special_matrices.py 39 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
import math
import numpy as np
from numpy.lib.stride_tricks import as_strided

__all__ = ['tri', 'tril', 'triu', 'toeplitz', 'circulant', 'hankel',
           'hadamard', 'leslie', 'kron', 'block_diag', 'companion',
           'helmert', 'hilbert', 'invhilbert', 'pascal', 'invpascal', 'dft',
           'fiedler', 'fiedler_companion', 'convolution_matrix']


# -----------------------------------------------------------------------------
#  matrix construction functions
# -----------------------------------------------------------------------------

#
# *Note*: tri{,u,l} is implemented in NumPy, but an important bug was fixed in
# 2.0.0.dev-1af2f3, the following tri{,u,l} definitions are here for backwards
# compatibility.

def tri(N, M=None, k=0, dtype=None):
    """
    Construct (N, M) matrix filled with ones at and below the kth diagonal.

    The matrix has A[i,j] == 1 for i <= j + k

    Parameters
    ----------
    N : int
        The size of the first dimension of the matrix.
    M : int or None, optional
        The size of the second dimension of the matrix. If `M` is None,
        `M = N` is assumed.
    k : int, optional
        Number of subdiagonal below which matrix is filled with ones.
        `k` = 0 is the main diagonal, `k` < 0 subdiagonal and `k` > 0
        superdiagonal.
    dtype : dtype, optional
        Data type of the matrix.

    Returns
    -------
    tri : (N, M) ndarray
        Tri matrix.

    Examples
    --------
    >>> from scipy.linalg import tri
    >>> tri(3, 5, 2, dtype=int)
    array([[1, 1, 1, 0, 0],
           [1, 1, 1, 1, 0],
           [1, 1, 1, 1, 1]])
    >>> tri(3, 5, -1, dtype=int)
    array([[0, 0, 0, 0, 0],
           [1, 0, 0, 0, 0],
           [1, 1, 0, 0, 0]])

    """
    if M is None:
        M = N
    if isinstance(M, str):
        # pearu: any objections to remove this feature?
        #       As tri(N,'d') is equivalent to tri(N,dtype='d')
        dtype = M
        M = N
    m = np.greater_equal.outer(np.arange(k, N+k), np.arange(M))
    if dtype is None:
        return m
    else:
        return m.astype(dtype)


def tril(m, k=0):
    """
    Make a copy of a matrix with elements above the kth diagonal zeroed.

    Parameters
    ----------
    m : array_like
        Matrix whose elements to return
    k : int, optional
        Diagonal above which to zero elements.
        `k` == 0 is the main diagonal, `k` < 0 subdiagonal and
        `k` > 0 superdiagonal.

    Returns
    -------
    tril : ndarray
        Return is the same shape and type as `m`.

    Examples
    --------
    >>> from scipy.linalg import tril
    >>> tril([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 0,  0,  0],
           [ 4,  0,  0],
           [ 7,  8,  0],
           [10, 11, 12]])

    """
    m = np.asarray(m)
    out = tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype.char) * m
    return out


def triu(m, k=0):
    """
    Make a copy of a matrix with elements below the kth diagonal zeroed.

    Parameters
    ----------
    m : array_like
        Matrix whose elements to return
    k : int, optional
        Diagonal below which to zero elements.
        `k` == 0 is the main diagonal, `k` < 0 subdiagonal and
        `k` > 0 superdiagonal.

    Returns
    -------
    triu : ndarray
        Return matrix with zeroed elements below the kth diagonal and has
        same shape and type as `m`.

    Examples
    --------
    >>> from scipy.linalg import triu
    >>> triu([[1,2,3],[4,5,6],[7,8,9],[10,11,12]], -1)
    array([[ 1,  2,  3],
           [ 4,  5,  6],
           [ 0,  8,  9],
           [ 0,  0, 12]])

    """
    m = np.asarray(m)
    out = (1 - tri(m.shape[0], m.shape[1], k - 1, m.dtype.char)) * m
    return out


def toeplitz(c, r=None):
    """
    Construct a Toeplitz matrix.

    The Toeplitz matrix has constant diagonals, with c as its first column
    and r as its first row. If r is not given, ``r == conjugate(c)`` is
    assumed.

    Parameters
    ----------
    c : array_like
        First column of the matrix.  Whatever the actual shape of `c`, it
        will be converted to a 1-D array.
    r : array_like, optional
        First row of the matrix. If None, ``r = conjugate(c)`` is assumed;
        in this case, if c[0] is real, the result is a Hermitian matrix.
        r[0] is ignored; the first row of the returned matrix is
        ``[c[0], r[1:]]``.  Whatever the actual shape of `r`, it will be
        converted to a 1-D array.

    Returns
    -------
    A : (len(c), len(r)) ndarray
        The Toeplitz matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.

    See Also
    --------
    circulant : circulant matrix
    hankel : Hankel matrix
    solve_toeplitz : Solve a Toeplitz system.

    Notes
    -----
    The behavior when `c` or `r` is a scalar, or when `c` is complex and
    `r` is None, was changed in version 0.8.0. The behavior in previous
    versions was undocumented and is no longer supported.

