decomp_qr.py 13.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
"""QR decomposition functions."""
import numpy

# Local imports
from .lapack import get_lapack_funcs
from .misc import _datacopied

__all__ = ['qr', 'qr_multiply', 'rq']


def safecall(f, name, *args, **kwargs):
    """Call a LAPACK routine, determining lwork automatically and handling
    error return values"""
    lwork = kwargs.get("lwork", None)
    if lwork in (None, -1):
        kwargs['lwork'] = -1
        ret = f(*args, **kwargs)
        kwargs['lwork'] = ret[-2][0].real.astype(numpy.int_)
    ret = f(*args, **kwargs)
    if ret[-1] < 0:
        raise ValueError("illegal value in %dth argument of internal %s"
                         % (-ret[-1], name))
    return ret[:-2]


def qr(a, overwrite_a=False, lwork=None, mode='full', pivoting=False,
       check_finite=True):
    """
    Compute QR decomposition of a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in `a` is overwritten (may improve performance if
        `overwrite_a` is set to True by reusing the existing input data
        structure rather than creating a new one.)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic', 'raw'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes). The final option 'raw'
        (added in SciPy 0.11) makes the function return two matrices
        (Q, TAU) in the internal format used by LAPACK.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition. If pivoting, compute the decomposition
        ``A P = Q R`` as above, but where P is chosen such that the diagonal
        of R is non-increasing.
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    Q : float or complex ndarray
        Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned
        if ``mode='r'``.
    R : float or complex ndarray
        Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``.
    P : int ndarray
        Of shape (N,) for ``pivoting=True``. Not returned if
        ``pivoting=False``.

    Raises
    ------
    LinAlgError
        Raised if decomposition fails

    Notes
    -----
    This is an interface to the LAPACK routines dgeqrf, zgeqrf,
    dorgqr, zungqr, dgeqp3, and zgeqp3.

    If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead
    of (M,M) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(9, 6)

    >>> q, r = linalg.qr(a)
    >>> np.allclose(a, np.dot(q, r))
    True
    >>> q.shape, r.shape
    ((9, 9), (9, 6))

    >>> r2 = linalg.qr(a, mode='r')
    >>> np.allclose(r, r2)
    True

    >>> q3, r3 = linalg.qr(a, mode='economic')
    >>> q3.shape, r3.shape
    ((9, 6), (6, 6))

    >>> q4, r4, p4 = linalg.qr(a, pivoting=True)
    >>> d = np.abs(np.diag(r4))
    >>> np.all(d[1:] <= d[:-1])
    True
    >>> np.allclose(a[:, p4], np.dot(q4, r4))
    True
    >>> q4.shape, r4.shape, p4.shape
    ((9, 9), (9, 6), (6,))

    >>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True)
    >>> q5.shape, r5.shape, p5.shape
    ((9, 6), (6, 6), (6,))

    """
    # 'qr' was the old default, equivalent to 'full'. Neither 'full' nor
    # 'qr' are used below.
    # 'raw' is used internally by qr_multiply
    if mode not in ['full', 'qr', 'r', 'economic', 'raw']:
        raise ValueError("Mode argument should be one of ['full', 'r',"
                         "'economic', 'raw']")

    if check_finite:
        a1 = numpy.asarray_chkfinite(a)
    else:
        a1 = numpy.asarray(a)
    if len(a1.shape) != 2:
        raise ValueError("expected a 2-D array")
    M, N = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))

    if pivoting:
        geqp3, = get_lapack_funcs(('geqp3',), (a1,))
        qr, jpvt, tau = safecall(geqp3, "geqp3", a1, overwrite_a=overwrite_a)
        jpvt -= 1  # geqp3 returns a 1-based index array, so subtract 1
    else:
        geqrf, = get_lapack_funcs(('geqrf',), (a1,))
        qr, tau = safecall(geqrf, "geqrf", a1, lwork=lwork,
                           overwrite_a=overwrite_a)

    if mode not in ['economic', 'raw'] or M < N:
        R = numpy.triu(qr)
    else:
        R = numpy.triu(qr[:N, :])

    if pivoting:
        Rj = R, jpvt
    else:
        Rj = R,

    if mode == 'r':
        return Rj
    elif mode == 'raw':
        return ((qr, tau),) + Rj

    gor_un_gqr, = get_lapack_funcs(('orgqr',), (qr,))

    if M < N:
        Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr[:, :M], tau,
                      lwork=lwork, overwrite_a=1)
    elif mode == 'economic':
        Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qr, tau, lwork=lwork,
                      overwrite_a=1)
    else:
        t = qr.dtype.char
        qqr = numpy.empty((M, M), dtype=t)
        qqr[:, :N] = qr
        Q, = safecall(gor_un_gqr, "gorgqr/gungqr", qqr, tau, lwork=lwork,
                      overwrite_a=1)

    return (Q,) + Rj


def qr_multiply(a, c, mode='right', pivoting=False, conjugate=False,
                overwrite_a=False, overwrite_c=False):
    """
    Calculate the QR decomposition and multiply Q with a matrix.

    Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal
    and R upper triangular. Multiply Q with a vector or a matrix c.

    Parameters
    ----------
    a : (M, N), array_like
        Input array
    c : array_like
        Input array to be multiplied by ``q``.
    mode : {'left', 'right'}, optional
        ``Q @ c`` is returned if mode is 'left', ``c @ Q`` is returned if
        mode is 'right'.
        The shape of c must be appropriate for the matrix multiplications,
        if mode is 'left', ``min(a.shape) == c.shape[0]``,
        if mode is 'right', ``a.shape[0] == c.shape[1]``.
    pivoting : bool, optional
        Whether or not factorization should include pivoting for rank-revealing
        qr decomposition, see the documentation of qr.
    conjugate : bool, optional
        Whether Q should be complex-conjugated. This might be faster
        than explicit conjugation.
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    overwrite_c : bool, optional
        Whether data in c is overwritten (may improve performance).
        If this is used, c must be big enough to keep the result,
        i.e. ``c.shape[0]`` = ``a.shape[0]`` if mode is 'left'.

    Returns
    -------
    CQ : ndarray
        The product of ``Q`` and ``c``.
    R : (K, N), ndarray
        R array of the resulting QR factorization where ``K = min(M, N)``.
    P : (N,) ndarray
        Integer pivot array. Only returned when ``pivoting=True``.

    Raises
    ------
    LinAlgError
        Raised if QR decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines ``?GEQRF``, ``?ORMQR``,
    ``?UNMQR``, and ``?GEQP3``.

    .. versionadded:: 0.11.0

    Examples
    --------
    >>> from scipy.linalg import qr_multiply, qr
    >>> A = np.array([[1, 3, 3], [2, 3, 2], [2, 3, 3], [1, 3, 2]])
    >>> qc, r1, piv1 = qr_multiply(A, 2*np.eye(4), pivoting=1)
    >>> qc
    array([[-1.,  1., -1.],
           [-1., -1.,  1.],
           [-1., -1., -1.],
           [-1.,  1.,  1.]])
    >>> r1
    array([[-6., -3., -5.            ],
           [ 0., -1., -1.11022302e-16],
           [ 0.,  0., -1.            ]])
    >>> piv1
    array([1, 0, 2], dtype=int32)
    >>> q2, r2, piv2 = qr(A, mode='economic', pivoting=1)
    >>> np.allclose(2*q2 - qc, np.zeros((4, 3)))
    True

    """
    if mode not in ['left', 'right']:
        raise ValueError("Mode argument can only be 'left' or 'right' but "
                         "not '{}'".format(mode))
    c = numpy.asarray_chkfinite(c)
    if c.ndim < 2:
        onedim = True
        c = numpy.atleast_2d(c)
        if mode == "left":
            c = c.T
    else:
        onedim = False

    a = numpy.atleast_2d(numpy.asarray(a))  # chkfinite done in qr
    M, N = a.shape

    if mode == 'left':
        if c.shape[0] != min(M, N + overwrite_c*(M-N)):
            raise ValueError('Array shapes are not compatible for Q @ c'
                             ' operation: {} vs {}'.format(a.shape, c.shape))
    else:
        if M != c.shape[1]:
            raise ValueError('Array shapes are not compatible for c @ Q'
                             ' operation: {} vs {}'.format(c.shape, a.shape))

    raw = qr(a, overwrite_a, None, "raw", pivoting)
    Q, tau = raw[0]

    gor_un_mqr, = get_lapack_funcs(('ormqr',), (Q,))
    if gor_un_mqr.typecode in ('s', 'd'):
        trans = "T"
    else:
        trans = "C"

