polyint.py 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
import numpy as np
from scipy.special import factorial
from scipy._lib._util import _asarray_validated, float_factorial


__all__ = ["KroghInterpolator", "krogh_interpolate", "BarycentricInterpolator",
           "barycentric_interpolate", "approximate_taylor_polynomial"]


def _isscalar(x):
    """Check whether x is if a scalar type, or 0-dim"""
    return np.isscalar(x) or hasattr(x, 'shape') and x.shape == ()


class _Interpolator1D(object):
    """
    Common features in univariate interpolation

    Deal with input data type and interpolation axis rolling. The
    actual interpolator can assume the y-data is of shape (n, r) where
    `n` is the number of x-points, and `r` the number of variables,
    and use self.dtype as the y-data type.

    Attributes
    ----------
    _y_axis
        Axis along which the interpolation goes in the original array
    _y_extra_shape
        Additional trailing shape of the input arrays, excluding
        the interpolation axis.
    dtype
        Dtype of the y-data arrays. Can be set via _set_dtype, which
        forces it to be float or complex.

    Methods
    -------
    __call__
    _prepare_x
    _finish_y
    _reshape_yi
    _set_yi
    _set_dtype
    _evaluate

    """

    __slots__ = ('_y_axis', '_y_extra_shape', 'dtype')

    def __init__(self, xi=None, yi=None, axis=None):
        self._y_axis = axis
        self._y_extra_shape = None
        self.dtype = None
        if yi is not None:
            self._set_yi(yi, xi=xi, axis=axis)

    def __call__(self, x):
        """
        Evaluate the interpolant

        Parameters
        ----------
        x : array_like
            Points to evaluate the interpolant at.

        Returns
        -------
        y : array_like
            Interpolated values. Shape is determined by replacing
            the interpolation axis in the original array with the shape of x.

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate(x)
        return self._finish_y(y, x_shape)

    def _evaluate(self, x):
        """
        Actually evaluate the value of the interpolator.
        """
        raise NotImplementedError()

    def _prepare_x(self, x):
        """Reshape input x array to 1-D"""
        x = _asarray_validated(x, check_finite=False, as_inexact=True)
        x_shape = x.shape
        return x.ravel(), x_shape

    def _finish_y(self, y, x_shape):
        """Reshape interpolated y back to an N-D array similar to initial y"""
        y = y.reshape(x_shape + self._y_extra_shape)
        if self._y_axis != 0 and x_shape != ():
            nx = len(x_shape)
            ny = len(self._y_extra_shape)
            s = (list(range(nx, nx + self._y_axis))
                 + list(range(nx)) + list(range(nx+self._y_axis, nx+ny)))
            y = y.transpose(s)
        return y

    def _reshape_yi(self, yi, check=False):
        yi = np.rollaxis(np.asarray(yi), self._y_axis)
        if check and yi.shape[1:] != self._y_extra_shape:
            ok_shape = "%r + (N,) + %r" % (self._y_extra_shape[-self._y_axis:],
                                           self._y_extra_shape[:-self._y_axis])
            raise ValueError("Data must be of shape %s" % ok_shape)
        return yi.reshape((yi.shape[0], -1))

    def _set_yi(self, yi, xi=None, axis=None):
        if axis is None:
            axis = self._y_axis
        if axis is None:
            raise ValueError("no interpolation axis specified")

        yi = np.asarray(yi)

        shape = yi.shape
        if shape == ():
            shape = (1,)
        if xi is not None and shape[axis] != len(xi):
            raise ValueError("x and y arrays must be equal in length along "
                             "interpolation axis.")

        self._y_axis = (axis % yi.ndim)
        self._y_extra_shape = yi.shape[:self._y_axis]+yi.shape[self._y_axis+1:]
        self.dtype = None
        self._set_dtype(yi.dtype)

    def _set_dtype(self, dtype, union=False):
        if np.issubdtype(dtype, np.complexfloating) \
               or np.issubdtype(self.dtype, np.complexfloating):
            self.dtype = np.complex_
        else:
            if not union or self.dtype != np.complex_:
                self.dtype = np.float_


class _Interpolator1DWithDerivatives(_Interpolator1D):
    def derivatives(self, x, der=None):
        """
        Evaluate many derivatives of the polynomial at the point x

        Produce an array of all derivative values at the point x.

