lti_conversion.py
14.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
ltisys -- a collection of functions to convert linear time invariant systems
from one representation to another.
"""
import numpy
import numpy as np
from numpy import (r_, eye, atleast_2d, poly, dot,
asarray, prod, zeros, array, outer)
from scipy import linalg
from .filter_design import tf2zpk, zpk2tf, normalize
__all__ = ['tf2ss', 'abcd_normalize', 'ss2tf', 'zpk2ss', 'ss2zpk',
'cont2discrete']
def tf2ss(num, den):
r"""Transfer function to state-space representation.
Parameters
----------
num, den : array_like
Sequences representing the coefficients of the numerator and
denominator polynomials, in order of descending degree. The
denominator needs to be at least as long as the numerator.
Returns
-------
A, B, C, D : ndarray
State space representation of the system, in controller canonical
form.
Examples
--------
Convert the transfer function:
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
>>> num = [1, 3, 3]
>>> den = [1, 2, 1]
to the state-space representation:
.. math::
\dot{\textbf{x}}(t) =
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
>>> from scipy.signal import tf2ss
>>> A, B, C, D = tf2ss(num, den)
>>> A
array([[-2., -1.],
[ 1., 0.]])
>>> B
array([[ 1.],
[ 0.]])
>>> C
array([[ 1., 2.]])
>>> D
array([[ 1.]])
"""
# Controller canonical state-space representation.
# if M+1 = len(num) and K+1 = len(den) then we must have M <= K
# states are found by asserting that X(s) = U(s) / D(s)
# then Y(s) = N(s) * X(s)
#
# A, B, C, and D follow quite naturally.
#
num, den = normalize(num, den) # Strips zeros, checks arrays
nn = len(num.shape)
if nn == 1:
num = asarray([num], num.dtype)
M = num.shape[1]
K = len(den)
if M > K:
msg = "Improper transfer function. `num` is longer than `den`."
raise ValueError(msg)
if M == 0 or K == 0: # Null system
return (array([], float), array([], float), array([], float),
array([], float))
# pad numerator to have same number of columns has denominator
num = r_['-1', zeros((num.shape[0], K - M), num.dtype), num]
if num.shape[-1] > 0:
D = atleast_2d(num[:, 0])
else:
# We don't assign it an empty array because this system
# is not 'null'. It just doesn't have a non-zero D
# matrix. Thus, it should have a non-zero shape so that
# it can be operated on by functions like 'ss2tf'
D = array([[0]], float)
if K == 1:
D = D.reshape(num.shape)
return (zeros((1, 1)), zeros((1, D.shape[1])),
zeros((D.shape[0], 1)), D)
frow = -array([den[1:]])
A = r_[frow, eye(K - 2, K - 1)]
B = eye(K - 1, 1)
C = num[:, 1:] - outer(num[:, 0], den[1:])
D = D.reshape((C.shape[0], B.shape[1]))
return A, B, C, D
def _none_to_empty_2d(arg):
if arg is None:
return zeros((0, 0))
else:
return arg
def _atleast_2d_or_none(arg):
if arg is not None:
return atleast_2d(arg)
def _shape_or_none(M):
if M is not None:
return M.shape
else:
return (None,) * 2
def _choice_not_none(*args):
for arg in args:
if arg is not None:
return arg
def _restore(M, shape):
if M.shape == (0, 0):
return zeros(shape)
else:
if M.shape != shape:
raise ValueError("The input arrays have incompatible shapes.")
return M
def abcd_normalize(A=None, B=None, C=None, D=None):
"""Check state-space matrices and ensure they are 2-D.
If enough information on the system is provided, that is, enough
properly-shaped arrays are passed to the function, the missing ones
are built from this information, ensuring the correct number of
rows and columns. Otherwise a ValueError is raised.
Parameters
----------
A, B, C, D : array_like, optional
State-space matrices. All of them are None (missing) by default.
See `ss2tf` for format.
Returns
-------
A, B, C, D : array
Properly shaped state-space matrices.
Raises
------
ValueError
If not enough information on the system was provided.
"""
A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D))
MA, NA = _shape_or_none(A)
MB, NB = _shape_or_none(B)
MC, NC = _shape_or_none(C)
MD, ND = _shape_or_none(D)
p = _choice_not_none(MA, MB, NC)
q = _choice_not_none(NB, ND)
r = _choice_not_none(MC, MD)
if p is None or q is None or r is None:
raise ValueError("Not enough information on the system.")
