mio4.py 19.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
''' Classes for read / write of matlab (TM) 4 files
'''
import sys
import warnings

import numpy as np
from numpy.compat import asbytes, asstr

import scipy.sparse

from .miobase import (MatFileReader, docfiller, matdims, read_dtype,
                      convert_dtypes, arr_to_chars, arr_dtype_number)

from .mio_utils import squeeze_element, chars_to_strings
from functools import reduce


SYS_LITTLE_ENDIAN = sys.byteorder == 'little'

miDOUBLE = 0
miSINGLE = 1
miINT32 = 2
miINT16 = 3
miUINT16 = 4
miUINT8 = 5

mdtypes_template = {
    miDOUBLE: 'f8',
    miSINGLE: 'f4',
    miINT32: 'i4',
    miINT16: 'i2',
    miUINT16: 'u2',
    miUINT8: 'u1',
    'header': [('mopt', 'i4'),
               ('mrows', 'i4'),
               ('ncols', 'i4'),
               ('imagf', 'i4'),
               ('namlen', 'i4')],
    'U1': 'U1',
    }

np_to_mtypes = {
    'f8': miDOUBLE,
    'c32': miDOUBLE,
    'c24': miDOUBLE,
    'c16': miDOUBLE,
    'f4': miSINGLE,
    'c8': miSINGLE,
    'i4': miINT32,
    'i2': miINT16,
    'u2': miUINT16,
    'u1': miUINT8,
    'S1': miUINT8,
    }

# matrix classes
mxFULL_CLASS = 0
mxCHAR_CLASS = 1
mxSPARSE_CLASS = 2

order_codes = {
    0: '<',
    1: '>',
    2: 'VAX D-float',  # !
    3: 'VAX G-float',
    4: 'Cray',  # !!
    }

mclass_info = {
    mxFULL_CLASS: 'double',
    mxCHAR_CLASS: 'char',
    mxSPARSE_CLASS: 'sparse',
    }


class VarHeader4(object):
    # Mat4 variables never logical or global
    is_logical = False
    is_global = False

    def __init__(self,
                 name,
                 dtype,
                 mclass,
                 dims,
                 is_complex):
        self.name = name
        self.dtype = dtype
        self.mclass = mclass
        self.dims = dims
        self.is_complex = is_complex


class VarReader4(object):
    ''' Class to read matlab 4 variables '''

    def __init__(self, file_reader):
        self.file_reader = file_reader
        self.mat_stream = file_reader.mat_stream
        self.dtypes = file_reader.dtypes
        self.chars_as_strings = file_reader.chars_as_strings
        self.squeeze_me = file_reader.squeeze_me

    def read_header(self):
        ''' Read and return header for variable '''
        data = read_dtype(self.mat_stream, self.dtypes['header'])
        name = self.mat_stream.read(int(data['namlen'])).strip(b'\x00')
        if data['mopt'] < 0 or data['mopt'] > 5000:
            raise ValueError('Mat 4 mopt wrong format, byteswapping problem?')
        M, rest = divmod(data['mopt'], 1000)  # order code
        if M not in (0, 1):
            warnings.warn("We do not support byte ordering '%s'; returned "
                          "data may be corrupt" % order_codes[M],
                          UserWarning)
        O, rest = divmod(rest, 100)  # unused, should be 0
        if O != 0:
            raise ValueError('O in MOPT integer should be 0, wrong format?')
        P, rest = divmod(rest, 10)  # data type code e.g miDOUBLE (see above)
        T = rest  # matrix type code e.g., mxFULL_CLASS (see above)
        dims = (data['mrows'], data['ncols'])
        is_complex = data['imagf'] == 1
        dtype = self.dtypes[P]
        return VarHeader4(
            name,
            dtype,
            T,
            dims,
            is_complex)

