fitpack2.py 65.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
"""
fitpack --- curve and surface fitting with splines

fitpack is based on a collection of Fortran routines DIERCKX
by P. Dierckx (see http://www.netlib.org/dierckx/) transformed
to double routines by Pearu Peterson.
"""
# Created by Pearu Peterson, June,August 2003
__all__ = [
    'UnivariateSpline',
    'InterpolatedUnivariateSpline',
    'LSQUnivariateSpline',
    'BivariateSpline',
    'LSQBivariateSpline',
    'SmoothBivariateSpline',
    'LSQSphereBivariateSpline',
    'SmoothSphereBivariateSpline',
    'RectBivariateSpline',
    'RectSphereBivariateSpline']


import warnings

from numpy import zeros, concatenate, ravel, diff, array, ones
import numpy as np

from . import fitpack
from . import dfitpack


dfitpack_int = dfitpack.types.intvar.dtype


# ############### Univariate spline ####################

_curfit_messages = {1: """
The required storage space exceeds the available storage space, as
specified by the parameter nest: nest too small. If nest is already
large (say nest > m/2), it may also indicate that s is too small.
The approximation returned is the weighted least-squares spline
according to the knots t[0],t[1],...,t[n-1]. (n=nest) the parameter fp
gives the corresponding weighted sum of squared residuals (fp>s).
""",
                    2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
                    3: """
The maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached: s
too small.
There is an approximation returned but the corresponding weighted sum
of squared residuals does not satisfy the condition abs(fp-s)/s < tol.""",
                    10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[0]<x[1]<...<x[m-1]<=xe, w[i]>0, i=0..m-1
if iopt=-1:
  xb<t[k+1]<t[k+2]<...<t[n-k-2]<xe"""
                    }


# UnivariateSpline, ext parameter can be an int or a string
_extrap_modes = {0: 0, 'extrapolate': 0,
                 1: 1, 'zeros': 1,
                 2: 2, 'raise': 2,
                 3: 3, 'const': 3}


class UnivariateSpline(object):
    """
    1-D smoothing spline fit to a given set of data points.

    Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.  `s`
    specifies the number of knots by specifying a smoothing condition.

    Parameters
    ----------
    x : (N,) array_like
        1-D array of independent input data. Must be increasing;
        must be strictly increasing if `s` is 0.
    y : (N,) array_like
        1-D array of dependent input data, of the same length as `x`.
    w : (N,) array_like, optional
        Weights for spline fitting.  Must be positive.  If None (default),
        weights are all equal.
    bbox : (2,) array_like, optional
        2-sequence specifying the boundary of the approximation interval. If
        None (default), ``bbox=[x[0], x[-1]]``.
    k : int, optional
        Degree of the smoothing spline.  Must be 1 <= `k` <= 5.
        Default is `k` = 3, a cubic spline.
    s : float or None, optional
        Positive smoothing factor used to choose the number of knots.  Number
        of knots will be increased until the smoothing condition is satisfied::

            sum((w[i] * (y[i]-spl(x[i])))**2, axis=0) <= s

        If None (default), ``s = len(w)`` which should be a good value if
        ``1/w[i]`` is an estimate of the standard deviation of ``y[i]``.
        If 0, spline will interpolate through all data points.
    ext : int or str, optional
        Controls the extrapolation mode for elements
        not in the interval defined by the knot sequence.

        * if ext=0 or 'extrapolate', return the extrapolated value.
        * if ext=1 or 'zeros', return 0
        * if ext=2 or 'raise', raise a ValueError
        * if ext=3 of 'const', return the boundary value.

        The default value is 0.

    check_finite : bool, optional
        Whether to check that the input arrays contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination or non-sensical results) if the inputs
        do contain infinities or NaNs.
        Default is False.

    See Also
    --------
    InterpolatedUnivariateSpline : Subclass with smoothing forced to 0
    LSQUnivariateSpline : Subclass in which knots are user-selected instead of
        being set by smoothing condition
    splrep : An older, non object-oriented wrapping of FITPACK
    splev, sproot, splint, spalde
    BivariateSpline : A similar class for two-dimensional spline interpolation

    Notes
    -----
    The number of data points must be larger than the spline degree `k`.

    **NaN handling**: If the input arrays contain ``nan`` values, the result
    is not useful, since the underlying spline fitting routines cannot deal
    with ``nan``. A workaround is to use zero weights for not-a-number
    data points:

    >>> from scipy.interpolate import UnivariateSpline
    >>> x, y = np.array([1, 2, 3, 4]), np.array([1, np.nan, 3, 4])
    >>> w = np.isnan(y)
    >>> y[w] = 0.
    >>> spl = UnivariateSpline(x, y, w=~w)

    Notice the need to replace a ``nan`` by a numerical value (precise value
    does not matter as long as the corresponding weight is zero.)

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import UnivariateSpline
    >>> x = np.linspace(-3, 3, 50)
    >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
    >>> plt.plot(x, y, 'ro', ms=5)

    Use the default value for the smoothing parameter:

    >>> spl = UnivariateSpline(x, y)
    >>> xs = np.linspace(-3, 3, 1000)
    >>> plt.plot(xs, spl(xs), 'g', lw=3)

    Manually change the amount of smoothing:

    >>> spl.set_smoothing_factor(0.5)
    >>> plt.plot(xs, spl(xs), 'b', lw=3)
    >>> plt.show()

    """
    def __init__(self, x, y, w=None, bbox=[None]*2, k=3, s=None,
                 ext=0, check_finite=False):

        x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, s, ext,
                                                      check_finite)

        # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
        data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
                                xe=bbox[1], s=s)
        if data[-1] == 1:
            # nest too small, setting to maximum bound
            data = self._reset_nest(data)
        self._data = data
        self._reset_class()

    @staticmethod
    def validate_input(x, y, w, bbox, k, s, ext, check_finite):
        x, y, bbox = np.asarray(x), np.asarray(y), np.asarray(bbox)
        if w is not None:
            w = np.asarray(w)
        if check_finite:
            w_finite = np.isfinite(w).all() if w is not None else True
            if (not np.isfinite(x).all() or not np.isfinite(y).all() or
                    not w_finite):
                raise ValueError("x and y array must not contain "
                                 "NaNs or infs.")
        if s is None or s > 0:
            if not np.all(diff(x) >= 0.0):
                raise ValueError("x must be increasing if s > 0")
        else:
            if not np.all(diff(x) > 0.0):
                raise ValueError("x must be strictly increasing if s = 0")
        if x.size != y.size:
            raise ValueError("x and y should have a same length")
        elif w is not None and not x.size == y.size == w.size:
            raise ValueError("x, y, and w should have a same length")
        elif bbox.shape != (2,):
            raise ValueError("bbox shape should be (2,)")
        elif not (1 <= k <= 5):
            raise ValueError("k should be 1 <= k <= 5")
        elif s is not None and not s >= 0.0:
            raise ValueError("s should be s >= 0.0")

        try:
            ext = _extrap_modes[ext]
        except KeyError:
            raise ValueError("Unknown extrapolation mode %s." % ext)

        return x, y, w, bbox, ext

    @classmethod
    def _from_tck(cls, tck, ext=0):
        """Construct a spline object from given tck"""
        self = cls.__new__(cls)
        t, c, k = tck
        self._eval_args = tck
        # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
        self._data = (None, None, None, None, None, k, None, len(t), t,
                      c, None, None, None, None)
        self.ext = ext
        return self

    def _reset_class(self):
        data = self._data
        n, t, c, k, ier = data[7], data[8], data[9], data[5], data[-1]
        self._eval_args = t[:n], c[:n], k
        if ier == 0:
            # the spline returned has a residual sum of squares fp
            # such that abs(fp-s)/s <= tol with tol a relative
            # tolerance set to 0.001 by the program
            pass
        elif ier == -1:
            # the spline returned is an interpolating spline
            self._set_class(InterpolatedUnivariateSpline)
        elif ier == -2:
            # the spline returned is the weighted least-squares
            # polynomial of degree k. In this extreme case fp gives
            # the upper bound fp0 for the smoothing factor s.
            self._set_class(LSQUnivariateSpline)
        else:
            # error
            if ier == 1:
                self._set_class(LSQUnivariateSpline)
            message = _curfit_messages.get(ier, 'ier=%s' % (ier))
            warnings.warn(message)

    def _set_class(self, cls):
        self._spline_class = cls
        if self.__class__ in (UnivariateSpline, InterpolatedUnivariateSpline,
                              LSQUnivariateSpline):
            self.__class__ = cls
        else:
            # It's an unknown subclass -- don't change class. cf. #731
            pass

    def _reset_nest(self, data, nest=None):
        n = data[10]
        if nest is None:
            k, m = data[5], len(data[0])
            nest = m+k+1  # this is the maximum bound for nest
        else:
            if not n <= nest:
                raise ValueError("`nest` can only be increased")
        t, c, fpint, nrdata = [np.resize(data[j], nest) for j in
                               [8, 9, 11, 12]]

        args = data[:8] + (t, c, n, fpint, nrdata, data[13])
        data = dfitpack.fpcurf1(*args)
        return data

    def set_smoothing_factor(self, s):
        """ Continue spline computation with the given smoothing
        factor s and with the knots found at the last call.

        This routine modifies the spline in place.

        """
        data = self._data
        if data[6] == -1:
            warnings.warn('smoothing factor unchanged for'
                          'LSQ spline with fixed knots')
            return
        args = data[:6] + (s,) + data[7:]
        data = dfitpack.fpcurf1(*args)
        if data[-1] == 1:
            # nest too small, setting to maximum bound
            data = self._reset_nest(data)
        self._data = data
        self._reset_class()

    def __call__(self, x, nu=0, ext=None):
        """
        Evaluate spline (or its nu-th derivative) at positions x.

        Parameters
        ----------
        x : array_like
            A 1-D array of points at which to return the value of the smoothed
            spline or its derivatives. Note: `x` can be unordered but the
            evaluation is more efficient if `x` is (partially) ordered.
        nu  : int
            The order of derivative of the spline to compute.
        ext : int
            Controls the value returned for elements of `x` not in the
            interval defined by the knot sequence.

            * if ext=0 or 'extrapolate', return the extrapolated value.
            * if ext=1 or 'zeros', return 0
            * if ext=2 or 'raise', raise a ValueError
            * if ext=3 or 'const', return the boundary value.

            The default value is 0, passed from the initialization of
            UnivariateSpline.

        """
        x = np.asarray(x)
        # empty input yields empty output
        if x.size == 0:
            return array([])
        if ext is None:
            ext = self.ext
        else:
            try:
                ext = _extrap_modes[ext]
            except KeyError:
                raise ValueError("Unknown extrapolation mode %s." % ext)
        return fitpack.splev(x, self._eval_args, der=nu, ext=ext)

    def get_knots(self):
        """ Return positions of interior knots of the spline.

        Internally, the knot vector contains ``2*k`` additional boundary knots.
        """
        data = self._data
        k, n = data[5], data[7]
        return data[8][k:n-k]

    def get_coeffs(self):
        """Return spline coefficients."""
        data = self._data
        k, n = data[5], data[7]
        return data[9][:n-k-1]

    def get_residual(self):
        """Return weighted sum of squared residuals of the spline approximation.