    Examples
    --------
    >>> from scipy.linalg import toeplitz
    >>> toeplitz([1,2,3], [1,4,5,6])
    array([[1, 4, 5, 6],
           [2, 1, 4, 5],
           [3, 2, 1, 4]])
    >>> toeplitz([1.0, 2+3j, 4-1j])
    array([[ 1.+0.j,  2.-3.j,  4.+1.j],
           [ 2.+3.j,  1.+0.j,  2.-3.j],
           [ 4.-1.j,  2.+3.j,  1.+0.j]])

    """
    c = np.asarray(c).ravel()
    if r is None:
        r = c.conjugate()
    else:
        r = np.asarray(r).ravel()
    # Form a 1-D array containing a reversed c followed by r[1:] that could be
    # strided to give us toeplitz matrix.
    vals = np.concatenate((c[::-1], r[1:]))
    out_shp = len(c), len(r)
    n = vals.strides[0]
    return as_strided(vals[len(c)-1:], shape=out_shp, strides=(-n, n)).copy()


def circulant(c):
    """
    Construct a circulant matrix.

    Parameters
    ----------
    c : (N,) array_like
        1-D array, the first column of the matrix.

    Returns
    -------
    A : (N, N) ndarray
        A circulant matrix whose first column is `c`.

    See Also
    --------
    toeplitz : Toeplitz matrix
    hankel : Hankel matrix
    solve_circulant : Solve a circulant system.

    Notes
    -----
    .. versionadded:: 0.8.0

    Examples
    --------
    >>> from scipy.linalg import circulant
    >>> circulant([1, 2, 3])
    array([[1, 3, 2],
           [2, 1, 3],
           [3, 2, 1]])

    """
    c = np.asarray(c).ravel()
    # Form an extended array that could be strided to give circulant version
    c_ext = np.concatenate((c[::-1], c[:0:-1]))
    L = len(c)
    n = c_ext.strides[0]
    return as_strided(c_ext[L-1:], shape=(L, L), strides=(-n, n)).copy()


def hankel(c, r=None):
    """
    Construct a Hankel matrix.

    The Hankel matrix has constant anti-diagonals, with `c` as its
    first column and `r` as its last row. If `r` is not given, then
    `r = zeros_like(c)` is assumed.

    Parameters
    ----------
    c : array_like
        First column of the matrix. Whatever the actual shape of `c`, it
        will be converted to a 1-D array.
    r : array_like, optional
        Last row of the matrix. If None, ``r = zeros_like(c)`` is assumed.
        r[0] is ignored; the last row of the returned matrix is
        ``[c[-1], r[1:]]``. Whatever the actual shape of `r`, it will be
        converted to a 1-D array.

    Returns
    -------
    A : (len(c), len(r)) ndarray
        The Hankel matrix. Dtype is the same as ``(c[0] + r[0]).dtype``.

    See Also
    --------
    toeplitz : Toeplitz matrix
    circulant : circulant matrix

    Examples
    --------
    >>> from scipy.linalg import hankel
    >>> hankel([1, 17, 99])
    array([[ 1, 17, 99],
           [17, 99,  0],
           [99,  0,  0]])
    >>> hankel([1,2,3,4], [4,7,7,8,9])
    array([[1, 2, 3, 4, 7],
           [2, 3, 4, 7, 7],
           [3, 4, 7, 7, 8],
           [4, 7, 7, 8, 9]])

    """
    c = np.asarray(c).ravel()
    if r is None:
        r = np.zeros_like(c)
    else:
        r = np.asarray(r).ravel()
    # Form a 1-D array of values to be used in the matrix, containing `c`
    # followed by r[1:].
    vals = np.concatenate((c, r[1:]))
    # Stride on concatenated array to get hankel matrix
    out_shp = len(c), len(r)
    n = vals.strides[0]
    return as_strided(vals, shape=out_shp, strides=(n, n)).copy()


def hadamard(n, dtype=int):
    """
    Construct an Hadamard matrix.

    Constructs an n-by-n Hadamard matrix, using Sylvester's
    construction. `n` must be a power of 2.

    Parameters
    ----------
    n : int
        The order of the matrix. `n` must be a power of 2.
    dtype : dtype, optional
        The data type of the array to be constructed.

    Returns
    -------
    H : (n, n) ndarray
        The Hadamard matrix.

    Notes
    -----
    .. versionadded:: 0.8.0

    Examples
    --------
    >>> from scipy.linalg import hadamard
    >>> hadamard(2, dtype=complex)
    array([[ 1.+0.j,  1.+0.j],
           [ 1.+0.j, -1.-0.j]])
    >>> hadamard(4)
    array([[ 1,  1,  1,  1],
           [ 1, -1,  1, -1],
           [ 1,  1, -1, -1],
           [ 1, -1, -1,  1]])

    """

    # This function is a slightly modified version of the
    # function contributed by Ivo in ticket #675.

    if n < 1:
        lg2 = 0
    else:
        lg2 = int(math.log(n, 2))
    if 2 ** lg2 != n:
        raise ValueError("n must be an positive integer, and n must be "
                         "a power of 2")

    H = np.array([[1]], dtype=dtype)

    # Sylvester's construction
    for i in range(0, lg2):
        H = np.vstack((np.hstack((H, H)), np.hstack((H, -H))))

    return H


def leslie(f, s):
    """
    Create a Leslie matrix.

    Given the length n array of fecundity coefficients `f` and the length
    n-1 array of survival coefficients `s`, return the associated Leslie
    matrix.

    Parameters
    ----------
    f : (N,) array_like
        The "fecundity" coefficients.
    s : (N-1,) array_like
        The "survival" coefficients, has to be 1-D.  The length of `s`
        must be one less than the length of `f`, and it must be at least 1.