    Q = Q[:, :min(M, N)]
    if M > N and mode == "left" and not overwrite_c:
        if conjugate:
            cc = numpy.zeros((c.shape[1], M), dtype=c.dtype, order="F")
            cc[:, :N] = c.T
        else:
            cc = numpy.zeros((M, c.shape[1]), dtype=c.dtype, order="F")
            cc[:N, :] = c
            trans = "N"
        if conjugate:
            lr = "R"
        else:
            lr = "L"
        overwrite_c = True
    elif c.flags["C_CONTIGUOUS"] and trans == "T" or conjugate:
        cc = c.T
        if mode == "left":
            lr = "R"
        else:
            lr = "L"
    else:
        trans = "N"
        cc = c
        if mode == "left":
            lr = "L"
        else:
            lr = "R"
    cQ, = safecall(gor_un_mqr, "gormqr/gunmqr", lr, trans, Q, tau, cc,
                   overwrite_c=overwrite_c)
    if trans != "N":
        cQ = cQ.T
    if mode == "right":
        cQ = cQ[:, :min(M, N)]
    if onedim:
        cQ = cQ.ravel()

    return (cQ,) + raw[1:]


def rq(a, overwrite_a=False, lwork=None, mode='full', check_finite=True):
    """
    Compute RQ decomposition of a matrix.

    Calculate the decomposition ``A = R Q`` where Q is unitary/orthogonal
    and R upper triangular.

    Parameters
    ----------
    a : (M, N) array_like
        Matrix to be decomposed
    overwrite_a : bool, optional
        Whether data in a is overwritten (may improve performance)
    lwork : int, optional
        Work array size, lwork >= a.shape[1]. If None or -1, an optimal size
        is computed.
    mode : {'full', 'r', 'economic'}, optional
        Determines what information is to be returned: either both Q and R
        ('full', default), only R ('r') or both Q and R but computed in
        economy-size ('economic', see Notes).
    check_finite : bool, optional
        Whether to check that the input matrix contains only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination) if the inputs do contain infinities or NaNs.

    Returns
    -------
    R : float or complex ndarray
        Of shape (M, N) or (M, K) for ``mode='economic'``. ``K = min(M, N)``.
    Q : float or complex ndarray
        Of shape (N, N) or (K, N) for ``mode='economic'``. Not returned
        if ``mode='r'``.

    Raises
    ------
    LinAlgError
        If decomposition fails.

    Notes
    -----
    This is an interface to the LAPACK routines sgerqf, dgerqf, cgerqf, zgerqf,
    sorgrq, dorgrq, cungrq and zungrq.

    If ``mode=economic``, the shapes of Q and R are (K, N) and (M, K) instead
    of (N,N) and (M,N), with ``K=min(M,N)``.

    Examples
    --------
    >>> from scipy import linalg
    >>> a = np.random.randn(6, 9)
    >>> r, q = linalg.rq(a)
    >>> np.allclose(a, r @ q)
    True
    >>> r.shape, q.shape
    ((6, 9), (9, 9))
    >>> r2 = linalg.rq(a, mode='r')
    >>> np.allclose(r, r2)
    True
    >>> r3, q3 = linalg.rq(a, mode='economic')
    >>> r3.shape, q3.shape
    ((6, 6), (6, 9))

    """
    if mode not in ['full', 'r', 'economic']:
        raise ValueError(
                 "Mode argument should be one of ['full', 'r', 'economic']")

    if check_finite:
        a1 = numpy.asarray_chkfinite(a)
    else:
        a1 = numpy.asarray(a)
    if len(a1.shape) != 2:
        raise ValueError('expected matrix')
    M, N = a1.shape
    overwrite_a = overwrite_a or (_datacopied(a1, a))

    gerqf, = get_lapack_funcs(('gerqf',), (a1,))
    rq, tau = safecall(gerqf, 'gerqf', a1, lwork=lwork,
                       overwrite_a=overwrite_a)
    if not mode == 'economic' or N < M:
        R = numpy.triu(rq, N-M)
    else:
        R = numpy.triu(rq[-M:, -M:])

    if mode == 'r':
        return R

    gor_un_grq, = get_lapack_funcs(('orgrq',), (rq,))

    if N < M:
        Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq[-N:], tau, lwork=lwork,
                      overwrite_a=1)
    elif mode == 'economic':
        Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq, tau, lwork=lwork,
                      overwrite_a=1)
    else:
        rq1 = numpy.empty((N, N), dtype=rq.dtype)
        rq1[-M:] = rq
        Q, = safecall(gor_un_grq, "gorgrq/gungrq", rq1, tau, lwork=lwork,
                      overwrite_a=1)

    return R, Q