    def array_from_header(self, hdr, process=True):
        mclass = hdr.mclass
        if mclass == mxFULL_CLASS:
            arr = self.read_full_array(hdr)
        elif mclass == mxCHAR_CLASS:
            arr = self.read_char_array(hdr)
            if process and self.chars_as_strings:
                arr = chars_to_strings(arr)
        elif mclass == mxSPARSE_CLASS:
            # no current processing (below) makes sense for sparse
            return self.read_sparse_array(hdr)
        else:
            raise TypeError('No reader for class code %s' % mclass)
        if process and self.squeeze_me:
            return squeeze_element(arr)
        return arr

    def read_sub_array(self, hdr, copy=True):
        ''' Mat4 read using header `hdr` dtype and dims

        Parameters
        ----------
        hdr : object
           object with attributes ``dtype``, ``dims``. dtype is assumed to be
           the correct endianness
        copy : bool, optional
           copies array before return if True (default True)
           (buffer is usually read only)

        Returns
        -------
        arr : ndarray
            of dtype given by `hdr` ``dtype`` and shape given by `hdr` ``dims``
        '''
        dt = hdr.dtype
        dims = hdr.dims
        num_bytes = dt.itemsize
        for d in dims:
            num_bytes *= d
        buffer = self.mat_stream.read(int(num_bytes))
        if len(buffer) != num_bytes:
            raise ValueError("Not enough bytes to read matrix '%s'; is this "
                             "a badly-formed file? Consider listing matrices "
                             "with `whosmat` and loading named matrices with "
                             "`variable_names` kwarg to `loadmat`" % hdr.name)
        arr = np.ndarray(shape=dims,
                         dtype=dt,
                         buffer=buffer,
                         order='F')
        if copy:
            arr = arr.copy()
        return arr

    def read_full_array(self, hdr):
        ''' Full (rather than sparse) matrix getter

        Read matrix (array) can be real or complex

        Parameters
        ----------
        hdr : ``VarHeader4`` instance

        Returns
        -------
        arr : ndarray
            complex array if ``hdr.is_complex`` is True, otherwise a real
            numeric array
        '''
        if hdr.is_complex:
            # avoid array copy to save memory
            res = self.read_sub_array(hdr, copy=False)
            res_j = self.read_sub_array(hdr, copy=False)
            return res + (res_j * 1j)
        return self.read_sub_array(hdr)

    def read_char_array(self, hdr):
        ''' latin-1 text matrix (char matrix) reader

        Parameters
        ----------
        hdr : ``VarHeader4`` instance

        Returns
        -------
        arr : ndarray
            with dtype 'U1', shape given by `hdr` ``dims``
        '''
        arr = self.read_sub_array(hdr).astype(np.uint8)
        S = arr.tobytes().decode('latin-1')
        return np.ndarray(shape=hdr.dims,
                          dtype=np.dtype('U1'),
                          buffer=np.array(S)).copy()

    def read_sparse_array(self, hdr):
        ''' Read and return sparse matrix type

        Parameters
        ----------
        hdr : ``VarHeader4`` instance

        Returns
        -------
        arr : ``scipy.sparse.coo_matrix``
            with dtype ``float`` and shape read from the sparse matrix data

        Notes
        -----
        MATLAB 4 real sparse arrays are saved in a N+1 by 3 array format, where
        N is the number of non-zero values. Column 1 values [0:N] are the
        (1-based) row indices of the each non-zero value, column 2 [0:N] are the
        column indices, column 3 [0:N] are the (real) values. The last values
        [-1,0:2] of the rows, column indices are shape[0] and shape[1]
        respectively of the output matrix. The last value for the values column
        is a padding 0. mrows and ncols values from the header give the shape of
        the stored matrix, here [N+1, 3]. Complex data are saved as a 4 column
        matrix, where the fourth column contains the imaginary component; the
        last value is again 0. Complex sparse data do *not* have the header
        ``imagf`` field set to True; the fact that the data are complex is only
        detectable because there are 4 storage columns.
        '''
        res = self.read_sub_array(hdr)
        tmp = res[:-1,:]
        # All numbers are float64 in Matlab, but SciPy sparse expects int shape
        dims = (int(res[-1,0]), int(res[-1,1]))
        I = np.ascontiguousarray(tmp[:,0],dtype='intc')  # fixes byte order also
        J = np.ascontiguousarray(tmp[:,1],dtype='intc')
        I -= 1  # for 1-based indexing
        J -= 1
        if res.shape[1] == 3:
            V = np.ascontiguousarray(tmp[:,2],dtype='float')
        else:
            V = np.ascontiguousarray(tmp[:,2],dtype='complex')
            V.imag = tmp[:,3]
        return scipy.sparse.coo_matrix((V,(I,J)), dims)