           This is equivalent to::

                sum((w[i] * (y[i]-spl(x[i])))**2, axis=0)

        """
        return self._data[10]

    def integral(self, a, b):
        """ Return definite integral of the spline between two given points.

        Parameters
        ----------
        a : float
            Lower limit of integration.
        b : float
            Upper limit of integration.

        Returns
        -------
        integral : float
            The value of the definite integral of the spline between limits.

        Examples
        --------
        >>> from scipy.interpolate import UnivariateSpline
        >>> x = np.linspace(0, 3, 11)
        >>> y = x**2
        >>> spl = UnivariateSpline(x, y)
        >>> spl.integral(0, 3)
        9.0

        which agrees with :math:`\\int x^2 dx = x^3 / 3` between the limits
        of 0 and 3.

        A caveat is that this routine assumes the spline to be zero outside of
        the data limits:

        >>> spl.integral(-1, 4)
        9.0
        >>> spl.integral(-1, 0)
        0.0

        """
        return dfitpack.splint(*(self._eval_args+(a, b)))

    def derivatives(self, x):
        """ Return all derivatives of the spline at the point x.

        Parameters
        ----------
        x : float
            The point to evaluate the derivatives at.

        Returns
        -------
        der : ndarray, shape(k+1,)
            Derivatives of the orders 0 to k.

        Examples
        --------
        >>> from scipy.interpolate import UnivariateSpline
        >>> x = np.linspace(0, 3, 11)
        >>> y = x**2
        >>> spl = UnivariateSpline(x, y)
        >>> spl.derivatives(1.5)
        array([2.25, 3.0, 2.0, 0])

        """
        d, ier = dfitpack.spalde(*(self._eval_args+(x,)))
        if not ier == 0:
            raise ValueError("Error code returned by spalde: %s" % ier)
        return d

    def roots(self):
        """ Return the zeros of the spline.

        Restriction: only cubic splines are supported by fitpack.
        """
        k = self._data[5]
        if k == 3:
            z, m, ier = dfitpack.sproot(*self._eval_args[:2])
            if not ier == 0:
                raise ValueError("Error code returned by spalde: %s" % ier)
            return z[:m]
        raise NotImplementedError('finding roots unsupported for '
                                  'non-cubic splines')

    def derivative(self, n=1):
        """
        Construct a new spline representing the derivative of this spline.

        Parameters
        ----------
        n : int, optional
            Order of derivative to evaluate. Default: 1

        Returns
        -------
        spline : UnivariateSpline
            Spline of order k2=k-n representing the derivative of this
            spline.

        See Also
        --------
        splder, antiderivative

        Notes
        -----

        .. versionadded:: 0.13.0

        Examples
        --------
        This can be used for finding maxima of a curve:

        >>> from scipy.interpolate import UnivariateSpline
        >>> x = np.linspace(0, 10, 70)
        >>> y = np.sin(x)
        >>> spl = UnivariateSpline(x, y, k=4, s=0)

        Now, differentiate the spline and find the zeros of the
        derivative. (NB: `sproot` only works for order 3 splines, so we
        fit an order 4 spline):

        >>> spl.derivative().roots() / np.pi
        array([ 0.50000001,  1.5       ,  2.49999998])

        This agrees well with roots :math:`\\pi/2 + n\\pi` of
        :math:`\\cos(x) = \\sin'(x)`.

        """
        tck = fitpack.splder(self._eval_args, n)
        # if self.ext is 'const', derivative.ext will be 'zeros'
        ext = 1 if self.ext == 3 else self.ext
        return UnivariateSpline._from_tck(tck, ext=ext)

    def antiderivative(self, n=1):
        """
        Construct a new spline representing the antiderivative of this spline.

        Parameters
        ----------
        n : int, optional
            Order of antiderivative to evaluate. Default: 1

        Returns
        -------
        spline : UnivariateSpline
            Spline of order k2=k+n representing the antiderivative of this
            spline.

        Notes
        -----

        .. versionadded:: 0.13.0

        See Also
        --------
        splantider, derivative

        Examples
        --------
        >>> from scipy.interpolate import UnivariateSpline
        >>> x = np.linspace(0, np.pi/2, 70)
        >>> y = 1 / np.sqrt(1 - 0.8*np.sin(x)**2)
        >>> spl = UnivariateSpline(x, y, s=0)

        The derivative is the inverse operation of the antiderivative,
        although some floating point error accumulates:

        >>> spl(1.7), spl.antiderivative().derivative()(1.7)
        (array(2.1565429877197317), array(2.1565429877201865))

        Antiderivative can be used to evaluate definite integrals:

        >>> ispl = spl.antiderivative()
        >>> ispl(np.pi/2) - ispl(0)
        2.2572053588768486

        This is indeed an approximation to the complete elliptic integral
        :math:`K(m) = \\int_0^{\\pi/2} [1 - m\\sin^2 x]^{-1/2} dx`:

        >>> from scipy.special import ellipk
        >>> ellipk(0.8)
        2.2572053268208538

        """
        tck = fitpack.splantider(self._eval_args, n)
        return UnivariateSpline._from_tck(tck, self.ext)


class InterpolatedUnivariateSpline(UnivariateSpline):
    """
    1-D interpolating spline for a given set of data points.

    Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.
    Spline function passes through all provided points. Equivalent to
    `UnivariateSpline` with  s=0.