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the derivatives
        der : int or None, optional
            How many derivatives to extract; None for all potentially
            nonzero derivatives (that is a number equal to the number
            of points). This number includes the function value as 0th
            derivative.

        Returns
        -------
        d : ndarray
            Array with derivatives; d[j] contains the jth derivative.
            Shape of d[j] is determined by replacing the interpolation
            axis in the original array with the shape of x.

        Examples
        --------
        >>> from scipy.interpolate import KroghInterpolator
        >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives(0)
        array([1.0,2.0,3.0])
        >>> KroghInterpolator([0,0,0],[1,2,3]).derivatives([0,0])
        array([[1.0,1.0],
               [2.0,2.0],
               [3.0,3.0]])

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate_derivatives(x, der)

        y = y.reshape((y.shape[0],) + x_shape + self._y_extra_shape)
        if self._y_axis != 0 and x_shape != ():
            nx = len(x_shape)
            ny = len(self._y_extra_shape)
            s = ([0] + list(range(nx+1, nx + self._y_axis+1))
                 + list(range(1, nx+1)) +
                 list(range(nx+1+self._y_axis, nx+ny+1)))
            y = y.transpose(s)
        return y

    def derivative(self, x, der=1):
        """
        Evaluate one derivative of the polynomial at the point x

        Parameters
        ----------
        x : array_like
            Point or points at which to evaluate the derivatives

        der : integer, optional
            Which derivative to extract. This number includes the
            function value as 0th derivative.

        Returns
        -------
        d : ndarray
            Derivative interpolated at the x-points. Shape of d is
            determined by replacing the interpolation axis in the
            original array with the shape of x.

        Notes
        -----
        This is computed by evaluating all derivatives up to the desired
        one (using self.derivatives()) and then discarding the rest.

        """
        x, x_shape = self._prepare_x(x)
        y = self._evaluate_derivatives(x, der+1)
        return self._finish_y(y[der], x_shape)


class KroghInterpolator(_Interpolator1DWithDerivatives):
    """
    Interpolating polynomial for a set of points.

    The polynomial passes through all the pairs (xi,yi). One may
    additionally specify a number of derivatives at each point xi;
    this is done by repeating the value xi and specifying the
    derivatives as successive yi values.

    Allows evaluation of the polynomial and all its derivatives.
    For reasons of numerical stability, this function does not compute
    the coefficients of the polynomial, although they can be obtained
    by evaluating all the derivatives.

    Parameters
    ----------
    xi : array_like, length N
        Known x-coordinates. Must be sorted in increasing order.
    yi : array_like
        Known y-coordinates. When an xi occurs two or more times in
        a row, the corresponding yi's represent derivative values.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    Notes
    -----
    Be aware that the algorithms implemented here are not necessarily
    the most numerically stable known. Moreover, even in a world of
    exact computation, unless the x coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon. In general, even with well-chosen
    x values, degrees higher than about thirty cause problems with
    numerical instability in this code.

    Based on [1]_.

    References
    ----------
    .. [1] Krogh, "Efficient Algorithms for Polynomial Interpolation
        and Numerical Differentiation", 1970.

    Examples
    --------
    To produce a polynomial that is zero at 0 and 1 and has
    derivative 2 at 0, call

    >>> from scipy.interpolate import KroghInterpolator
    >>> KroghInterpolator([0,0,1],[0,2,0])

    This constructs the quadratic 2*X**2-2*X. The derivative condition
    is indicated by the repeated zero in the xi array; the corresponding
    yi values are 0, the function value, and 2, the derivative value.

    For another example, given xi, yi, and a derivative ypi for each
    point, appropriate arrays can be constructed as:

    >>> xi = np.linspace(0, 1, 5)
    >>> yi, ypi = np.random.rand(2, 5)
    >>> xi_k, yi_k = np.repeat(xi, 2), np.ravel(np.dstack((yi,ypi)))
    >>> KroghInterpolator(xi_k, yi_k)

    To produce a vector-valued polynomial, supply a higher-dimensional
    array for yi:

    >>> KroghInterpolator([0,1],[[2,3],[4,5]])

    This constructs a linear polynomial giving (2,3) at 0 and (4,5) at 1.

