> plt.show()
"""
x = _validate_x(x)
sos, n_sections = _validate_sos(sos)
x_zi_shape = list(x.shape)
x_zi_shape[axis] = 2
x_zi_shape = tuple([n_sections] + x_zi_shape)
inputs = [sos, x]
if zi is not None:
inputs.append(np.asarray(zi))
dtype = np.result_type(*inputs)
if dtype.char not in 'fdgFDGO':
raise NotImplementedError("input type '%s' not supported" % dtype)
if zi is not None:
zi = np.array(zi, dtype) # make a copy so that we can operate in place
if zi.shape != x_zi_shape:
raise ValueError('Invalid zi shape. With axis=%r, an input with '
'shape %r, and an sos array with %d sections, zi '
'must have shape %r, got %r.' %
(axis, x.shape, n_sections, x_zi_shape, zi.shape))
return_zi = True
else:
zi = np.zeros(x_zi_shape, dtype=dtype)
return_zi = False
axis = axis % x.ndim # make positive
x = np.moveaxis(x, axis, -1)
zi = np.moveaxis(zi, [0, axis + 1], [-2, -1])
x_shape, zi_shape = x.shape, zi.shape
x = np.reshape(x, (-1, x.shape[-1]))
x = np.array(x, dtype, order='C') # make a copy, can modify in place
zi = np.ascontiguousarray(np.reshape(zi, (-1, n_sections, 2)))
sos = sos.astype(dtype, copy=False)
_sosfilt(sos, x, zi)
x.shape = x_shape
x = np.moveaxis(x, -1, axis)
if return_zi:
zi.shape = zi_shape
zi = np.moveaxis(zi, [-2, -1], [0, axis + 1])
out = (x, zi)
else:
out = x
return out
def sosfiltfilt(sos, x, axis=-1, padtype='odd', padlen=None):
"""
A forward-backward digital filter using cascaded second-order sections.
See `filtfilt` for more complete information about this method.
Parameters
----------
sos : array_like
Array of second-order filter coefficients, must have shape
``(n_sections, 6)``. Each row corresponds to a second-order
section, with the first three columns providing the numerator
coefficients and the last three providing the denominator
coefficients.
x : array_like
The array of data to be filtered.
axis : int, optional
The axis of `x` to which the filter is applied.
Default is -1.
padtype : str or None, optional
Must be 'odd', 'even', 'constant', or None. This determines the
type of extension to use for the padded signal to which the filter
is applied. If `padtype` is None, no padding is used. The default
is 'odd'.
padlen : int or None, optional
The number of elements by which to extend `x` at both ends of
`axis` before applying the filter. This value must be less than
``x.shape[axis] - 1``. ``padlen=0`` implies no padding.
The default value is::
3 * (2 * len(sos) + 1 - min((sos[:, 2] == 0).sum(),
(sos[:, 5] == 0).sum()))
The extra subtraction at the end attempts to compensate for poles
and zeros at the origin (e.g. for odd-order filters) to yield
equivalent estimates of `padlen` to those of `filtfilt` for
second-order section filters built with `scipy.signal` functions.
Returns
-------
y : ndarray
The filtered output with the same shape as `x`.
See Also
--------
filtfilt, sosfilt, sosfilt_zi, sosfreqz
Notes
-----
.. versionadded:: 0.18.0
Examples
--------
>>> from scipy.signal import sosfiltfilt, butter
>>> import matplotlib.pyplot as plt
Create an interesting signal to filter.
>>> n = 201
>>> t = np.linspace(0, 1, n)
>>> np.random.seed(123)
>>> x = 1 + (t < 0.5) - 0.25*t**2 + 0.05*np.random.randn(n)
Create a lowpass Butterworth filter, and use it to filter `x`.
>>> sos = butter(4, 0.125, output='sos')
>>> y = sosfiltfilt(sos, x)
For comparison, apply an 8th order filter using `sosfilt`. The filter
is initialized using the mean of the first four values of `x`.
>>> from scipy.signal import sosfilt, sosfilt_zi
>>> sos8 = butter(8, 0.125, output='sos')
>>> zi = x[:4].mean() * sosfilt_zi(sos8)
>>> y2, zo = sosfilt(sos8, x, zi=zi)
Plot the results. Note that the phase of `y` matches the input, while
`y2` has a significant phase delay.