    Parameters
    ----------
    x : (N,) array_like
        Input dimension of data points -- must be strictly increasing
    y : (N,) array_like
        input dimension of data points
    w : (N,) array_like, optional
        Weights for spline fitting.  Must be positive.  If None (default),
        weights are all equal.
    bbox : (2,) array_like, optional
        2-sequence specifying the boundary of the approximation interval. If
        None (default), ``bbox=[x[0], x[-1]]``.
    k : int, optional
        Degree of the smoothing spline.  Must be 1 <= `k` <= 5.
    ext : int or str, optional
        Controls the extrapolation mode for elements
        not in the interval defined by the knot sequence.

        * if ext=0 or 'extrapolate', return the extrapolated value.
        * if ext=1 or 'zeros', return 0
        * if ext=2 or 'raise', raise a ValueError
        * if ext=3 of 'const', return the boundary value.

        The default value is 0.

    check_finite : bool, optional
        Whether to check that the input arrays contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination or non-sensical results) if the inputs
        do contain infinities or NaNs.
        Default is False.

    See Also
    --------
    UnivariateSpline : Superclass -- allows knots to be selected by a
        smoothing condition
    LSQUnivariateSpline : spline for which knots are user-selected
    splrep : An older, non object-oriented wrapping of FITPACK
    splev, sproot, splint, spalde
    BivariateSpline : A similar class for two-dimensional spline interpolation

    Notes
    -----
    The number of data points must be larger than the spline degree `k`.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import InterpolatedUnivariateSpline
    >>> x = np.linspace(-3, 3, 50)
    >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
    >>> spl = InterpolatedUnivariateSpline(x, y)
    >>> plt.plot(x, y, 'ro', ms=5)
    >>> xs = np.linspace(-3, 3, 1000)
    >>> plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
    >>> plt.show()

    Notice that the ``spl(x)`` interpolates `y`:

    >>> spl.get_residual()
    0.0

    """
    def __init__(self, x, y, w=None, bbox=[None]*2, k=3,
                 ext=0, check_finite=False):

        x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
                                            ext, check_finite)
        if not np.all(diff(x) > 0.0):
            raise ValueError('x must be strictly increasing')

        # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
        self._data = dfitpack.fpcurf0(x, y, k, w=w, xb=bbox[0],
                                      xe=bbox[1], s=0)
        self._reset_class()


_fpchec_error_string = """The input parameters have been rejected by fpchec. \
This means that at least one of the following conditions is violated:

1) k+1 <= n-k-1 <= m
2) t(1) <= t(2) <= ... <= t(k+1)
   t(n-k) <= t(n-k+1) <= ... <= t(n)
3) t(k+1) < t(k+2) < ... < t(n-k)
4) t(k+1) <= x(i) <= t(n-k)
5) The conditions specified by Schoenberg and Whitney must hold
   for at least one subset of data points, i.e., there must be a
   subset of data points y(j) such that
       t(j) < y(j) < t(j+k+1), j=1,2,...,n-k-1
"""


class LSQUnivariateSpline(UnivariateSpline):
    """
    1-D spline with explicit internal knots.

    Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data.  `t`
    specifies the internal knots of the spline

    Parameters
    ----------
    x : (N,) array_like
        Input dimension of data points -- must be increasing
    y : (N,) array_like
        Input dimension of data points
    t : (M,) array_like
        interior knots of the spline.  Must be in ascending order and::

            bbox[0] < t[0] < ... < t[-1] < bbox[-1]

    w : (N,) array_like, optional
        weights for spline fitting. Must be positive. If None (default),
        weights are all equal.
    bbox : (2,) array_like, optional
        2-sequence specifying the boundary of the approximation interval. If
        None (default), ``bbox = [x[0], x[-1]]``.
    k : int, optional
        Degree of the smoothing spline.  Must be 1 <= `k` <= 5.
        Default is `k` = 3, a cubic spline.
    ext : int or str, optional
        Controls the extrapolation mode for elements
        not in the interval defined by the knot sequence.

        * if ext=0 or 'extrapolate', return the extrapolated value.
        * if ext=1 or 'zeros', return 0
        * if ext=2 or 'raise', raise a ValueError
        * if ext=3 of 'const', return the boundary value.

        The default value is 0.

    check_finite : bool, optional
        Whether to check that the input arrays contain only finite numbers.
        Disabling may give a performance gain, but may result in problems
        (crashes, non-termination or non-sensical results) if the inputs
        do contain infinities or NaNs.
        Default is False.

    Raises
    ------
    ValueError
        If the interior knots do not satisfy the Schoenberg-Whitney conditions

    See Also
    --------
    UnivariateSpline : Superclass -- knots are specified by setting a
        smoothing condition
    InterpolatedUnivariateSpline : spline passing through all points
    splrep : An older, non object-oriented wrapping of FITPACK
    splev, sproot, splint, spalde
    BivariateSpline : A similar class for two-dimensional spline interpolation

    Notes
    -----
    The number of data points must be larger than the spline degree `k`.

    Knots `t` must satisfy the Schoenberg-Whitney conditions,
    i.e., there must be a subset of data points ``x[j]`` such that
    ``t[j] < x[j] < t[j+k+1]``, for ``j=0, 1,...,n-k-2``.

    Examples
    --------
    >>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline
    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(-3, 3, 50)
    >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)

    Fit a smoothing spline with a pre-defined internal knots:

    >>> t = [-1, 0, 1]
    >>> spl = LSQUnivariateSpline(x, y, t)

    >>> xs = np.linspace(-3, 3, 1000)
    >>> plt.plot(x, y, 'ro', ms=5)
    >>> plt.plot(xs, spl(xs), 'g-', lw=3)
    >>> plt.show()

    Check the knot vector:

    >>> spl.get_knots()
    array([-3., -1., 0., 1., 3.])

