decomp_qr.py
13.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""QR decomposition functions."""
import numpy
# Local imports
from .lapack import get_lapack_funcs
from .misc import _datacopied
__all__ = ['qr', 'qr_multiply', 'rq']
def safecall(f, name, *args, **kwargs):
"""Call a LAPACK routine, determining lwork automatically and handling
error return values"""
lwork = kwargs.get("lwork", None)
if lwork in (None, -1):
kwargs['lwork'] = -1
ret = f(*args, **kwargs)
kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_)
ret = f(*args, **kwargs)
if ret[-1] < 0:
raise ValueError("illegal value in %dth argument of internal %s"
% (-ret[-1], name))
return ret[:-2]
def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False,
check_finite=True):
"""
Compute QR decomposition of a matrix.
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : (M, N) array_like
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in `a` is overwritten (may improve performance if
`overwrite_a` is set to True by reusing the existing input data
structure rather than creating a new one.)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic', 'raw'}, optional
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes). The final option 'raw'
(added in SciPy 0.11) makes the function return two matrices
(Q, TAU) in the internal format used by LAPACK.
pivoting : bool, optional
Whether or not factorization should include pivoting for rank-revealing
qr decomposition. If pivoting, compute the decomposition
``A P = Q R`` as above, but where P is chosen such that the diagonal
of R is non-increasing.
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
Q : float or complex ndarray
Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
if ``mode='r'``.
R : float or complex ndarray
Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
P : int ndarray
Of shape (N,) for ``pivoting=True``. Not returned if
``pivoting=False``.
Raises
------
LinAlgError
Raised if decomposition fails
Notes
-----
This is an interface to the LAPACK routines dgeqrf, zgeqrf,
dorgqr, zungqr, dgeqp3, and zgeqp3.
If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
of (M,M) and (M,N), with ``K=min(M,N)``.
Examples
--------
>>> from scipy import linalg
>>> a = np.random.randn(9, 6)
>>> q, r = linalg.qr(a)
>>> np.allclose(a, np.dot(q, r))
True
>>> q.shape, r.shape
((9, 9), (9, 6))
>>> r2 = linalg.qr(a, mode='r')
>>> np.allclose(r, r2)
True
>>> q3, r3 = linalg.qr(a, mode='economic')
>>> q3.shape, r3.shape
((9, 6), (6, 6))
>>> q4, r4, p4 = linalg.qr(a, pivoting=True)
>>> d = np.abs(np.diag(r4))
>>> np.all(d[1:] <= d[:-1])
True
>>> np.allclose(a[:, p4], np.dot(q4, r4))
True
>>> q4.shape, r4.shape, p4.shape
((9, 9), (9, 6), (6,))
>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
>>> q5.shape, r5.shape, p5.shape
((9, 6), (6, 6), (6,))
"""
# 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
# 'qr' are used below.
# 'raw' is used internally by qr_multiply
if mode not in ['full', 'qr', 'r', 'economic', 'raw']:
raise ValueError("Mode argument should be one of ['full', 'r',"
"'economic', 'raw']")
if check_finite:
a1 = numpy.asarray_chkfinite(a)
else:
a1 = numpy.asarray(a)
if len(a1.shape) != 2:
raise ValueError("expected a 2-D array")
M, N = a1.shape
overwrite_a = overwrite_a or (_datacopied(a1, a))
if pivoting:
geqp3, = get_lapack_funcs(('geqp3',), (a1,))
qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a)
jpvt -= 1 # geqp3 returns a 1-based index array, so subtract 1
else:
geqrf, = get_lapack_funcs(('geqrf',), (a1,))
qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork,
overwrite_a=overwrite_a)
if mode not in ['economic', 'raw'] or M < N:
R = numpy.triu(qr)
else:
R = numpy.triu(qr[:N, :])
if pivoting:
Rj = R, jpvt
else:
Rj = R,
if mode == 'r':
return Rj
elif mode == 'raw':
return ((qr, tau),) + Rj
gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))
if M < N:
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau,
lwork=lwork, overwrite_a=1)
elif mode == 'economic':
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork,
overwrite_a=1)
else:
t = qr.dtype.char
qqr = numpy.empty((M, M), dtype=t)
qqr[:, :N] = qr
Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork,
overwrite_a=1)
return (Q,) + Rj
def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False,
overwrite_a=False, overwrite_c=False):
"""
Calculate the QR decomposition and multiply Q with a matrix.
Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
and R upper triangular. Multiply Q with a vector or a matrix c.
Parameters
----------
a : (M, N), array_like
Input array
c : array_like
Input array to be multiplied by ``q``.
mode : {'left', 'right'}, optional
``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
mode is 'right'.
The shape of c must be appropriate for the matrix multiplications,
if mode is 'left', ``min(a.shape) == c.shape[0]``,
if mode is 'right', ``a.shape[0] == c.shape[1]``.
pivoting : bool, optional
Whether or not factorization should include pivoting for rank-revealing
qr decomposition, see the documentation of qr.
conjugate : bool, optional
Whether Q should be complex-conjugated. This might be faster
than explicit conjugation.
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
overwrite_c : bool, optional
Whether data in c is overwritten (may improve performance).