    Returns
    -------
    L : (N, N) ndarray
        The array is zero except for the first row,
        which is `f`, and the first sub-diagonal, which is `s`.
        The data-type of the array will be the data-type of ``f[0]+s[0]``.

    Notes
    -----
    .. versionadded:: 0.8.0

    The Leslie matrix is used to model discrete-time, age-structured
    population growth [1]_ [2]_. In a population with `n` age classes, two sets
    of parameters define a Leslie matrix: the `n` "fecundity coefficients",
    which give the number of offspring per-capita produced by each age
    class, and the `n` - 1 "survival coefficients", which give the
    per-capita survival rate of each age class.

    References
    ----------
    .. [1] P. H. Leslie, On the use of matrices in certain population
           mathematics, Biometrika, Vol. 33, No. 3, 183--212 (Nov. 1945)
    .. [2] P. H. Leslie, Some further notes on the use of matrices in
           population mathematics, Biometrika, Vol. 35, No. 3/4, 213--245
           (Dec. 1948)

    Examples
    --------
    >>> from scipy.linalg import leslie
    >>> leslie([0.1, 2.0, 1.0, 0.1], [0.2, 0.8, 0.7])
    array([[ 0.1,  2. ,  1. ,  0.1],
           [ 0.2,  0. ,  0. ,  0. ],
           [ 0. ,  0.8,  0. ,  0. ],
           [ 0. ,  0. ,  0.7,  0. ]])

    """
    f = np.atleast_1d(f)
    s = np.atleast_1d(s)
    if f.ndim != 1:
        raise ValueError("Incorrect shape for f.  f must be 1D")
    if s.ndim != 1:
        raise ValueError("Incorrect shape for s.  s must be 1D")
    if f.size != s.size + 1:
        raise ValueError("Incorrect lengths for f and s.  The length"
                         " of s must be one less than the length of f.")
    if s.size == 0:
        raise ValueError("The length of s must be at least 1.")

    tmp = f[0] + s[0]
    n = f.size
    a = np.zeros((n, n), dtype=tmp.dtype)
    a[0] = f
    a[list(range(1, n)), list(range(0, n - 1))] = s
    return a


def kron(a, b):
    """
    Kronecker product.

    The result is the block matrix::

        a[0,0]*b    a[0,1]*b  ... a[0,-1]*b
        a[1,0]*b    a[1,1]*b  ... a[1,-1]*b
        ...
        a[-1,0]*b   a[-1,1]*b ... a[-1,-1]*b

    Parameters
    ----------
    a : (M, N) ndarray
        Input array
    b : (P, Q) ndarray
        Input array

    Returns
    -------
    A : (M*P, N*Q) ndarray
        Kronecker product of `a` and `b`.

    Examples
    --------
    >>> from numpy import array
    >>> from scipy.linalg import kron
    >>> kron(array([[1,2],[3,4]]), array([[1,1,1]]))
    array([[1, 1, 1, 2, 2, 2],
           [3, 3, 3, 4, 4, 4]])

    """
    if not a.flags['CONTIGUOUS']:
        a = np.reshape(a, a.shape)
    if not b.flags['CONTIGUOUS']:
        b = np.reshape(b, b.shape)
    o = np.outer(a, b)
    o = o.reshape(a.shape + b.shape)
    return np.concatenate(np.concatenate(o, axis=1), axis=1)


def block_diag(*arrs):
    """
    Create a block diagonal matrix from provided arrays.

    Given the inputs `A`, `B` and `C`, the output will have these
    arrays arranged on the diagonal::

        [[A, 0, 0],
         [0, B, 0],
         [0, 0, C]]

    Parameters
    ----------
    A, B, C, ... : array_like, up to 2-D
        Input arrays.  A 1-D array or array_like sequence of length `n` is
        treated as a 2-D array with shape ``(1,n)``.

    Returns
    -------
    D : ndarray
        Array with `A`, `B`, `C`, ... on the diagonal. `D` has the
        same dtype as `A`.

    Notes
    -----
    If all the input arrays are square, the output is known as a
    block diagonal matrix.

    Empty sequences (i.e., array-likes of zero size) will not be ignored.
    Noteworthy, both [] and [[]] are treated as matrices with shape ``(1,0)``.

    Examples
    --------
    >>> from scipy.linalg import block_diag
    >>> A = [[1, 0],
    ...      [0, 1]]
    >>> B = [[3, 4, 5],
    ...      [6, 7, 8]]
    >>> C = [[7]]
    >>> P = np.zeros((2, 0), dtype='int32')
    >>> block_diag(A, B, C)
    array([[1, 0, 0, 0, 0, 0],
           [0, 1, 0, 0, 0, 0],
           [0, 0, 3, 4, 5, 0],
           [0, 0, 6, 7, 8, 0],
           [0, 0, 0, 0, 0, 7]])
    >>> block_diag(A, P, B, C)
    array([[1, 0, 0, 0, 0, 0],
           [0, 1, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 0, 0, 0, 0],
           [0, 0, 3, 4, 5, 0],
           [0, 0, 6, 7, 8, 0],
           [0, 0, 0, 0, 0, 7]])
    >>> block_diag(1.0, [2, 3], [[4, 5], [6, 7]])
    array([[ 1.,  0.,  0.,  0.,  0.],
           [ 0.,  2.,  3.,  0.,  0.],
           [ 0.,  0.,  0.,  4.,  5.],
           [ 0.,  0.,  0.,  6.,  7.]])

