_savitzky_golay.py
12.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import numpy as np
from scipy.linalg import lstsq
from scipy._lib._util import float_factorial
from scipy.ndimage import convolve1d
from ._arraytools import axis_slice
def savgol_coeffs(window_length, polyorder, deriv=0, delta=1.0, pos=None,
use="conv"):
"""Compute the coefficients for a 1-D Savitzky-Golay FIR filter.
Parameters
----------
window_length : int
The length of the filter window (i.e., the number of coefficients).
`window_length` must be an odd positive integer.
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0.
pos : int or None, optional
If pos is not None, it specifies evaluation position within the
window. The default is the middle of the window.
use : str, optional
Either 'conv' or 'dot'. This argument chooses the order of the
coefficients. The default is 'conv', which means that the
coefficients are ordered to be used in a convolution. With
use='dot', the order is reversed, so the filter is applied by
dotting the coefficients with the data set.
Returns
-------
coeffs : 1-D ndarray
The filter coefficients.
References
----------
A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by
Simplified Least Squares Procedures. Analytical Chemistry, 1964, 36 (8),
pp 1627-1639.
See Also
--------
savgol_filter
Notes
-----
.. versionadded:: 0.14.0
Examples
--------
>>> from scipy.signal import savgol_coeffs
>>> savgol_coeffs(5, 2)
array([-0.08571429, 0.34285714, 0.48571429, 0.34285714, -0.08571429])
>>> savgol_coeffs(5, 2, deriv=1)
array([ 2.00000000e-01, 1.00000000e-01, 2.07548111e-16, -1.00000000e-01,
-2.00000000e-01])
Note that use='dot' simply reverses the coefficients.
>>> savgol_coeffs(5, 2, pos=3)
array([ 0.25714286, 0.37142857, 0.34285714, 0.17142857, -0.14285714])
>>> savgol_coeffs(5, 2, pos=3, use='dot')
array([-0.14285714, 0.17142857, 0.34285714, 0.37142857, 0.25714286])
`x` contains data from the parabola x = t**2, sampled at
t = -1, 0, 1, 2, 3. `c` holds the coefficients that will compute the
derivative at the last position. When dotted with `x` the result should
be 6.
>>> x = np.array([1, 0, 1, 4, 9])
>>> c = savgol_coeffs(5, 2, pos=4, deriv=1, use='dot')
>>> c.dot(x)
6.0
"""
# An alternative method for finding the coefficients when deriv=0 is
# t = np.arange(window_length)
# unit = (t == pos).astype(int)
# coeffs = np.polyval(np.polyfit(t, unit, polyorder), t)
# The method implemented here is faster.
# To recreate the table of sample coefficients shown in the chapter on
# the Savitzy-Golay filter in the Numerical Recipes book, use
# window_length = nL + nR + 1
# pos = nL + 1
# c = savgol_coeffs(window_length, M, pos=pos, use='dot')
if polyorder >= window_length:
raise ValueError("polyorder must be less than window_length.")
halflen, rem = divmod(window_length, 2)
if rem == 0:
raise ValueError("window_length must be odd.")
if pos is None:
pos = halflen
if not (0 <= pos < window_length):
raise ValueError("pos must be nonnegative and less than "
"window_length.")
if use not in ['conv', 'dot']:
raise ValueError("`use` must be 'conv' or 'dot'")
if deriv > polyorder:
coeffs = np.zeros(window_length)
return coeffs
# Form the design matrix A. The columns of A are powers of the integers
# from -pos to window_length - pos - 1. The powers (i.e., rows) range
# from 0 to polyorder. (That is, A is a vandermonde matrix, but not
# necessarily square.)
x = np.arange(-pos, window_length - pos, dtype=float)
if use == "conv":
# Reverse so that result can be used in a convolution.
x = x[::-1]
order = np.arange(polyorder + 1).reshape(-1, 1)
A = x ** order
# y determines which order derivative is returned.
y = np.zeros(polyorder + 1)
# The coefficient assigned to y[deriv] scales the result to take into
# account the order of the derivative and the sample spacing.
y[deriv] = float_factorial(deriv) / (delta ** deriv)
# Find the least-squares solution of A*c = y
coeffs, _, _, _ = lstsq(A, y)
return coeffs
def _polyder(p, m):
"""Differentiate polynomials represented with coefficients.
p must be a 1-D or 2-D array. In the 2-D case, each column gives
the coefficients of a polynomial; the first row holds the coefficients
associated with the highest power. m must be a nonnegative integer.