    def shape_from_header(self, hdr):
        '''Read the shape of the array described by the header.
        The file position after this call is unspecified.
        '''
        mclass = hdr.mclass
        if mclass == mxFULL_CLASS:
            shape = tuple(map(int, hdr.dims))
        elif mclass == mxCHAR_CLASS:
            shape = tuple(map(int, hdr.dims))
            if self.chars_as_strings:
                shape = shape[:-1]
        elif mclass == mxSPARSE_CLASS:
            dt = hdr.dtype
            dims = hdr.dims

            if not (len(dims) == 2 and dims[0] >= 1 and dims[1] >= 1):
                return ()

            # Read only the row and column counts
            self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
            rows = np.ndarray(shape=(), dtype=dt,
                              buffer=self.mat_stream.read(dt.itemsize))
            self.mat_stream.seek(dt.itemsize * (dims[0] - 1), 1)
            cols = np.ndarray(shape=(), dtype=dt,
                              buffer=self.mat_stream.read(dt.itemsize))

            shape = (int(rows), int(cols))
        else:
            raise TypeError('No reader for class code %s' % mclass)

        if self.squeeze_me:
            shape = tuple([x for x in shape if x != 1])
        return shape


class MatFile4Reader(MatFileReader):
    ''' Reader for Mat4 files '''
    @docfiller
    def __init__(self, mat_stream, *args, **kwargs):
        ''' Initialize matlab 4 file reader

    %(matstream_arg)s
    %(load_args)s
        '''
        super(MatFile4Reader, self).__init__(mat_stream, *args, **kwargs)
        self._matrix_reader = None

    def guess_byte_order(self):
        self.mat_stream.seek(0)
        mopt = read_dtype(self.mat_stream, np.dtype('i4'))
        self.mat_stream.seek(0)
        if mopt == 0:
            return '<'
        if mopt < 0 or mopt > 5000:
            # Number must have been byteswapped
            return SYS_LITTLE_ENDIAN and '>' or '<'
        # Not byteswapped
        return SYS_LITTLE_ENDIAN and '<' or '>'

    def initialize_read(self):
        ''' Run when beginning read of variables

        Sets up readers from parameters in `self`
        '''
        self.dtypes = convert_dtypes(mdtypes_template, self.byte_order)
        self._matrix_reader = VarReader4(self)

    def read_var_header(self):
        ''' Read and return header, next position

        Parameters
        ----------
        None

        Returns
        -------
        header : object
           object that can be passed to self.read_var_array, and that
           has attributes ``name`` and ``is_global``
        next_position : int
           position in stream of next variable
        '''
        hdr = self._matrix_reader.read_header()
        n = reduce(lambda x, y: x*y, hdr.dims, 1)  # fast product
        remaining_bytes = hdr.dtype.itemsize * n
        if hdr.is_complex and not hdr.mclass == mxSPARSE_CLASS:
            remaining_bytes *= 2
        next_position = self.mat_stream.tell() + remaining_bytes
        return hdr, next_position

    def read_var_array(self, header, process=True):
        ''' Read array, given `header`

        Parameters
        ----------
        header : header object
           object with fields defining variable header
        process : {True, False}, optional
           If True, apply recursive post-processing during loading of array.