    """
    if arrs == ():
        arrs = ([],)
    arrs = [np.atleast_2d(a) for a in arrs]

    bad_args = [k for k in range(len(arrs)) if arrs[k].ndim > 2]
    if bad_args:
        raise ValueError("arguments in the following positions have dimension "
                         "greater than 2: %s" % bad_args)

    shapes = np.array([a.shape for a in arrs])
    out_dtype = np.find_common_type([arr.dtype for arr in arrs], [])
    out = np.zeros(np.sum(shapes, axis=0), dtype=out_dtype)

    r, c = 0, 0
    for i, (rr, cc) in enumerate(shapes):
        out[r:r + rr, c:c + cc] = arrs[i]
        r += rr
        c += cc
    return out


def companion(a):
    """
    Create a companion matrix.

    Create the companion matrix [1]_ associated with the polynomial whose
    coefficients are given in `a`.

    Parameters
    ----------
    a : (N,) array_like
        1-D array of polynomial coefficients. The length of `a` must be
        at least two, and ``a[0]`` must not be zero.

    Returns
    -------
    c : (N-1, N-1) ndarray
        The first row of `c` is ``-a[1:]/a[0]``, and the first
        sub-diagonal is all ones.  The data-type of the array is the same
        as the data-type of ``1.0*a[0]``.

    Raises
    ------
    ValueError
        If any of the following are true: a) ``a.ndim != 1``;
        b) ``a.size < 2``; c) ``a[0] == 0``.

    Notes
    -----
    .. versionadded:: 0.8.0

    References
    ----------
    .. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*.  Cambridge, UK:
        Cambridge University Press, 1999, pp. 146-7.

    Examples
    --------
    >>> from scipy.linalg import companion
    >>> companion([1, -10, 31, -30])
    array([[ 10., -31.,  30.],
           [  1.,   0.,   0.],
           [  0.,   1.,   0.]])

    """
    a = np.atleast_1d(a)

    if a.ndim != 1:
        raise ValueError("Incorrect shape for `a`.  `a` must be "
                         "one-dimensional.")

    if a.size < 2:
        raise ValueError("The length of `a` must be at least 2.")

    if a[0] == 0:
        raise ValueError("The first coefficient in `a` must not be zero.")

    first_row = -a[1:] / (1.0 * a[0])
    n = a.size
    c = np.zeros((n - 1, n - 1), dtype=first_row.dtype)
    c[0] = first_row
    c[list(range(1, n - 1)), list(range(0, n - 2))] = 1
    return c


def helmert(n, full=False):
    """
    Create an Helmert matrix of order `n`.

    This has applications in statistics, compositional or simplicial analysis,
    and in Aitchison geometry.

    Parameters
    ----------
    n : int
        The size of the array to create.
    full : bool, optional
        If True the (n, n) ndarray will be returned.
        Otherwise the submatrix that does not include the first
        row will be returned.
        Default: False.

    Returns
    -------
    M : ndarray
        The Helmert matrix.
        The shape is (n, n) or (n-1, n) depending on the `full` argument.

    Examples
    --------
    >>> from scipy.linalg import helmert
    >>> helmert(5, full=True)
    array([[ 0.4472136 ,  0.4472136 ,  0.4472136 ,  0.4472136 ,  0.4472136 ],
           [ 0.70710678, -0.70710678,  0.        ,  0.        ,  0.        ],
           [ 0.40824829,  0.40824829, -0.81649658,  0.        ,  0.        ],
           [ 0.28867513,  0.28867513,  0.28867513, -0.8660254 ,  0.        ],
           [ 0.2236068 ,  0.2236068 ,  0.2236068 ,  0.2236068 , -0.89442719]])

    """
    H = np.tril(np.ones((n, n)), -1) - np.diag(np.arange(n))
    d = np.arange(n) * np.arange(1, n+1)
    H[0] = 1
    d[0] = n
    H_full = H / np.sqrt(d)[:, np.newaxis]
    if full:
        return H_full
    else:
        return H_full[1:]


def hilbert(n):
    """
    Create a Hilbert matrix of order `n`.

    Returns the `n` by `n` array with entries `h[i,j] = 1 / (i + j + 1)`.

    Parameters
    ----------
    n : int
        The size of the array to create.

    Returns
    -------
    h : (n, n) ndarray
        The Hilbert matrix.

    See Also
    --------
    invhilbert : Compute the inverse of a Hilbert matrix.

    Notes
    -----
    .. versionadded:: 0.10.0

    Examples
    --------
    >>> from scipy.linalg import hilbert
    >>> hilbert(3)
    array([[ 1.        ,  0.5       ,  0.33333333],
           [ 0.5       ,  0.33333333,  0.25      ],
           [ 0.33333333,  0.25      ,  0.2       ]])

    """
    values = 1.0 / (1.0 + np.arange(2 * n - 1))
    h = hankel(values[:n], r=values[n - 1:])
    return h


def invhilbert(n, exact=False):
    """
    Compute the inverse of the Hilbert matrix of order `n`.

    The entries in the inverse of a Hilbert matrix are integers. When `n`
    is greater than 14, some entries in the inverse exceed the upper limit
    of 64 bit integers. The `exact` argument provides two options for
    dealing with these large integers.

    Parameters
    ----------
    n : int
        The order of the Hilbert matrix.
    exact : bool, optional
        If False, the data type of the array that is returned is np.float64,
        and the array is an approximation of the inverse.
        If True, the array is the exact integer inverse array. To represent
        the exact inverse when n > 14, the returned array is an object array
        of long integers. For n <= 14, the exact inverse is returned as an
        array with data type np.int64.

