test_rbf.py
6.39 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
# Created by John Travers, Robert Hetland, 2007
""" Test functions for rbf module """
import numpy as np
from numpy.testing import (assert_, assert_array_almost_equal,
assert_almost_equal)
from numpy import linspace, sin, cos, random, exp, allclose
from scipy.interpolate.rbf import Rbf
FUNCTIONS = ('multiquadric', 'inverse multiquadric', 'gaussian',
'cubic', 'quintic', 'thin-plate', 'linear')
def check_rbf1d_interpolation(function):
# Check that the Rbf function interpolates through the nodes (1D)
x = linspace(0,10,9)
y = sin(x)
rbf = Rbf(x, y, function=function)
yi = rbf(x)
assert_array_almost_equal(y, yi)
assert_almost_equal(rbf(float(x[0])), y[0])
def check_rbf2d_interpolation(function):
# Check that the Rbf function interpolates through the nodes (2D).
x = random.rand(50,1)*4-2
y = random.rand(50,1)*4-2
z = x*exp(-x**2-1j*y**2)
rbf = Rbf(x, y, z, epsilon=2, function=function)
zi = rbf(x, y)
zi.shape = x.shape
assert_array_almost_equal(z, zi)
def check_rbf3d_interpolation(function):
# Check that the Rbf function interpolates through the nodes (3D).
x = random.rand(50, 1)*4 - 2
y = random.rand(50, 1)*4 - 2
z = random.rand(50, 1)*4 - 2
d = x*exp(-x**2 - y**2)
rbf = Rbf(x, y, z, d, epsilon=2, function=function)
di = rbf(x, y, z)
di.shape = x.shape
assert_array_almost_equal(di, d)
def test_rbf_interpolation():
for function in FUNCTIONS:
check_rbf1d_interpolation(function)
check_rbf2d_interpolation(function)
check_rbf3d_interpolation(function)
def check_2drbf1d_interpolation(function):
# Check that the 2-D Rbf function interpolates through the nodes (1D)
x = linspace(0, 10, 9)
y0 = sin(x)
y1 = cos(x)
y = np.vstack([y0, y1]).T
rbf = Rbf(x, y, function=function, mode='N-D')
yi = rbf(x)
assert_array_almost_equal(y, yi)
assert_almost_equal(rbf(float(x[0])), y[0])
def check_2drbf2d_interpolation(function):
# Check that the 2-D Rbf function interpolates through the nodes (2D).
x = random.rand(50, ) * 4 - 2
y = random.rand(50, ) * 4 - 2
z0 = x * exp(-x ** 2 - 1j * y ** 2)
z1 = y * exp(-y ** 2 - 1j * x ** 2)
z = np.vstack([z0, z1]).T
rbf = Rbf(x, y, z, epsilon=2, function=function, mode='N-D')
zi = rbf(x, y)
zi.shape = z.shape
assert_array_almost_equal(z, zi)
def check_2drbf3d_interpolation(function):
# Check that the 2-D Rbf function interpolates through the nodes (3D).
x = random.rand(50, ) * 4 - 2
y = random.rand(50, ) * 4 - 2
z = random.rand(50, ) * 4 - 2
d0 = x * exp(-x ** 2 - y ** 2)
d1 = y * exp(-y ** 2 - x ** 2)
d = np.vstack([d0, d1]).T
rbf = Rbf(x, y, z, d, epsilon=2, function=function, mode='N-D')
di = rbf(x, y, z)
di.shape = d.shape
assert_array_almost_equal(di, d)
def test_2drbf_interpolation():
for function in FUNCTIONS:
check_2drbf1d_interpolation(function)
check_2drbf2d_interpolation(function)
check_2drbf3d_interpolation(function)
def check_rbf1d_regularity(function, atol):
# Check that the Rbf function approximates a smooth function well away
# from the nodes.
x = linspace(0, 10, 9)
y = sin(x)
rbf = Rbf(x, y, function=function)
xi = linspace(0, 10, 100)
yi = rbf(xi)
msg = "abs-diff: %f" % abs(yi - sin(xi)).max()
assert_(allclose(yi, sin(xi), atol=atol), msg)
def test_rbf_regularity():
tolerances = {
'multiquadric': 0.1,
'inverse multiquadric': 0.15,
'gaussian': 0.15,
'cubic': 0.15,
'quintic': 0.1,
'thin-plate': 0.1,
'linear': 0.2
}
for function in FUNCTIONS:
check_rbf1d_regularity(function, tolerances.get(function, 1e-2))
def check_2drbf1d_regularity(function, atol):
# Check that the 2-D Rbf function approximates a smooth function well away
# from the nodes.
x = linspace(0, 10, 9)
y0 = sin(x)
y1 = cos(x)
y = np.vstack([y0, y1]).T
rbf = Rbf(x, y, function=function, mode='N-D')
xi = linspace(0, 10, 100)
yi = rbf(xi)
msg = "abs-diff: %f" % abs(yi - np.vstack([sin(xi), cos(xi)]).T).max()
assert_(allclose(yi, np.vstack([sin(xi), cos(xi)]).T, atol=atol), msg)
def test_2drbf_regularity():
tolerances = {
'multiquadric': 0.1,
'inverse multiquadric': 0.15,
'gaussian': 0.15,
'cubic': 0.15,
'quintic': 0.1,
'thin-plate': 0.15,
'linear': 0.2
}
for function in FUNCTIONS:
check_2drbf1d_regularity(function, tolerances.get(function, 1e-2))
def check_rbf1d_stability(function):
# Check that the Rbf function with default epsilon is not subject
# to overshoot. Regression for issue #4523.
#
# Generate some data (fixed random seed hence deterministic)
np.random.seed(1234)
x = np.linspace(0, 10, 50)
z = x + 4.0 * np.random.randn(len(x))
rbf = Rbf(x, z, function=function)
xi = np.linspace(0, 10, 1000)
yi = rbf(xi)
# subtract the linear trend and make sure there no spikes
assert_(np.abs(yi-xi).max() / np.abs(z-x).max() < 1.1)
def test_rbf_stability():
for function in FUNCTIONS:
check_rbf1d_stability(function)
def test_default_construction():
# Check that the Rbf class can be constructed with the default
# multiquadric basis function. Regression test for ticket #1228.
x = linspace(0,10,9)
y = sin(x)
rbf = Rbf(x, y)
yi = rbf(x)
assert_array_almost_equal(y, yi)
def test_function_is_callable():
# Check that the Rbf class can be constructed with function=callable.
x = linspace(0,10,9)
y = sin(x)
linfunc = lambda x:x
rbf = Rbf(x, y, function=linfunc)
yi = rbf(x)
assert_array_almost_equal(y, yi)
def test_two_arg_function_is_callable():
# Check that the Rbf class can be constructed with a two argument
# function=callable.
def _func(self, r):
return self.epsilon + r
x = linspace(0,10,9)
y = sin(x)
rbf = Rbf(x, y, function=_func)
yi = rbf(x)
assert_array_almost_equal(y, yi)
def test_rbf_epsilon_none():
x = linspace(0, 10, 9)
y = sin(x)
Rbf(x, y, epsilon=None)
def test_rbf_epsilon_none_collinear():
# Check that collinear points in one dimension doesn't cause an error
# due to epsilon = 0
x = [1, 2, 3]
y = [4, 4, 4]
z = [5, 6, 7]
rbf = Rbf(x, y, z, epsilon=None)
assert_(rbf.epsilon > 0)