If this is used, c must be big enough to keep the result,
i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.
Returns
-------
CQ : ndarray
The product of ``Q`` and ``c``.
R : (K, N), ndarray
R array of the resulting QR factorization where ``K = min(M, N)``.
P : (N,) ndarray
Integer pivot array. Only returned when ``pivoting=True``.
Raises
------
LinAlgError
Raised if QR decomposition fails.
Notes
-----
This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
``?UNMQR``, and ``?GEQP3``.
.. versionadded:: 0.11.0
Examples
--------
>>> from scipy.linalg import qr_multiply, qr
>>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
>>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
>>> qc
array([[-1., 1., -1.],
[-1., -1., 1.],
[-1., -1., -1.],
[-1., 1., 1.]])
>>> r1
array([[-6., -3., -5. ],
[ 0., -1., -1.11022302e-16],
[ 0., 0., -1. ]])
>>> piv1
array([1, 0, 2], dtype=int32)
>>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
>>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
True
"""
if mode not in ['left', 'right']:
raise ValueError("Mode argument can only be 'left' or 'right' but "
"not '{}'".format(mode))
c = numpy.asarray_chkfinite(c)
if c.ndim < 2:
onedim = True
c = numpy.atleast_2d(c)
if mode == "left":
c = c.T
else:
onedim = False
a = numpy.atleast_2d(numpy.asarray(a)) # chkfinite done in qr
M, N = a.shape
if mode == 'left':
if c.shape[0] != min(M, N + overwrite_c*(M-N)):
raise ValueError('Array shapes are not compatible for Q @ c'
' operation: {} vs {}'.format(a.shape, c.shape))
else:
if M != c.shape[1]:
raise ValueError('Array shapes are not compatible for c @ Q'
' operation: {} vs {}'.format(c.shape, a.shape))
raw = qr(a, overwrite_a, None, "raw", pivoting)
Q, tau = raw[0]
gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,))
if gor_un_mqr.typecode in ('s', 'd'):
trans = "T"
else:
trans = "C"
Q = Q[:, :min(M, N)]
if M > N and mode == "left" and not overwrite_c:
if conjugate:
cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F")
cc[:, :N] = c.T
else:
cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F")
cc[:N, :] = c
trans = "N"
if conjugate:
lr = "R"
else:
lr = "L"
overwrite_c = True
elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate:
cc = c.T
if mode == "left":
lr = "R"
else:
lr = "L"
else:
trans = "N"
cc = c
if mode == "left":
lr = "L"
else:
lr = "R"
cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc,
overwrite_c=overwrite_c)
if trans != "N":
cQ = cQ.T
if mode == "right":
cQ = cQ[:, :min(M, N)]
if onedim:
cQ = cQ.ravel()
return (cQ,) + raw[1:]
def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True):
"""
Compute RQ decomposition of a matrix.
Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
and R upper triangular.
Parameters
----------
a : (M, N) array_like
Matrix to be decomposed
overwrite_a : bool, optional
Whether data in a is overwritten (may improve performance)
lwork : int, optional
Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
is computed.
mode : {'full', 'r', 'economic'}, optional
Determines what information is to be returned: either both Q and R
('full', default), only R ('r') or both Q and R but computed in
economy-size ('economic', see Notes).
check_finite : bool, optional
Whether to check that the input matrix contains only finite numbers.
Disabling may give a performance gain, but may result in problems
(crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns
-------
R : float or complex ndarray
Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
Q : float or complex ndarray
Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
if ``mode='r'``.
Raises
------
LinAlgError
If decomposition fails.
Notes
-----
This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
sorgrq, dorgrq, cungrq and zungrq.
If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
of (N,N) and (M,N), with ``K=min(M,N)``.
Examples
--------
>>> from scipy import linalg
>>> a = np.random.randn(6, 9)
>>> r, q = linalg.rq(a)
>>> np.allclose(a, r @ q)
True
>>> r.shape, q.shape
((6, 9), (9, 9))
>>> r2 = linalg.rq(a, mode='r')
>>> np.allclose(r, r2)
True
>>> r3, q3 = linalg.rq(a, mode='economic')
>>> r3.shape, q3.shape
((6, 6), (6, 9))
"""
if mode not in ['full', 'r', 'economic']:
raise ValueError(
"Mode argument should be one of ['full', 'r', 'economic']")
if check_finite:
a1 = numpy.asarray_chkfinite(a)
else:
a1 = numpy.asarray(a)
if len(a1.shape) != 2:
raise ValueError('expected matrix')
M, N = a1.shape
overwrite_a = overwrite_a or (_datacopied(a1, a))
gerqf, = get_lapack_funcs(('gerqf',), (a1,))
rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork,
overwrite_a=overwrite_a)
if not mode == 'economic' or N < M:
R = numpy.triu(rq, N-M)
else:
R = numpy.triu(rq[-M:, -M:])
if mode == 'r':
return R
gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))
if N < M:
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork,
overwrite_a=1)
elif mode == 'economic':
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork,
overwrite_a=1)
else:
rq1 = numpy.empty((N, N), dtype=rq.dtype)
rq1[-M:] = rq
Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork,
overwrite_a=1)
return R, Q