    Returns
    -------
    invh : (n, n) ndarray
        The data type of the array is np.float64 if `exact` is False.
        If `exact` is True, the data type is either np.int64 (for n <= 14)
        or object (for n > 14). In the latter case, the objects in the
        array will be long integers.

    See Also
    --------
    hilbert : Create a Hilbert matrix.

    Notes
    -----
    .. versionadded:: 0.10.0

    Examples
    --------
    >>> from scipy.linalg import invhilbert
    >>> invhilbert(4)
    array([[   16.,  -120.,   240.,  -140.],
           [ -120.,  1200., -2700.,  1680.],
           [  240., -2700.,  6480., -4200.],
           [ -140.,  1680., -4200.,  2800.]])
    >>> invhilbert(4, exact=True)
    array([[   16,  -120,   240,  -140],
           [ -120,  1200, -2700,  1680],
           [  240, -2700,  6480, -4200],
           [ -140,  1680, -4200,  2800]], dtype=int64)
    >>> invhilbert(16)[7,7]
    4.2475099528537506e+19
    >>> invhilbert(16, exact=True)[7,7]
    42475099528537378560

    """
    from scipy.special import comb
    if exact:
        if n > 14:
            dtype = object
        else:
            dtype = np.int64
    else:
        dtype = np.float64
    invh = np.empty((n, n), dtype=dtype)
    for i in range(n):
        for j in range(0, i + 1):
            s = i + j
            invh[i, j] = ((-1) ** s * (s + 1) *
                          comb(n + i, n - j - 1, exact) *
                          comb(n + j, n - i - 1, exact) *
                          comb(s, i, exact) ** 2)
            if i != j:
                invh[j, i] = invh[i, j]
    return invh


def pascal(n, kind='symmetric', exact=True):
    """
    Returns the n x n Pascal matrix.

    The Pascal matrix is a matrix containing the binomial coefficients as
    its elements.

    Parameters
    ----------
    n : int
        The size of the matrix to create; that is, the result is an n x n
        matrix.
    kind : str, optional
        Must be one of 'symmetric', 'lower', or 'upper'.
        Default is 'symmetric'.
    exact : bool, optional
        If `exact` is True, the result is either an array of type
        numpy.uint64 (if n < 35) or an object array of Python long integers.
        If `exact` is False, the coefficients in the matrix are computed using
        `scipy.special.comb` with `exact=False`. The result will be a floating
        point array, and the values in the array will not be the exact
        coefficients, but this version is much faster than `exact=True`.

    Returns
    -------
    p : (n, n) ndarray
        The Pascal matrix.

    See Also
    --------
    invpascal

    Notes
    -----
    See https://en.wikipedia.org/wiki/Pascal_matrix for more information
    about Pascal matrices.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy.linalg import pascal
    >>> pascal(4)
    array([[ 1,  1,  1,  1],
           [ 1,  2,  3,  4],
           [ 1,  3,  6, 10],
           [ 1,  4, 10, 20]], dtype=uint64)
    >>> pascal(4, kind='lower')
    array([[1, 0, 0, 0],
           [1, 1, 0, 0],
           [1, 2, 1, 0],
           [1, 3, 3, 1]], dtype=uint64)
    >>> pascal(50)[-1, -1]
    25477612258980856902730428600
    >>> from scipy.special import comb
    >>> comb(98, 49, exact=True)
    25477612258980856902730428600

    """

    from scipy.special import comb
    if kind not in ['symmetric', 'lower', 'upper']:
        raise ValueError("kind must be 'symmetric', 'lower', or 'upper'")

    if exact:
        if n >= 35:
            L_n = np.empty((n, n), dtype=object)
            L_n.fill(0)
        else:
            L_n = np.zeros((n, n), dtype=np.uint64)
        for i in range(n):
            for j in range(i + 1):
                L_n[i, j] = comb(i, j, exact=True)
    else:
        L_n = comb(*np.ogrid[:n, :n])

    if kind == 'lower':
        p = L_n
    elif kind == 'upper':
        p = L_n.T
    else:
        p = np.dot(L_n, L_n.T)

    return p


def invpascal(n, kind='symmetric', exact=True):
    """
    Returns the inverse of the n x n Pascal matrix.

    The Pascal matrix is a matrix containing the binomial coefficients as
    its elements.

    Parameters
    ----------
    n : int
        The size of the matrix to create; that is, the result is an n x n
        matrix.
    kind : str, optional
        Must be one of 'symmetric', 'lower', or 'upper'.
        Default is 'symmetric'.
    exact : bool, optional
        If `exact` is True, the result is either an array of type
        ``numpy.int64`` (if `n` <= 35) or an object array of Python integers.
        If `exact` is False, the coefficients in the matrix are computed using
        `scipy.special.comb` with `exact=False`. The result will be a floating
        point array, and for large `n`, the values in the array will not be the
        exact coefficients.

    Returns
    -------
    invp : (n, n) ndarray
        The inverse of the Pascal matrix.

    See Also
    --------
    pascal

    Notes
    -----

    .. versionadded:: 0.16.0

    References
    ----------
    .. [1] "Pascal matrix", https://en.wikipedia.org/wiki/Pascal_matrix
    .. [2] Cohen, A. M., "The inverse of a Pascal matrix", Mathematical
           Gazette, 59(408), pp. 111-112, 1975.