    Constructing lsq spline using the knots from another spline:

    >>> x = np.arange(10)
    >>> s = UnivariateSpline(x, x, s=0)
    >>> s.get_knots()
    array([ 0.,  2.,  3.,  4.,  5.,  6.,  7.,  9.])
    >>> knt = s.get_knots()
    >>> s1 = LSQUnivariateSpline(x, x, knt[1:-1])    # Chop 1st and last knot
    >>> s1.get_knots()
    array([ 0.,  2.,  3.,  4.,  5.,  6.,  7.,  9.])

    """

    def __init__(self, x, y, t, w=None, bbox=[None]*2, k=3,
                 ext=0, check_finite=False):

        x, y, w, bbox, self.ext = self.validate_input(x, y, w, bbox, k, None,
                                                      ext, check_finite)
        if not np.all(diff(x) >= 0.0):
            raise ValueError('x must be increasing')

        # _data == x,y,w,xb,xe,k,s,n,t,c,fp,fpint,nrdata,ier
        xb = bbox[0]
        xe = bbox[1]
        if xb is None:
            xb = x[0]
        if xe is None:
            xe = x[-1]
        t = concatenate(([xb]*(k+1), t, [xe]*(k+1)))
        n = len(t)
        if not np.all(t[k+1:n-k]-t[k:n-k-1] > 0, axis=0):
            raise ValueError('Interior knots t must satisfy '
                             'Schoenberg-Whitney conditions')
        if not dfitpack.fpchec(x, t, k) == 0:
            raise ValueError(_fpchec_error_string)
        data = dfitpack.fpcurfm1(x, y, k, t, w=w, xb=xb, xe=xe)
        self._data = data[:-3] + (None, None, data[-1])
        self._reset_class()


# ############### Bivariate spline ####################

class _BivariateSplineBase(object):
    """ Base class for Bivariate spline s(x,y) interpolation on the rectangle
    [xb,xe] x [yb, ye] calculated from a given set of data points
    (x,y,z).

    See Also
    --------
    bisplrep, bisplev : an older wrapping of FITPACK
    BivariateSpline :
        implementation of bivariate spline interpolation on a plane grid
    SphereBivariateSpline :
        implementation of bivariate spline interpolation on a spherical grid
    """

    def get_residual(self):
        """ Return weighted sum of squared residuals of the spline
        approximation: sum ((w[i]*(z[i]-s(x[i],y[i])))**2,axis=0)
        """
        return self.fp

    def get_knots(self):
        """ Return a tuple (tx,ty) where tx,ty contain knots positions
        of the spline with respect to x-, y-variable, respectively.
        The position of interior and additional knots are given as
        t[k+1:-k-1] and t[:k+1]=b, t[-k-1:]=e, respectively.
        """
        return self.tck[:2]

    def get_coeffs(self):
        """ Return spline coefficients."""
        return self.tck[2]

    def __call__(self, x, y, dx=0, dy=0, grid=True):
        """
        Evaluate the spline or its derivatives at given positions.

        Parameters
        ----------
        x, y : array_like
            Input coordinates.

            If `grid` is False, evaluate the spline at points ``(x[i],
            y[i]), i=0, ..., len(x)-1``.  Standard Numpy broadcasting
            is obeyed.

            If `grid` is True: evaluate spline at the grid points
            defined by the coordinate arrays x, y. The arrays must be
            sorted to increasing order.

            Note that the axis ordering is inverted relative to
            the output of meshgrid.
        dx : int
            Order of x-derivative

            .. versionadded:: 0.14.0
        dy : int
            Order of y-derivative

            .. versionadded:: 0.14.0
        grid : bool
            Whether to evaluate the results on a grid spanned by the
            input arrays, or at points specified by the input arrays.

            .. versionadded:: 0.14.0

        """
        x = np.asarray(x)
        y = np.asarray(y)

        tx, ty, c = self.tck[:3]
        kx, ky = self.degrees
        if grid:
            if x.size == 0 or y.size == 0:
                return np.zeros((x.size, y.size), dtype=self.tck[2].dtype)

            if dx or dy:
                z, ier = dfitpack.parder(tx, ty, c, kx, ky, dx, dy, x, y)
                if not ier == 0:
                    raise ValueError("Error code returned by parder: %s" % ier)
            else:
                z, ier = dfitpack.bispev(tx, ty, c, kx, ky, x, y)
                if not ier == 0:
                    raise ValueError("Error code returned by bispev: %s" % ier)
        else:
            # standard Numpy broadcasting
            if x.shape != y.shape:
                x, y = np.broadcast_arrays(x, y)

            shape = x.shape
            x = x.ravel()
            y = y.ravel()

            if x.size == 0 or y.size == 0:
                return np.zeros(shape, dtype=self.tck[2].dtype)

            if dx or dy:
                z, ier = dfitpack.pardeu(tx, ty, c, kx, ky, dx, dy, x, y)
                if not ier == 0:
                    raise ValueError("Error code returned by pardeu: %s" % ier)
            else:
                z, ier = dfitpack.bispeu(tx, ty, c, kx, ky, x, y)
                if not ier == 0:
                    raise ValueError("Error code returned by bispeu: %s" % ier)