A, B, C, D = map(_none_to_empty_2d, (A, B, C, D))
A = _restore(A, (p, p))
B = _restore(B, (p, q))
C = _restore(C, (r, p))
D = _restore(D, (r, q))
return A, B, C, D
def ss2tf(A, B, C, D, input=0):
r"""State-space to transfer function.
A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.
Parameters
----------
A : array_like
State (or system) matrix of shape ``(n, n)``
B : array_like
Input matrix of shape ``(n, p)``
C : array_like
Output matrix of shape ``(q, n)``
D : array_like
Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
For multiple-input systems, the index of the input to use.
Returns
-------
num : 2-D ndarray
Numerator(s) of the resulting transfer function(s). `num` has one row
for each of the system's outputs. Each row is a sequence representation
of the numerator polynomial.
den : 1-D ndarray
Denominator of the resulting transfer function(s). `den` is a sequence
representation of the denominator polynomial.
Examples
--------
Convert the state-space representation:
.. math::
\dot{\textbf{x}}(t) =
\begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\
\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) +
\begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)
>>> A = [[-2, -1], [1, 0]]
>>> B = [[1], [0]] # 2-D column vector
>>> C = [[1, 2]] # 2-D row vector
>>> D = 1
to the transfer function:
.. math:: H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}
>>> from scipy.signal import ss2tf
>>> ss2tf(A, B, C, D)
(array([[1, 3, 3]]), array([ 1., 2., 1.]))
"""
# transfer function is C (sI - A)**(-1) B + D
# Check consistency and make them all rank-2 arrays
A, B, C, D = abcd_normalize(A, B, C, D)
nout, nin = D.shape
if input >= nin:
raise ValueError("System does not have the input specified.")
# make SIMO from possibly MIMO system.
B = B[:, input:input + 1]
D = D[:, input:input + 1]
try:
den = poly(A)
except ValueError:
den = 1
if (prod(B.shape, axis=0) == 0) and (prod(C.shape, axis=0) == 0):
num = numpy.ravel(D)
if (prod(D.shape, axis=0) == 0) and (prod(A.shape, axis=0) == 0):
den = []
return num, den
num_states = A.shape[0]
type_test = A[:, 0] + B[:, 0] + C[0, :] + D
num = numpy.zeros((nout, num_states + 1), type_test.dtype)
for k in range(nout):
Ck = atleast_2d(C[k, :])
num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den
return num, den
def zpk2ss(z, p, k):
"""Zero-pole-gain representation to state-space representation
Parameters
----------
z, p : sequence
Zeros and poles.
k : float
System gain.
Returns
-------
A, B, C, D : ndarray
State space representation of the system, in controller canonical
form.
"""
return tf2ss(*zpk2tf(z, p, k))
def ss2zpk(A, B, C, D, input=0):
"""State-space representation to zero-pole-gain representation.
A, B, C, D defines a linear state-space system with `p` inputs,
`q` outputs, and `n` state variables.
Parameters
----------
A : array_like
State (or system) matrix of shape ``(n, n)``
B : array_like
Input matrix of shape ``(n, p)``
C : array_like
Output matrix of shape ``(q, n)``
D : array_like
Feedthrough (or feedforward) matrix of shape ``(q, p)``
input : int, optional
For multiple-input systems, the index of the input to use.
Returns
-------
z, p : sequence
Zeros and poles.
k : float
System gain.
"""
return tf2zpk(*ss2tf(A, B, C, D, input=input))
def cont2discrete(system, dt, method="zoh", alpha=None):
"""
Transform a continuous to a discrete state-space system.
Parameters
----------
system : a tuple describing the system or an instance of `lti`
The following gives the number of elements in the tuple and
the interpretation:
* 1: (instance of `lti`)
* 2: (num, den)
* 3: (zeros, poles, gain)
* 4: (A, B, C, D)
dt : float
The discretization time step.