    Examples
    --------
    >>> from scipy.linalg import invpascal, pascal
    >>> invp = invpascal(5)
    >>> invp
    array([[  5, -10,  10,  -5,   1],
           [-10,  30, -35,  19,  -4],
           [ 10, -35,  46, -27,   6],
           [ -5,  19, -27,  17,  -4],
           [  1,  -4,   6,  -4,   1]])

    >>> p = pascal(5)
    >>> p.dot(invp)
    array([[ 1.,  0.,  0.,  0.,  0.],
           [ 0.,  1.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.],
           [ 0.,  0.,  0.,  1.,  0.],
           [ 0.,  0.,  0.,  0.,  1.]])

    An example of the use of `kind` and `exact`:

    >>> invpascal(5, kind='lower', exact=False)
    array([[ 1., -0.,  0., -0.,  0.],
           [-1.,  1., -0.,  0., -0.],
           [ 1., -2.,  1., -0.,  0.],
           [-1.,  3., -3.,  1., -0.],
           [ 1., -4.,  6., -4.,  1.]])

    """
    from scipy.special import comb

    if kind not in ['symmetric', 'lower', 'upper']:
        raise ValueError("'kind' must be 'symmetric', 'lower' or 'upper'.")

    if kind == 'symmetric':
        if exact:
            if n > 34:
                dt = object
            else:
                dt = np.int64
        else:
            dt = np.float64
        invp = np.empty((n, n), dtype=dt)
        for i in range(n):
            for j in range(0, i + 1):
                v = 0
                for k in range(n - i):
                    v += comb(i + k, k, exact=exact) * comb(i + k, i + k - j,
                                                            exact=exact)
                invp[i, j] = (-1)**(i - j) * v
                if i != j:
                    invp[j, i] = invp[i, j]
    else:
        # For the 'lower' and 'upper' cases, we computer the inverse by
        # changing the sign of every other diagonal of the pascal matrix.
        invp = pascal(n, kind=kind, exact=exact)
        if invp.dtype == np.uint64:
            # This cast from np.uint64 to int64 OK, because if `kind` is not
            # "symmetric", the values in invp are all much less than 2**63.
            invp = invp.view(np.int64)

        # The toeplitz matrix has alternating bands of 1 and -1.
        invp *= toeplitz((-1)**np.arange(n)).astype(invp.dtype)

    return invp


def dft(n, scale=None):
    """
    Discrete Fourier transform matrix.

    Create the matrix that computes the discrete Fourier transform of a
    sequence [1]_. The nth primitive root of unity used to generate the
    matrix is exp(-2*pi*i/n), where i = sqrt(-1).

    Parameters
    ----------
    n : int
        Size the matrix to create.
    scale : str, optional
        Must be None, 'sqrtn', or 'n'.
        If `scale` is 'sqrtn', the matrix is divided by `sqrt(n)`.
        If `scale` is 'n', the matrix is divided by `n`.
        If `scale` is None (the default), the matrix is not normalized, and the
        return value is simply the Vandermonde matrix of the roots of unity.

    Returns
    -------
    m : (n, n) ndarray
        The DFT matrix.

    Notes
    -----
    When `scale` is None, multiplying a vector by the matrix returned by
    `dft` is mathematically equivalent to (but much less efficient than)
    the calculation performed by `scipy.fft.fft`.

    .. versionadded:: 0.14.0

    References
    ----------
    .. [1] "DFT matrix", https://en.wikipedia.org/wiki/DFT_matrix

    Examples
    --------
    >>> from scipy.linalg import dft
    >>> np.set_printoptions(precision=2, suppress=True)  # for compact output
    >>> m = dft(5)
    >>> m
    array([[ 1.  +0.j  ,  1.  +0.j  ,  1.  +0.j  ,  1.  +0.j  ,  1.  +0.j  ],
           [ 1.  +0.j  ,  0.31-0.95j, -0.81-0.59j, -0.81+0.59j,  0.31+0.95j],
           [ 1.  +0.j  , -0.81-0.59j,  0.31+0.95j,  0.31-0.95j, -0.81+0.59j],
           [ 1.  +0.j  , -0.81+0.59j,  0.31-0.95j,  0.31+0.95j, -0.81-0.59j],
           [ 1.  +0.j  ,  0.31+0.95j, -0.81+0.59j, -0.81-0.59j,  0.31-0.95j]])
    >>> x = np.array([1, 2, 3, 0, 3])
    >>> m @ x  # Compute the DFT of x
    array([ 9.  +0.j  ,  0.12-0.81j, -2.12+3.44j, -2.12-3.44j,  0.12+0.81j])

    Verify that ``m @ x`` is the same as ``fft(x)``.

    >>> from scipy.fft import fft
    >>> fft(x)     # Same result as m @ x
    array([ 9.  +0.j  ,  0.12-0.81j, -2.12+3.44j, -2.12-3.44j,  0.12+0.81j])
    """
    if scale not in [None, 'sqrtn', 'n']:
        raise ValueError("scale must be None, 'sqrtn', or 'n'; "
                         "%r is not valid." % (scale,))

    omegas = np.exp(-2j * np.pi * np.arange(n) / n).reshape(-1, 1)
    m = omegas ** np.arange(n)
    if scale == 'sqrtn':
        m /= math.sqrt(n)
    elif scale == 'n':
        m /= n
    return m


def fiedler(a):
    """Returns a symmetric Fiedler matrix

    Given an sequence of numbers `a`, Fiedler matrices have the structure
    ``F[i, j] = np.abs(a[i] - a[j])``, and hence zero diagonals and nonnegative
    entries. A Fiedler matrix has a dominant positive eigenvalue and other
    eigenvalues are negative. Although not valid generally, for certain inputs,
    the inverse and the determinant can be derived explicitly as given in [1]_.