            z = z.reshape(shape)
        return z


_surfit_messages = {1: """
The required storage space exceeds the available storage space: nxest
or nyest too small, or s too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
                    2: """
A theoretically impossible result was found during the iteration
process for finding a smoothing spline with fp = s: s too small or
badly chosen eps.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
                    3: """
the maximal number of iterations maxit (set to 20 by the program)
allowed for finding a smoothing spline with fp=s has been reached:
s too small.
Weighted sum of squared residuals does not satisfy abs(fp-s)/s < tol.""",
                    4: """
No more knots can be added because the number of b-spline coefficients
(nx-kx-1)*(ny-ky-1) already exceeds the number of data points m:
either s or m too small.
The weighted least-squares spline corresponds to the current set of
knots.""",
                    5: """
No more knots can be added because the additional knot would (quasi)
coincide with an old one: s too small or too large a weight to an
inaccurate data point.
The weighted least-squares spline corresponds to the current set of
knots.""",
                    10: """
Error on entry, no approximation returned. The following conditions
must hold:
xb<=x[i]<=xe, yb<=y[i]<=ye, w[i]>0, i=0..m-1
If iopt==-1, then
  xb<tx[kx+1]<tx[kx+2]<...<tx[nx-kx-2]<xe
  yb<ty[ky+1]<ty[ky+2]<...<ty[ny-ky-2]<ye""",
                    -3: """
The coefficients of the spline returned have been computed as the
minimal norm least-squares solution of a (numerically) rank deficient
system (deficiency=%i). If deficiency is large, the results may be
inaccurate. Deficiency may strongly depend on the value of eps."""
                    }


class BivariateSpline(_BivariateSplineBase):
    """
    Base class for bivariate splines.

    This describes a spline ``s(x, y)`` of degrees ``kx`` and ``ky`` on
    the rectangle ``[xb, xe] * [yb, ye]`` calculated from a given set
    of data points ``(x, y, z)``.

    This class is meant to be subclassed, not instantiated directly.
    To construct these splines, call either `SmoothBivariateSpline` or
    `LSQBivariateSpline`.

    See Also
    --------
    UnivariateSpline :
        a similar class for univariate spline interpolation
    SmoothBivariateSpline :
        to create a bivariate spline through the given points
    LSQBivariateSpline :
        to create a bivariate spline using weighted least-squares fitting
    RectSphereBivariateSpline :
        to create a bivariate spline over a rectangular mesh on a sphere
    SmoothSphereBivariateSpline :
        to create a smooth bivariate spline in spherical coordinates
    LSQSphereBivariateSpline :
        to create a bivariate spline in spherical coordinates using
        weighted least-squares fitting
    bisplrep : older wrapping of FITPACK
    bisplev : older wrapping of FITPACK
    """

    @classmethod
    def _from_tck(cls, tck):
        """Construct a spline object from given tck and degree"""
        self = cls.__new__(cls)
        if len(tck) != 5:
            raise ValueError("tck should be a 5 element tuple of tx,"
                             " ty, c, kx, ky")
        self.tck = tck[:3]
        self.degrees = tck[3:]
        return self

    def ev(self, xi, yi, dx=0, dy=0):
        """
        Evaluate the spline at points

        Returns the interpolated value at ``(xi[i], yi[i]),
        i=0,...,len(xi)-1``.

        Parameters
        ----------
        xi, yi : array_like
            Input coordinates. Standard Numpy broadcasting is obeyed.
        dx : int, optional
            Order of x-derivative

            .. versionadded:: 0.14.0
        dy : int, optional
            Order of y-derivative

            .. versionadded:: 0.14.0
        """
        return self.__call__(xi, yi, dx=dx, dy=dy, grid=False)

    def integral(self, xa, xb, ya, yb):
        """
        Evaluate the integral of the spline over area [xa,xb] x [ya,yb].

        Parameters
        ----------
        xa, xb : float
            The end-points of the x integration interval.
        ya, yb : float
            The end-points of the y integration interval.

        Returns
        -------
        integ : float
            The value of the resulting integral.

        """
        tx, ty, c = self.tck[:3]
        kx, ky = self.degrees
        return dfitpack.dblint(tx, ty, c, kx, ky, xa, xb, ya, yb)

    @staticmethod
    def _validate_input(x, y, z, w, kx, ky, eps):
        x, y, z = np.asarray(x), np.asarray(y), np.asarray(z)
        if not x.size == y.size == z.size:
            raise ValueError('x, y, and z should have a same length')

        if w is not None:
            w = np.asarray(w)
            if x.size != w.size:
                raise ValueError('x, y, z, and w should have a same length')
            elif not np.all(w >= 0.0):
                raise ValueError('w should be positive')
        if (eps is not None) and (not 0.0 < eps < 1.0):
            raise ValueError('eps should be between (0, 1)')
        if not x.size >= (kx + 1) * (ky + 1):
            raise ValueError('The length of x, y and z should be at least'
                             ' (kx+1) * (ky+1)')
        return x, y, z, w


class SmoothBivariateSpline(BivariateSpline):
    """
    Smooth bivariate spline approximation.

    Parameters
    ----------
    x, y, z : array_like
        1-D sequences of data points (order is not important).
    w : array_like, optional
        Positive 1-D sequence of weights, of same length as `x`, `y` and `z`.
    bbox : array_like, optional
        Sequence of length 4 specifying the boundary of the rectangular
        approximation domain.  By default,
        ``bbox=[min(x), max(x), min(y), max(y)]``.
    kx, ky : ints, optional
        Degrees of the bivariate spline. Default is 3.
    s : float, optional
        Positive smoothing factor defined for estimation condition:
        ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
        Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
        estimate of the standard deviation of ``z[i]``.
    eps : float, optional
        A threshold for determining the effective rank of an over-determined
        linear system of equations. `eps` should have a value within the open
        interval ``(0, 1)``, the default is 1e-16.

    See Also
    --------
    bisplrep : an older wrapping of FITPACK
    bisplev : an older wrapping of FITPACK
    UnivariateSpline : a similar class for univariate spline interpolation
    LSQBivariateSpline : to create a BivariateSpline using weighted least-squares fitting

    Notes
    -----
    The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.