(numpy.polyder doesn't handle the 2-D case.)
"""
if m == 0:
result = p
else:
n = len(p)
if n <= m:
result = np.zeros_like(p[:1, ...])
else:
dp = p[:-m].copy()
for k in range(m):
rng = np.arange(n - k - 1, m - k - 1, -1)
dp *= rng.reshape((n - m,) + (1,) * (p.ndim - 1))
result = dp
return result
def _fit_edge(x, window_start, window_stop, interp_start, interp_stop,
axis, polyorder, deriv, delta, y):
"""
Given an N-d array `x` and the specification of a slice of `x` from
`window_start` to `window_stop` along `axis`, create an interpolating
polynomial of each 1-D slice, and evaluate that polynomial in the slice
from `interp_start` to `interp_stop`. Put the result into the
corresponding slice of `y`.
"""
# Get the edge into a (window_length, -1) array.
x_edge = axis_slice(x, start=window_start, stop=window_stop, axis=axis)
if axis == 0 or axis == -x.ndim:
xx_edge = x_edge
swapped = False
else:
xx_edge = x_edge.swapaxes(axis, 0)
swapped = True
xx_edge = xx_edge.reshape(xx_edge.shape[0], -1)
# Fit the edges. poly_coeffs has shape (polyorder + 1, -1),
# where '-1' is the same as in xx_edge.
poly_coeffs = np.polyfit(np.arange(0, window_stop - window_start),
xx_edge, polyorder)
if deriv > 0:
poly_coeffs = _polyder(poly_coeffs, deriv)
# Compute the interpolated values for the edge.
i = np.arange(interp_start - window_start, interp_stop - window_start)
values = np.polyval(poly_coeffs, i.reshape(-1, 1)) / (delta ** deriv)
# Now put the values into the appropriate slice of y.
# First reshape values to match y.
shp = list(y.shape)
shp[0], shp[axis] = shp[axis], shp[0]
values = values.reshape(interp_stop - interp_start, *shp[1:])
if swapped:
values = values.swapaxes(0, axis)
# Get a view of the data to be replaced by values.
y_edge = axis_slice(y, start=interp_start, stop=interp_stop, axis=axis)
y_edge[...] = values
def _fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y):
"""
Use polynomial interpolation of x at the low and high ends of the axis
to fill in the halflen values in y.
This function just calls _fit_edge twice, once for each end of the axis.
"""
halflen = window_length // 2
_fit_edge(x, 0, window_length, 0, halflen, axis,
polyorder, deriv, delta, y)
n = x.shape[axis]
_fit_edge(x, n - window_length, n, n - halflen, n, axis,
polyorder, deriv, delta, y)
def savgol_filter(x, window_length, polyorder, deriv=0, delta=1.0,
axis=-1, mode='interp', cval=0.0):
""" Apply a Savitzky-Golay filter to an array.
This is a 1-D filter. If `x` has dimension greater than 1, `axis`
determines the axis along which the filter is applied.
Parameters
----------
x : array_like
The data to be filtered. If `x` is not a single or double precision
floating point array, it will be converted to type ``numpy.float64``
before filtering.
window_length : int
The length of the filter window (i.e., the number of coefficients).
`window_length` must be a positive odd integer. If `mode` is 'interp',
`window_length` must be less than or equal to the size of `x`.
polyorder : int
The order of the polynomial used to fit the samples.