    Parameters
    ----------
    a : (n,) array_like
        coefficient array

    Returns
    -------
    F : (n, n) ndarray

    See Also
    --------
    circulant, toeplitz

    Notes
    -----

    .. versionadded:: 1.3.0

    References
    ----------
    .. [1] J. Todd, "Basic Numerical Mathematics: Vol.2 : Numerical Algebra",
        1977, Birkhauser, :doi:`10.1007/978-3-0348-7286-7`

    Examples
    --------
    >>> from scipy.linalg import det, inv, fiedler
    >>> a = [1, 4, 12, 45, 77]
    >>> n = len(a)
    >>> A = fiedler(a)
    >>> A
    array([[ 0,  3, 11, 44, 76],
           [ 3,  0,  8, 41, 73],
           [11,  8,  0, 33, 65],
           [44, 41, 33,  0, 32],
           [76, 73, 65, 32,  0]])

    The explicit formulas for determinant and inverse seem to hold only for
    monotonically increasing/decreasing arrays. Note the tridiagonal structure
    and the corners.

    >>> Ai = inv(A)
    >>> Ai[np.abs(Ai) < 1e-12] = 0.  # cleanup the numerical noise for display
    >>> Ai
    array([[-0.16008772,  0.16666667,  0.        ,  0.        ,  0.00657895],
           [ 0.16666667, -0.22916667,  0.0625    ,  0.        ,  0.        ],
           [ 0.        ,  0.0625    , -0.07765152,  0.01515152,  0.        ],
           [ 0.        ,  0.        ,  0.01515152, -0.03077652,  0.015625  ],
           [ 0.00657895,  0.        ,  0.        ,  0.015625  , -0.00904605]])
    >>> det(A)
    15409151.999999998
    >>> (-1)**(n-1) * 2**(n-2) * np.diff(a).prod() * (a[-1] - a[0])
    15409152

    """
    a = np.atleast_1d(a)

    if a.ndim != 1:
        raise ValueError("Input 'a' must be a 1D array.")

    if a.size == 0:
        return np.array([], dtype=float)
    elif a.size == 1:
        return np.array([[0.]])
    else:
        return np.abs(a[:, None] - a)


def fiedler_companion(a):
    """ Returns a Fiedler companion matrix

    Given a polynomial coefficient array ``a``, this function forms a
    pentadiagonal matrix with a special structure whose eigenvalues coincides
    with the roots of ``a``.

    Parameters
    ----------
    a : (N,) array_like
        1-D array of polynomial coefficients in descending order with a nonzero
        leading coefficient. For ``N < 2``, an empty array is returned.

    Returns
    -------
    c : (N-1, N-1) ndarray
        Resulting companion matrix

    Notes
    -----
    Similar to `companion` the leading coefficient should be nonzero. In the case
    the leading coefficient is not 1, other coefficients are rescaled before
    the array generation. To avoid numerical issues, it is best to provide a
    monic polynomial.

    .. versionadded:: 1.3.0

    See Also
    --------
    companion

    References
    ----------
    .. [1] M. Fiedler, " A note on companion matrices", Linear Algebra and its
        Applications, 2003, :doi:`10.1016/S0024-3795(03)00548-2`

    Examples
    --------
    >>> from scipy.linalg import fiedler_companion, eigvals
    >>> p = np.poly(np.arange(1, 9, 2))  # [1., -16., 86., -176., 105.]
    >>> fc = fiedler_companion(p)
    >>> fc
    array([[  16.,  -86.,    1.,    0.],
           [   1.,    0.,    0.,    0.],
           [   0.,  176.,    0., -105.],
           [   0.,    1.,    0.,    0.]])
    >>> eigvals(fc)
    array([7.+0.j, 5.+0.j, 3.+0.j, 1.+0.j])

    """
    a = np.atleast_1d(a)

    if a.ndim != 1:
        raise ValueError("Input 'a' must be a 1-D array.")

    if a.size <= 2:
        if a.size == 2:
            return np.array([[-(a/a[0])[-1]]])
        return np.array([], dtype=a.dtype)

    if a[0] == 0.:
        raise ValueError('Leading coefficient is zero.')

    a = a/a[0]
    n = a.size - 1
    c = np.zeros((n, n), dtype=a.dtype)
    # subdiagonals
    c[range(3, n, 2), range(1, n-2, 2)] = 1.
    c[range(2, n, 2), range(1, n-1, 2)] = -a[3::2]
    # superdiagonals
    c[range(0, n-2, 2), range(2, n, 2)] = 1.
    c[range(0, n-1, 2), range(1, n, 2)] = -a[2::2]
    c[[0, 1], 0] = [-a[1], 1]

    return c


def convolution_matrix(a, n, mode='full'):
    """
    Construct a convolution matrix.

    Constructs the Toeplitz matrix representing one-dimensional
    convolution [1]_.  See the notes below for details.

    Parameters
    ----------
    a : (m,) array_like
        The 1-D array to convolve.
    n : int
        The number of columns in the resulting matrix.  It gives the length
        of the input to be convolved with `a`.  This is analogous to the
        length of `v` in ``numpy.convolve(a, v)``.
    mode : str
        This is analogous to `mode` in ``numpy.convolve(v, a, mode)``.
        It must be one of ('full', 'valid', 'same').
        See below for how `mode` determines the shape of the result.