    """

    def __init__(self, xi, yi, axis=0):
        _Interpolator1DWithDerivatives.__init__(self, xi, yi, axis)

        self.xi = np.asarray(xi)
        self.yi = self._reshape_yi(yi)
        self.n, self.r = self.yi.shape

        c = np.zeros((self.n+1, self.r), dtype=self.dtype)
        c[0] = self.yi[0]
        Vk = np.zeros((self.n, self.r), dtype=self.dtype)
        for k in range(1, self.n):
            s = 0
            while s <= k and xi[k-s] == xi[k]:
                s += 1
            s -= 1
            Vk[0] = self.yi[k]/float_factorial(s)
            for i in range(k-s):
                if xi[i] == xi[k]:
                    raise ValueError("Elements if `xi` can't be equal.")
                if s == 0:
                    Vk[i+1] = (c[i]-Vk[i])/(xi[i]-xi[k])
                else:
                    Vk[i+1] = (Vk[i+1]-Vk[i])/(xi[i]-xi[k])
            c[k] = Vk[k-s]
        self.c = c

    def _evaluate(self, x):
        pi = 1
        p = np.zeros((len(x), self.r), dtype=self.dtype)
        p += self.c[0,np.newaxis,:]
        for k in range(1, self.n):
            w = x - self.xi[k-1]
            pi = w*pi
            p += pi[:,np.newaxis] * self.c[k]
        return p

    def _evaluate_derivatives(self, x, der=None):
        n = self.n
        r = self.r

        if der is None:
            der = self.n
        pi = np.zeros((n, len(x)))
        w = np.zeros((n, len(x)))
        pi[0] = 1
        p = np.zeros((len(x), self.r), dtype=self.dtype)
        p += self.c[0, np.newaxis, :]

        for k in range(1, n):
            w[k-1] = x - self.xi[k-1]
            pi[k] = w[k-1] * pi[k-1]
            p += pi[k, :, np.newaxis] * self.c[k]

        cn = np.zeros((max(der, n+1), len(x), r), dtype=self.dtype)
        cn[:n+1, :, :] += self.c[:n+1, np.newaxis, :]
        cn[0] = p
        for k in range(1, n):
            for i in range(1, n-k+1):
                pi[i] = w[k+i-1]*pi[i-1] + pi[i]
                cn[k] = cn[k] + pi[i, :, np.newaxis]*cn[k+i]
            cn[k] *= float_factorial(k)

        cn[n, :, :] = 0
        return cn[:der]


def krogh_interpolate(xi, yi, x, der=0, axis=0):
    """
    Convenience function for polynomial interpolation.

    See `KroghInterpolator` for more details.

    Parameters
    ----------
    xi : array_like
        Known x-coordinates.
    yi : array_like
        Known y-coordinates, of shape ``(xi.size, R)``. Interpreted as
        vectors of length R, or scalars if R=1.
    x : array_like
        Point or points at which to evaluate the derivatives.
    der : int or list, optional
        How many derivatives to extract; None for all potentially
        nonzero derivatives (that is a number equal to the number
        of points), or a list of derivatives to extract. This number
        includes the function value as 0th derivative.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    Returns
    -------
    d : ndarray
        If the interpolator's values are R-D then the
        returned array will be the number of derivatives by N by R.
        If `x` is a scalar, the middle dimension will be dropped; if
        the `yi` are scalars then the last dimension will be dropped.

    See Also
    --------
    KroghInterpolator : Krogh interpolator

    Notes
    -----
    Construction of the interpolating polynomial is a relatively expensive
    process. If you want to evaluate it repeatedly consider using the class
    KroghInterpolator (which is what this function uses).

    Examples
    --------
    We can interpolate 2D observed data using krogh interpolation:

    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import krogh_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = krogh_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="krogh interpolation")
    >>> plt.legend()
    >>> plt.show()

    """
    P = KroghInterpolator(xi, yi, axis=axis)
    if der == 0:
        return P(x)
    elif _isscalar(der):
        return P.derivative(x,der=der)
    else:
        return P.derivatives(x,der=np.amax(der)+1)[der]


def approximate_taylor_polynomial(f,x,degree,scale,order=None):
    """
    Estimate the Taylor polynomial of f at x by polynomial fitting.