        Returns
        -------
        arr : array
           array with post-processing applied or not according to
           `process`.
        '''
        return self._matrix_reader.array_from_header(header, process)

    def get_variables(self, variable_names=None):
        ''' get variables from stream as dictionary

        Parameters
        ----------
        variable_names : None or str or sequence of str, optional
            variable name, or sequence of variable names to get from Mat file /
            file stream. If None, then get all variables in file.
        '''
        if isinstance(variable_names, str):
            variable_names = [variable_names]
        elif variable_names is not None:
            variable_names = list(variable_names)
        self.mat_stream.seek(0)
        # set up variable reader
        self.initialize_read()
        mdict = {}
        while not self.end_of_stream():
            hdr, next_position = self.read_var_header()
            name = asstr(hdr.name)
            if variable_names is not None and name not in variable_names:
                self.mat_stream.seek(next_position)
                continue
            mdict[name] = self.read_var_array(hdr)
            self.mat_stream.seek(next_position)
            if variable_names is not None:
                variable_names.remove(name)
                if len(variable_names) == 0:
                    break
        return mdict

    def list_variables(self):
        ''' list variables from stream '''
        self.mat_stream.seek(0)
        # set up variable reader
        self.initialize_read()
        vars = []
        while not self.end_of_stream():
            hdr, next_position = self.read_var_header()
            name = asstr(hdr.name)
            shape = self._matrix_reader.shape_from_header(hdr)
            info = mclass_info.get(hdr.mclass, 'unknown')
            vars.append((name, shape, info))

            self.mat_stream.seek(next_position)
        return vars


def arr_to_2d(arr, oned_as='row'):
    ''' Make ``arr`` exactly two dimensional

    If `arr` has more than 2 dimensions, raise a ValueError

    Parameters
    ----------
    arr : array
    oned_as : {'row', 'column'}, optional
       Whether to reshape 1-D vectors as row vectors or column vectors.
       See documentation for ``matdims`` for more detail

    Returns
    -------
    arr2d : array
       2-D version of the array
    '''
    dims = matdims(arr, oned_as)
    if len(dims) > 2:
        raise ValueError('Matlab 4 files cannot save arrays with more than '
                         '2 dimensions')
    return arr.reshape(dims)


class VarWriter4(object):
    def __init__(self, file_writer):
        self.file_stream = file_writer.file_stream
        self.oned_as = file_writer.oned_as

    def write_bytes(self, arr):
        self.file_stream.write(arr.tobytes(order='F'))

    def write_string(self, s):
        self.file_stream.write(s)

    def write_header(self, name, shape, P=miDOUBLE, T=mxFULL_CLASS, imagf=0):
        ''' Write header for given data options

        Parameters
        ----------
        name : str
            name of variable
        shape : sequence
           Shape of array as it will be read in matlab
        P : int, optional
            code for mat4 data type, one of ``miDOUBLE, miSINGLE, miINT32,
            miINT16, miUINT16, miUINT8``
        T : int, optional
            code for mat4 matrix class, one of ``mxFULL_CLASS, mxCHAR_CLASS,
            mxSPARSE_CLASS``
        imagf : int, optional
            flag indicating complex
        '''
        header = np.empty((), mdtypes_template['header'])
        M = not SYS_LITTLE_ENDIAN
        O = 0
        header['mopt'] = (M * 1000 +
                          O * 100 +
                          P * 10 +
                          T)
        header['mrows'] = shape[0]
        header['ncols'] = shape[1]
        header['imagf'] = imagf
        header['namlen'] = len(name) + 1
        self.write_bytes(header)
        self.write_string(asbytes(name + '\0'))