method : str, optional
Which method to use:
* gbt: generalized bilinear transformation
* bilinear: Tustin's approximation ("gbt" with alpha=0.5)
* euler: Euler (or forward differencing) method ("gbt" with alpha=0)
* backward_diff: Backwards differencing ("gbt" with alpha=1.0)
* zoh: zero-order hold (default)
* foh: first-order hold (*versionadded: 1.3.0*)
* impulse: equivalent impulse response (*versionadded: 1.3.0*)
alpha : float within [0, 1], optional
The generalized bilinear transformation weighting parameter, which
should only be specified with method="gbt", and is ignored otherwise
Returns
-------
sysd : tuple containing the discrete system
Based on the input type, the output will be of the form
* (num, den, dt) for transfer function input
* (zeros, poles, gain, dt) for zeros-poles-gain input
* (A, B, C, D, dt) for state-space system input
Notes
-----
By default, the routine uses a Zero-Order Hold (zoh) method to perform
the transformation. Alternatively, a generalized bilinear transformation
may be used, which includes the common Tustin's bilinear approximation,
an Euler's method technique, or a backwards differencing technique.
The Zero-Order Hold (zoh) method is based on [1]_, the generalized bilinear
approximation is based on [2]_ and [3]_, the First-Order Hold (foh) method
is based on [4]_.
References
----------
.. [1] https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models
.. [2] http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
.. [3] G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized
bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754,
2009.
(https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)
.. [4] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control
of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley,
pp. 204-206, 1998.
"""
if len(system) == 1:
return system.to_discrete()
if len(system) == 2:
sysd = cont2discrete(tf2ss(system[0], system[1]), dt, method=method,
alpha=alpha)
return ss2tf(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
elif len(system) == 3:
sysd = cont2discrete(zpk2ss(system[0], system[1], system[2]), dt,
method=method, alpha=alpha)
return ss2zpk(sysd[0], sysd[1], sysd[2], sysd[3]) + (dt,)
elif len(system) == 4:
a, b, c, d = system
else:
raise ValueError("First argument must either be a tuple of 2 (tf), "
"3 (zpk), or 4 (ss) arrays.")
if method == 'gbt':
if alpha is None:
raise ValueError("Alpha parameter must be specified for the "
"generalized bilinear transform (gbt) method")
elif alpha < 0 or alpha > 1:
raise ValueError("Alpha parameter must be within the interval "
"[0,1] for the gbt method")
if method == 'gbt':
# This parameter is used repeatedly - compute once here
ima = np.eye(a.shape[0]) - alpha*dt*a
ad = linalg.solve(ima, np.eye(a.shape[0]) + (1.0-alpha)*dt*a)
bd = linalg.solve(ima, dt*b)
# Similarly solve for the output equation matrices
cd = linalg.solve(ima.transpose(), c.transpose())
cd = cd.transpose()
dd = d + alpha*np.dot(c, bd)
elif method == 'bilinear' or method == 'tustin':
return cont2discrete(system, dt, method="gbt", alpha=0.5)
elif method == 'euler' or method == 'forward_diff':
return cont2discrete(system, dt, method="gbt", alpha=0.0)
elif method == 'backward_diff':
return cont2discrete(system, dt, method="gbt", alpha=1.0)
elif method == 'zoh':
# Build an exponential matrix
em_upper = np.hstack((a, b))
# Need to stack zeros under the a and b matrices
em_lower = np.hstack((np.zeros((b.shape[1], a.shape[0])),
np.zeros((b.shape[1], b.shape[1]))))
em = np.vstack((em_upper, em_lower))
ms = linalg.expm(dt * em)
# Dispose of the lower rows
ms = ms[:a.shape[0], :]
ad = ms[:, 0:a.shape[1]]
bd = ms[:, a.shape[1]:]
cd = c
dd = d
elif method == 'foh':
# Size parameters for convenience
n = a.shape[0]
m = b.shape[1]
# Build an exponential matrix similar to 'zoh' method
em_upper = linalg.block_diag(np.block([a, b]) * dt, np.eye(m))
em_lower = zeros((m, n + 2 * m))
em = np.block([[em_upper], [em_lower]])
ms = linalg.expm(em)
# Get the three blocks from upper rows
ms11 = ms[:n, 0:n]
ms12 = ms[:n, n:n + m]
ms13 = ms[:n, n + m:]
ad = ms11
bd = ms12 - ms13 + ms11 @ ms13
cd = c
dd = d + c @ ms13
elif method == 'impulse':
if not np.allclose(d, 0):
raise ValueError("Impulse method is only applicable"
"to strictly proper systems")
ad = linalg.expm(a * dt)
bd = ad @ b * dt
cd = c
dd = c @ b * dt
else:
raise ValueError("Unknown transformation method '%s'" % method)
return ad, bd, cd, dd, dt