>>> plt.plot(t, x, alpha=0.5, label='x(t)')
>>> plt.plot(t, y, label='y(t)')
>>> plt.plot(t, y2, label='y2(t)')
>>> plt.legend(framealpha=1, shadow=True)
>>> plt.grid(alpha=0.25)
>>> plt.xlabel('t')
>>> plt.show()
"""
sos, n_sections = _validate_sos(sos)
x = _validate_x(x)
# `method` is "pad"...
ntaps = 2 * n_sections + 1
ntaps -= min((sos[:, 2] == 0).sum(), (sos[:, 5] == 0).sum())
edge, ext = _validate_pad(padtype, padlen, x, axis,
ntaps=ntaps)
# These steps follow the same form as filtfilt with modifications
zi = sosfilt_zi(sos) # shape (n_sections, 2) --> (n_sections, ..., 2, ...)
zi_shape = [1] * x.ndim
zi_shape[axis] = 2
zi.shape = [n_sections] + zi_shape
x_0 = axis_slice(ext, stop=1, axis=axis)
(y, zf) = sosfilt(sos, ext, axis=axis, zi=zi * x_0)
y_0 = axis_slice(y, start=-1, axis=axis)
(y, zf) = sosfilt(sos, axis_reverse(y, axis=axis), axis=axis, zi=zi * y_0)
y = axis_reverse(y, axis=axis)
if edge > 0:
y = axis_slice(y, start=edge, stop=-edge, axis=axis)
return y
def decimate(x, q, n=None, ftype='iir', axis=-1, zero_phase=True):
"""
Downsample the signal after applying an anti-aliasing filter.
By default, an order 8 Chebyshev type I filter is used. A 30 point FIR
filter with Hamming window is used if `ftype` is 'fir'.
Parameters
----------
x : array_like
The signal to be downsampled, as an N-dimensional array.
q : int
The downsampling factor. When using IIR downsampling, it is recommended
to call `decimate` multiple times for downsampling factors higher than
13.
n : int, optional
The order of the filter (1 less than the length for 'fir'). Defaults to
8 for 'iir' and 20 times the downsampling factor for 'fir'.
ftype : str {'iir', 'fir'} or ``dlti`` instance, optional
If 'iir' or 'fir', specifies the type of lowpass filter. If an instance
of an `dlti` object, uses that object to filter before downsampling.
axis : int, optional
The axis along which to decimate.
zero_phase : bool, optional
Prevent phase shift by filtering with `filtfilt` instead of `lfilter`
when using an IIR filter, and shifting the outputs back by the filter's
group delay when using an FIR filter. The default value of ``True`` is
recommended, since a phase shift is generally not desired.
.. versionadded:: 0.18.0
Returns
-------
y : ndarray
The down-sampled signal.
See Also
--------
resample : Resample up or down using the FFT method.
resample_poly : Resample using polyphase filtering and an FIR filter.
Notes
-----
The ``zero_phase`` keyword was added in 0.18.0.
The possibility to use instances of ``dlti`` as ``ftype`` was added in
0.18.0.
"""
x = np.asarray(x)
q = operator.index(q)
if n is not None:
n = operator.index(n)
if ftype == 'fir':
if n is None:
half_len = 10 * q # reasonable cutoff for our sinc-like function
n = 2 * half_len
b, a = firwin(n+1, 1. / q, window='hamming'), 1.
elif ftype == 'iir':
if n is None:
n = 8
system = dlti(*cheby1(n, 0.05, 0.8 / q))
b, a = system.num, system.den
elif isinstance(ftype, dlti):
system = ftype._as_tf() # Avoids copying if already in TF form
b, a = system.num, system.den
else:
raise ValueError('invalid ftype')
sl = [slice(None)] * x.ndim
a = np.asarray(a)
if a.size == 1: # FIR case
b = b / a
if zero_phase:
y = resample_poly(x, 1, q, axis=axis, window=b)
else:
# upfirdn is generally faster than lfilter by a factor equal to the
# downsampling factor, since it only calculates the needed outputs
n_out = x.shape[axis] // q + bool(x.shape[axis] % q)
y = upfirdn(b, x, up=1, down=q, axis=axis)
sl[axis] = slice(None, n_out, None)
else: # IIR case
if zero_phase:
y = filtfilt(b, a, x, axis=axis)
else:
y = lfilter(b, a, x, axis=axis)
sl[axis] = slice(None, None, q)
return y[tuple(sl)]