    """

    def __init__(self, x, y, z, w=None, bbox=[None] * 4, kx=3, ky=3, s=None,
                 eps=1e-16):

        x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
        bbox = ravel(bbox)
        if not bbox.shape == (4,):
            raise ValueError('bbox shape should be (4,)')
        if s is not None and not s >= 0.0:
            raise ValueError("s should be s >= 0.0")

        xb, xe, yb, ye = bbox
        nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
                                                                xb, xe, yb,
                                                                ye, kx, ky,
                                                                s=s, eps=eps,
                                                                lwrk2=1)
        if ier > 10:          # lwrk2 was to small, re-run
            nx, tx, ny, ty, c, fp, wrk1, ier = dfitpack.surfit_smth(x, y, z, w,
                                                                    xb, xe, yb,
                                                                    ye, kx, ky,
                                                                    s=s,
                                                                    eps=eps,
                                                                    lwrk2=ier)
        if ier in [0, -1, -2]:  # normal return
            pass
        else:
            message = _surfit_messages.get(ier, 'ier=%s' % (ier))
            warnings.warn(message)

        self.fp = fp
        self.tck = tx[:nx], ty[:ny], c[:(nx-kx-1)*(ny-ky-1)]
        self.degrees = kx, ky


class LSQBivariateSpline(BivariateSpline):
    """
    Weighted least-squares bivariate spline approximation.

    Parameters
    ----------
    x, y, z : array_like
        1-D sequences of data points (order is not important).
    tx, ty : array_like
        Strictly ordered 1-D sequences of knots coordinates.
    w : array_like, optional
        Positive 1-D array of weights, of the same length as `x`, `y` and `z`.
    bbox : (4,) array_like, optional
        Sequence of length 4 specifying the boundary of the rectangular
        approximation domain.  By default,
        ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
    kx, ky : ints, optional
        Degrees of the bivariate spline. Default is 3.
    eps : float, optional
        A threshold for determining the effective rank of an over-determined
        linear system of equations. `eps` should have a value within the open
        interval ``(0, 1)``, the default is 1e-16.

    See Also
    --------
    bisplrep : an older wrapping of FITPACK
    bisplev : an older wrapping of FITPACK
    UnivariateSpline : a similar class for univariate spline interpolation
    SmoothBivariateSpline : create a smoothing BivariateSpline

    Notes
    -----
    The length of `x`, `y` and `z` should be at least ``(kx+1) * (ky+1)``.

    """

    def __init__(self, x, y, z, tx, ty, w=None, bbox=[None]*4, kx=3, ky=3,
                 eps=None):

        x, y, z, w = self._validate_input(x, y, z, w, kx, ky, eps)
        bbox = ravel(bbox)
        if not bbox.shape == (4,):
            raise ValueError('bbox shape should be (4,)')

        nx = 2*kx+2+len(tx)
        ny = 2*ky+2+len(ty)
        tx1 = zeros((nx,), float)
        ty1 = zeros((ny,), float)
        tx1[kx+1:nx-kx-1] = tx
        ty1[ky+1:ny-ky-1] = ty

        xb, xe, yb, ye = bbox
        tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
                                                   xb, xe, yb, ye,
                                                   kx, ky, eps, lwrk2=1)
        if ier > 10:
            tx1, ty1, c, fp, ier = dfitpack.surfit_lsq(x, y, z, tx1, ty1, w,
                                                       xb, xe, yb, ye,
                                                       kx, ky, eps, lwrk2=ier)
        if ier in [0, -1, -2]:  # normal return
            pass
        else:
            if ier < -2:
                deficiency = (nx-kx-1)*(ny-ky-1)+ier
                message = _surfit_messages.get(-3) % (deficiency)
            else:
                message = _surfit_messages.get(ier, 'ier=%s' % (ier))
            warnings.warn(message)
        self.fp = fp
        self.tck = tx1, ty1, c
        self.degrees = kx, ky


class RectBivariateSpline(BivariateSpline):
    """
    Bivariate spline approximation over a rectangular mesh.

    Can be used for both smoothing and interpolating data.

    Parameters
    ----------
    x,y : array_like
        1-D arrays of coordinates in strictly ascending order.
    z : array_like
        2-D array of data with shape (x.size,y.size).
    bbox : array_like, optional
        Sequence of length 4 specifying the boundary of the rectangular
        approximation domain.  By default,
        ``bbox=[min(x,tx),max(x,tx), min(y,ty),max(y,ty)]``.
    kx, ky : ints, optional
        Degrees of the bivariate spline. Default is 3.
    s : float, optional
        Positive smoothing factor defined for estimation condition:
        ``sum((w[i]*(z[i]-s(x[i], y[i])))**2, axis=0) <= s``
        Default is ``s=0``, which is for interpolation.

    See Also
    --------
    SmoothBivariateSpline : a smoothing bivariate spline for scattered data
    bisplrep : an older wrapping of FITPACK
    bisplev : an older wrapping of FITPACK
    UnivariateSpline : a similar class for univariate spline interpolation

    """

    def __init__(self, x, y, z, bbox=[None] * 4, kx=3, ky=3, s=0):
        x, y, bbox = ravel(x), ravel(y), ravel(bbox)
        z = np.asarray(z)
        if not np.all(diff(x) > 0.0):
            raise ValueError('x must be strictly increasing')
        if not np.all(diff(y) > 0.0):
            raise ValueError('y must be strictly increasing')
        if not x.size == z.shape[0]:
            raise ValueError('x dimension of z must have same number of '
                             'elements as x')
        if not y.size == z.shape[1]:
            raise ValueError('y dimension of z must have same number of '
                             'elements as y')
        if not bbox.shape == (4,):
            raise ValueError('bbox shape should be (4,)')
        if s is not None and not s >= 0.0:
            raise ValueError("s should be s >= 0.0")

        z = ravel(z)
        xb, xe, yb, ye = bbox
        nx, tx, ny, ty, c, fp, ier = dfitpack.regrid_smth(x, y, z, xb, xe, yb,
                                                          ye, kx, ky, s)

        if ier not in [0, -1, -2]:
            msg = _surfit_messages.get(ier, 'ier=%s' % (ier))
            raise ValueError(msg)

        self.fp = fp
        self.tck = tx[:nx], ty[:ny], c[:(nx - kx - 1) * (ny - ky - 1)]
        self.degrees = kx, ky