    Parameters
    ----------
    f : callable
        The function whose Taylor polynomial is sought. Should accept
        a vector of `x` values.
    x : scalar
        The point at which the polynomial is to be evaluated.
    degree : int
        The degree of the Taylor polynomial
    scale : scalar
        The width of the interval to use to evaluate the Taylor polynomial.
        Function values spread over a range this wide are used to fit the
        polynomial. Must be chosen carefully.
    order : int or None, optional
        The order of the polynomial to be used in the fitting; `f` will be
        evaluated ``order+1`` times. If None, use `degree`.

    Returns
    -------
    p : poly1d instance
        The Taylor polynomial (translated to the origin, so that
        for example p(0)=f(x)).

    Notes
    -----
    The appropriate choice of "scale" is a trade-off; too large and the
    function differs from its Taylor polynomial too much to get a good
    answer, too small and round-off errors overwhelm the higher-order terms.
    The algorithm used becomes numerically unstable around order 30 even
    under ideal circumstances.

    Choosing order somewhat larger than degree may improve the higher-order
    terms.

    Examples
    --------
    We can calculate Taylor approximation polynomials of sin function with
    various degrees:

    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import approximate_taylor_polynomial
    >>> x = np.linspace(-10.0, 10.0, num=100)
    >>> plt.plot(x, np.sin(x), label="sin curve")
    >>> for degree in np.arange(1, 15, step=2):
    ...     sin_taylor = approximate_taylor_polynomial(np.sin, 0, degree, 1,
    ...                                                order=degree + 2)
    ...     plt.plot(x, sin_taylor(x), label=f"degree={degree}")
    >>> plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left',
    ...            borderaxespad=0.0, shadow=True)
    >>> plt.tight_layout()
    >>> plt.axis([-10, 10, -10, 10])
    >>> plt.show()

    """
    if order is None:
        order = degree

    n = order+1
    # Choose n points that cluster near the endpoints of the interval in
    # a way that avoids the Runge phenomenon. Ensure, by including the
    # endpoint or not as appropriate, that one point always falls at x
    # exactly.
    xs = scale*np.cos(np.linspace(0,np.pi,n,endpoint=n % 1)) + x

    P = KroghInterpolator(xs, f(xs))
    d = P.derivatives(x,der=degree+1)

    return np.poly1d((d/factorial(np.arange(degree+1)))[::-1])


class BarycentricInterpolator(_Interpolator1D):
    """The interpolating polynomial for a set of points

    Constructs a polynomial that passes through a given set of points.
    Allows evaluation of the polynomial, efficient changing of the y
    values to be interpolated, and updating by adding more x values.
    For reasons of numerical stability, this function does not compute
    the coefficients of the polynomial.

    The values yi need to be provided before the function is
    evaluated, but none of the preprocessing depends on them, so rapid
    updates are possible.

    Parameters
    ----------
    xi : array_like
        1-D array of x coordinates of the points the polynomial
        should pass through
    yi : array_like, optional
        The y coordinates of the points the polynomial should pass through.
        If None, the y values will be supplied later via the `set_y` method.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    Notes
    -----
    This class uses a "barycentric interpolation" method that treats
    the problem as a special case of rational function interpolation.
    This algorithm is quite stable, numerically, but even in a world of
    exact computation, unless the x coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon.

    Based on Berrut and Trefethen 2004, "Barycentric Lagrange Interpolation".

    """
    def __init__(self, xi, yi=None, axis=0):
        _Interpolator1D.__init__(self, xi, yi, axis)

        self.xi = np.asfarray(xi)
        self.set_yi(yi)
        self.n = len(self.xi)

        self.wi = np.zeros(self.n)
        self.wi[0] = 1
        for j in range(1, self.n):
            self.wi[:j] *= (self.xi[j]-self.xi[:j])
            self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j])
        self.wi **= -1

    def set_yi(self, yi, axis=None):
        """
        Update the y values to be interpolated

        The barycentric interpolation algorithm requires the calculation
        of weights, but these depend only on the xi. The yi can be changed
        at any time.

        Parameters
        ----------
        yi : array_like
            The y coordinates of the points the polynomial should pass through.
            If None, the y values will be supplied later.
        axis : int, optional
            Axis in the yi array corresponding to the x-coordinate values.