    Returns
    -------
    A : (k, n) ndarray
        The convolution matrix whose row count `k` depends on `mode`::

            =======  =========================
             mode    k
            =======  =========================
            'full'   m + n -1
            'same'   max(m, n)
            'valid'  max(m, n) - min(m, n) + 1
            =======  =========================

    See Also
    --------
    toeplitz : Toeplitz matrix

    Notes
    -----
    The code::

        A = convolution_matrix(a, n, mode)

    creates a Toeplitz matrix `A` such that ``A @ v`` is equivalent to
    using ``convolve(a, v, mode)``.  The returned array always has `n`
    columns.  The number of rows depends on the specified `mode`, as
    explained above.

    In the default 'full' mode, the entries of `A` are given by::

        A[i, j] == (a[i-j] if (0 <= (i-j) < m) else 0)

    where ``m = len(a)``.  Suppose, for example, the input array is
    ``[x, y, z]``.  The convolution matrix has the form::

        [x, 0, 0, ..., 0, 0]
        [y, x, 0, ..., 0, 0]
        [z, y, x, ..., 0, 0]
        ...
        [0, 0, 0, ..., x, 0]
        [0, 0, 0, ..., y, x]
        [0, 0, 0, ..., z, y]
        [0, 0, 0, ..., 0, z]

    In 'valid' mode, the entries of `A` are given by::

        A[i, j] == (a[i-j+m-1] if (0 <= (i-j+m-1) < m) else 0)

    This corresponds to a matrix whose rows are the subset of those from
    the 'full' case where all the coefficients in `a` are contained in the
    row.  For input ``[x, y, z]``, this array looks like::

        [z, y, x, 0, 0, ..., 0, 0, 0]
        [0, z, y, x, 0, ..., 0, 0, 0]
        [0, 0, z, y, x, ..., 0, 0, 0]
        ...
        [0, 0, 0, 0, 0, ..., x, 0, 0]
        [0, 0, 0, 0, 0, ..., y, x, 0]
        [0, 0, 0, 0, 0, ..., z, y, x]

    In the 'same' mode, the entries of `A` are given by::

        d = (m - 1) // 2
        A[i, j] == (a[i-j+d] if (0 <= (i-j+d) < m) else 0)

    The typical application of the 'same' mode is when one has a signal of
    length `n` (with `n` greater than ``len(a)``), and the desired output
    is a filtered signal that is still of length `n`.

    For input ``[x, y, z]``, this array looks like::

        [y, x, 0, 0, ..., 0, 0, 0]
        [z, y, x, 0, ..., 0, 0, 0]
        [0, z, y, x, ..., 0, 0, 0]
        [0, 0, z, y, ..., 0, 0, 0]
        ...
        [0, 0, 0, 0, ..., y, x, 0]
        [0, 0, 0, 0, ..., z, y, x]
        [0, 0, 0, 0, ..., 0, z, y]

    .. versionadded:: 1.5.0

    References
    ----------
    .. [1] "Convolution", https://en.wikipedia.org/wiki/Convolution

    Examples
    --------
    >>> from scipy.linalg import convolution_matrix
    >>> A = convolution_matrix([-1, 4, -2], 5, mode='same')
    >>> A
    array([[ 4, -1,  0,  0,  0],
           [-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1],
           [ 0,  0,  0, -2,  4]])

    Compare multiplication by `A` with the use of `numpy.convolve`.

    >>> x = np.array([1, 2, 0, -3, 0.5])
    >>> A @ x
    array([  2. ,   6. ,  -1. , -12.5,   8. ])

    Verify that ``A @ x`` produced the same result as applying the
    convolution function.

    >>> np.convolve([-1, 4, -2], x, mode='same')
    array([  2. ,   6. ,  -1. , -12.5,   8. ])

    For comparison to the case ``mode='same'`` shown above, here are the
    matrices produced by ``mode='full'`` and ``mode='valid'`` for the
    same coefficients and size.

    >>> convolution_matrix([-1, 4, -2], 5, mode='full')
    array([[-1,  0,  0,  0,  0],
           [ 4, -1,  0,  0,  0],
           [-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1],
           [ 0,  0,  0, -2,  4],
           [ 0,  0,  0,  0, -2]])

    >>> convolution_matrix([-1, 4, -2], 5, mode='valid')
    array([[-2,  4, -1,  0,  0],
           [ 0, -2,  4, -1,  0],
           [ 0,  0, -2,  4, -1]])
    """
    if n <= 0:
        raise ValueError('n must be a positive integer.')

    a = np.asarray(a)
    if a.ndim != 1:
        raise ValueError('convolution_matrix expects a one-dimensional '
                         'array as input')
    if a.size == 0:
        raise ValueError('len(a) must be at least 1.')

    if mode not in ('full', 'valid', 'same'):
        raise ValueError(
            "'mode' argument must be one of ('full', 'valid', 'same')")

    # create zero padded versions of the array
    az = np.pad(a, (0, n-1), 'constant')
    raz = np.pad(a[::-1], (0, n-1), 'constant')

    if mode == 'same':
        trim = min(n, len(a)) - 1
        tb = trim//2
        te = trim - tb
        col0 = az[tb:len(az)-te]
        row0 = raz[-n-tb:len(raz)-tb]
    elif mode == 'valid':
        tb = min(n, len(a)) - 1
        te = tb
        col0 = az[tb:len(az)-te]
        row0 = raz[-n-tb:len(raz)-tb]
    else:  # 'full'
        col0 = az
        row0 = raz[-n:]
    return toeplitz(col0, row0)