    def write(self, arr, name):
        ''' Write matrix `arr`, with name `name`

        Parameters
        ----------
        arr : array_like
           array to write
        name : str
           name in matlab workspace
        '''
        # we need to catch sparse first, because np.asarray returns an
        # an object array for scipy.sparse
        if scipy.sparse.issparse(arr):
            self.write_sparse(arr, name)
            return
        arr = np.asarray(arr)
        dt = arr.dtype
        if not dt.isnative:
            arr = arr.astype(dt.newbyteorder('='))
        dtt = dt.type
        if dtt is np.object_:
            raise TypeError('Cannot save object arrays in Mat4')
        elif dtt is np.void:
            raise TypeError('Cannot save void type arrays')
        elif dtt in (np.unicode_, np.string_):
            self.write_char(arr, name)
            return
        self.write_numeric(arr, name)

    def write_numeric(self, arr, name):
        arr = arr_to_2d(arr, self.oned_as)
        imagf = arr.dtype.kind == 'c'
        try:
            P = np_to_mtypes[arr.dtype.str[1:]]
        except KeyError:
            if imagf:
                arr = arr.astype('c128')
            else:
                arr = arr.astype('f8')
            P = miDOUBLE
        self.write_header(name,
                          arr.shape,
                          P=P,
                          T=mxFULL_CLASS,
                          imagf=imagf)
        if imagf:
            self.write_bytes(arr.real)
            self.write_bytes(arr.imag)
        else:
            self.write_bytes(arr)

    def write_char(self, arr, name):
        arr = arr_to_chars(arr)
        arr = arr_to_2d(arr, self.oned_as)
        dims = arr.shape
        self.write_header(
            name,
            dims,
            P=miUINT8,
            T=mxCHAR_CLASS)
        if arr.dtype.kind == 'U':
            # Recode unicode to latin1
            n_chars = np.prod(dims)
            st_arr = np.ndarray(shape=(),
                                dtype=arr_dtype_number(arr, n_chars),
                                buffer=arr)
            st = st_arr.item().encode('latin-1')
            arr = np.ndarray(shape=dims, dtype='S1', buffer=st)
        self.write_bytes(arr)

    def write_sparse(self, arr, name):
        ''' Sparse matrices are 2-D

        See docstring for VarReader4.read_sparse_array
        '''
        A = arr.tocoo()  # convert to sparse COO format (ijv)
        imagf = A.dtype.kind == 'c'
        ijv = np.zeros((A.nnz + 1, 3+imagf), dtype='f8')
        ijv[:-1,0] = A.row
        ijv[:-1,1] = A.col
        ijv[:-1,0:2] += 1  # 1 based indexing
        if imagf:
            ijv[:-1,2] = A.data.real
            ijv[:-1,3] = A.data.imag
        else:
            ijv[:-1,2] = A.data
        ijv[-1,0:2] = A.shape
        self.write_header(
            name,
            ijv.shape,
            P=miDOUBLE,
            T=mxSPARSE_CLASS)
        self.write_bytes(ijv)


class MatFile4Writer(object):
    ''' Class for writing matlab 4 format files '''
    def __init__(self, file_stream, oned_as=None):
        self.file_stream = file_stream
        if oned_as is None:
            oned_as = 'row'
        self.oned_as = oned_as
        self._matrix_writer = None

    def put_variables(self, mdict, write_header=None):
        ''' Write variables in `mdict` to stream

        Parameters
        ----------
        mdict : mapping
           mapping with method ``items`` return name, contents pairs
           where ``name`` which will appeak in the matlab workspace in
           file load, and ``contents`` is something writeable to a
           matlab file, such as a NumPy array.
        write_header : {None, True, False}
           If True, then write the matlab file header before writing the
           variables. If None (the default) then write the file header
           if we are at position 0 in the stream. By setting False
           here, and setting the stream position to the end of the file,
           you can append variables to a matlab file
        '''
        # there is no header for a matlab 4 mat file, so we ignore the
        # ``write_header`` input argument. It's there for compatibility
        # with the matlab 5 version of this method
        self._matrix_writer = VarWriter4(self)
        for name, var in mdict.items():
            self._matrix_writer.write(var, name)