        """
        if yi is None:
            self.yi = None
            return
        self._set_yi(yi, xi=self.xi, axis=axis)
        self.yi = self._reshape_yi(yi)
        self.n, self.r = self.yi.shape

    def add_xi(self, xi, yi=None):
        """
        Add more x values to the set to be interpolated

        The barycentric interpolation algorithm allows easy updating by
        adding more points for the polynomial to pass through.

        Parameters
        ----------
        xi : array_like
            The x coordinates of the points that the polynomial should pass
            through.
        yi : array_like, optional
            The y coordinates of the points the polynomial should pass through.
            Should have shape ``(xi.size, R)``; if R > 1 then the polynomial is
            vector-valued.
            If `yi` is not given, the y values will be supplied later. `yi` should
            be given if and only if the interpolator has y values specified.

        """
        if yi is not None:
            if self.yi is None:
                raise ValueError("No previous yi value to update!")
            yi = self._reshape_yi(yi, check=True)
            self.yi = np.vstack((self.yi,yi))
        else:
            if self.yi is not None:
                raise ValueError("No update to yi provided!")
        old_n = self.n
        self.xi = np.concatenate((self.xi,xi))
        self.n = len(self.xi)
        self.wi **= -1
        old_wi = self.wi
        self.wi = np.zeros(self.n)
        self.wi[:old_n] = old_wi
        for j in range(old_n, self.n):
            self.wi[:j] *= (self.xi[j]-self.xi[:j])
            self.wi[j] = np.multiply.reduce(self.xi[:j]-self.xi[j])
        self.wi **= -1

    def __call__(self, x):
        """Evaluate the interpolating polynomial at the points x

        Parameters
        ----------
        x : array_like
            Points to evaluate the interpolant at.

        Returns
        -------
        y : array_like
            Interpolated values. Shape is determined by replacing
            the interpolation axis in the original array with the shape of x.

        Notes
        -----
        Currently the code computes an outer product between x and the
        weights, that is, it constructs an intermediate array of size
        N by len(x), where N is the degree of the polynomial.
        """
        return _Interpolator1D.__call__(self, x)

    def _evaluate(self, x):
        if x.size == 0:
            p = np.zeros((0, self.r), dtype=self.dtype)
        else:
            c = x[...,np.newaxis]-self.xi
            z = c == 0
            c[z] = 1
            c = self.wi/c
            p = np.dot(c,self.yi)/np.sum(c,axis=-1)[...,np.newaxis]
            # Now fix where x==some xi
            r = np.nonzero(z)
            if len(r) == 1:  # evaluation at a scalar
                if len(r[0]) > 0:  # equals one of the points
                    p = self.yi[r[0][0]]
            else:
                p[r[:-1]] = self.yi[r[-1]]
        return p


def barycentric_interpolate(xi, yi, x, axis=0):
    """
    Convenience function for polynomial interpolation.

    Constructs a polynomial that passes through a given set of points,
    then evaluates the polynomial. For reasons of numerical stability,
    this function does not compute the coefficients of the polynomial.

    This function uses a "barycentric interpolation" method that treats
    the problem as a special case of rational function interpolation.
    This algorithm is quite stable, numerically, but even in a world of
    exact computation, unless the `x` coordinates are chosen very
    carefully - Chebyshev zeros (e.g., cos(i*pi/n)) are a good choice -
    polynomial interpolation itself is a very ill-conditioned process
    due to the Runge phenomenon.

    Parameters
    ----------
    xi : array_like
        1-D array of x coordinates of the points the polynomial should
        pass through
    yi : array_like
        The y coordinates of the points the polynomial should pass through.
    x : scalar or array_like
        Points to evaluate the interpolator at.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    Returns
    -------
    y : scalar or array_like
        Interpolated values. Shape is determined by replacing
        the interpolation axis in the original array with the shape of x.

    See Also
    --------
    BarycentricInterpolator : Bary centric interpolator

    Notes
    -----
    Construction of the interpolation weights is a relatively slow process.
    If you want to call this many times with the same xi (but possibly
    varying yi or x) you should use the class `BarycentricInterpolator`.
    This is what this function uses internally.

    Examples
    --------
    We can interpolate 2D observed data using barycentric interpolation:

    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import barycentric_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = barycentric_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="barycentric interpolation")
    >>> plt.legend()
    >>> plt.show()

    """
    return BarycentricInterpolator(xi, yi, axis=axis)(x)