`polyorder` must be less than `window_length`.
deriv : int, optional
The order of the derivative to compute. This must be a
nonnegative integer. The default is 0, which means to filter
the data without differentiating.
delta : float, optional
The spacing of the samples to which the filter will be applied.
This is only used if deriv > 0. Default is 1.0.
axis : int, optional
The axis of the array `x` along which the filter is to be applied.
Default is -1.
mode : str, optional
Must be 'mirror', 'constant', 'nearest', 'wrap' or 'interp'. This
determines the type of extension to use for the padded signal to
which the filter is applied. When `mode` is 'constant', the padding
value is given by `cval`. See the Notes for more details on 'mirror',
'constant', 'wrap', and 'nearest'.
When the 'interp' mode is selected (the default), no extension
is used. Instead, a degree `polyorder` polynomial is fit to the
last `window_length` values of the edges, and this polynomial is
used to evaluate the last `window_length // 2` output values.
cval : scalar, optional
Value to fill past the edges of the input if `mode` is 'constant'.
Default is 0.0.
Returns
-------
y : ndarray, same shape as `x`
The filtered data.
See Also
--------
savgol_coeffs
Notes
-----
Details on the `mode` options:
'mirror':
Repeats the values at the edges in reverse order. The value
closest to the edge is not included.
'nearest':
The extension contains the nearest input value.
'constant':
The extension contains the value given by the `cval` argument.
'wrap':
The extension contains the values from the other end of the array.
For example, if the input is [1, 2, 3, 4, 5, 6, 7, 8], and
`window_length` is 7, the following shows the extended data for
the various `mode` options (assuming `cval` is 0)::
mode | Ext | Input | Ext
-----------+---------+------------------------+---------
'mirror' | 4 3 2 | 1 2 3 4 5 6 7 8 | 7 6 5
'nearest' | 1 1 1 | 1 2 3 4 5 6 7 8 | 8 8 8
'constant' | 0 0 0 | 1 2 3 4 5 6 7 8 | 0 0 0
'wrap' | 6 7 8 | 1 2 3 4 5 6 7 8 | 1 2 3
.. versionadded:: 0.14.0
Examples
--------
>>> from scipy.signal import savgol_filter
>>> np.set_printoptions(precision=2) # For compact display.
>>> x = np.array([2, 2, 5, 2, 1, 0, 1, 4, 9])
Filter with a window length of 5 and a degree 2 polynomial. Use
the defaults for all other parameters.
>>> savgol_filter(x, 5, 2)
array([1.66, 3.17, 3.54, 2.86, 0.66, 0.17, 1. , 4. , 9. ])
Note that the last five values in x are samples of a parabola, so
when mode='interp' (the default) is used with polyorder=2, the last
three values are unchanged. Compare that to, for example,
`mode='nearest'`:
>>> savgol_filter(x, 5, 2, mode='nearest')
array([1.74, 3.03, 3.54, 2.86, 0.66, 0.17, 1. , 4.6 , 7.97])
"""
if mode not in ["mirror", "constant", "nearest", "interp", "wrap"]:
raise ValueError("mode must be 'mirror', 'constant', 'nearest' "
"'wrap' or 'interp'.")
x = np.asarray(x)
# Ensure that x is either single or double precision floating point.
if x.dtype != np.float64 and x.dtype != np.float32:
x = x.astype(np.float64)
coeffs = savgol_coeffs(window_length, polyorder, deriv=deriv, delta=delta)
if mode == "interp":
if window_length > x.size:
raise ValueError("If mode is 'interp', window_length must be less "
"than or equal to the size of x.")
# Do not pad. Instead, for the elements within `window_length // 2`
# of the ends of the sequence, use the polynomial that is fitted to
# the last `window_length` elements.
y = convolve1d(x, coeffs, axis=axis, mode="constant")
_fit_edges_polyfit(x, window_length, polyorder, deriv, delta, axis, y)
else:
# Any mode other than 'interp' is passed on to ndimage.convolve1d.
y = convolve1d(x, coeffs, axis=axis, mode=mode, cval=cval)
return y