_spherefit_messages = _surfit_messages.copy()
_spherefit_messages[10] = """
ERROR. On entry, the input data are controlled on validity. The following
       restrictions must be satisfied:
            -1<=iopt<=1,  m>=2, ntest>=8 ,npest >=8, 0<eps<1,
            0<=teta(i)<=pi, 0<=phi(i)<=2*pi, w(i)>0, i=1,...,m
            lwrk1 >= 185+52*v+10*u+14*u*v+8*(u-1)*v**2+8*m
            kwrk >= m+(ntest-7)*(npest-7)
            if iopt=-1: 8<=nt<=ntest , 9<=np<=npest
                        0<tt(5)<tt(6)<...<tt(nt-4)<pi
                        0<tp(5)<tp(6)<...<tp(np-4)<2*pi
            if iopt>=0: s>=0
            if one of these conditions is found to be violated,control
            is immediately repassed to the calling program. in that
            case there is no approximation returned."""
_spherefit_messages[-3] = """
WARNING. The coefficients of the spline returned have been computed as the
         minimal norm least-squares solution of a (numerically) rank
         deficient system (deficiency=%i, rank=%i). Especially if the rank
         deficiency, which is computed by 6+(nt-8)*(np-7)+ier, is large,
         the results may be inaccurate. They could also seriously depend on
         the value of eps."""


class SphereBivariateSpline(_BivariateSplineBase):
    """
    Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a
    given set of data points (theta,phi,r).

    .. versionadded:: 0.11.0

    See Also
    --------
    bisplrep, bisplev : an older wrapping of FITPACK
    UnivariateSpline : a similar class for univariate spline interpolation
    SmoothUnivariateSpline :
        to create a BivariateSpline through the given points
    LSQUnivariateSpline :
        to create a BivariateSpline using weighted least-squares fitting
    """

    def __call__(self, theta, phi, dtheta=0, dphi=0, grid=True):
        """
        Evaluate the spline or its derivatives at given positions.

        Parameters
        ----------
        theta, phi : array_like
            Input coordinates.

            If `grid` is False, evaluate the spline at points
            ``(theta[i], phi[i]), i=0, ..., len(x)-1``.  Standard
            Numpy broadcasting is obeyed.

            If `grid` is True: evaluate spline at the grid points
            defined by the coordinate arrays theta, phi. The arrays
            must be sorted to increasing order.
        dtheta : int, optional
            Order of theta-derivative

            .. versionadded:: 0.14.0
        dphi : int
            Order of phi-derivative

            .. versionadded:: 0.14.0
        grid : bool
            Whether to evaluate the results on a grid spanned by the
            input arrays, or at points specified by the input arrays.

            .. versionadded:: 0.14.0

        """
        theta = np.asarray(theta)
        phi = np.asarray(phi)

        if theta.size > 0 and (theta.min() < 0. or theta.max() > np.pi):
            raise ValueError("requested theta out of bounds.")
        if phi.size > 0 and (phi.min() < 0. or phi.max() > 2. * np.pi):
            raise ValueError("requested phi out of bounds.")

        return _BivariateSplineBase.__call__(self, theta, phi,
                                             dx=dtheta, dy=dphi, grid=grid)

    def ev(self, theta, phi, dtheta=0, dphi=0):
        """
        Evaluate the spline at points

        Returns the interpolated value at ``(theta[i], phi[i]),
        i=0,...,len(theta)-1``.

        Parameters
        ----------
        theta, phi : array_like
            Input coordinates. Standard Numpy broadcasting is obeyed.
        dtheta : int, optional
            Order of theta-derivative

            .. versionadded:: 0.14.0
        dphi : int, optional
            Order of phi-derivative

            .. versionadded:: 0.14.0
        """
        return self.__call__(theta, phi, dtheta=dtheta, dphi=dphi, grid=False)


class SmoothSphereBivariateSpline(SphereBivariateSpline):
    """
    Smooth bivariate spline approximation in spherical coordinates.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    theta, phi, r : array_like
        1-D sequences of data points (order is not important). Coordinates
        must be given in radians. Theta must lie within the interval
        ``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
    w : array_like, optional
        Positive 1-D sequence of weights.
    s : float, optional
        Positive smoothing factor defined for estimation condition:
        ``sum((w(i)*(r(i) - s(theta(i), phi(i))))**2, axis=0) <= s``
        Default ``s=len(w)`` which should be a good value if ``1/w[i]`` is an
        estimate of the standard deviation of ``r[i]``.
    eps : float, optional
        A threshold for determining the effective rank of an over-determined
        linear system of equations. `eps` should have a value within the open
        interval ``(0, 1)``, the default is 1e-16.

    Notes
    -----
    For more information, see the FITPACK_ site about this function.

    .. _FITPACK: http://www.netlib.org/dierckx/sphere.f

    Examples
    --------
    Suppose we have global data on a coarse grid (the input data does not
    have to be on a grid):

    >>> theta = np.linspace(0., np.pi, 7)
    >>> phi = np.linspace(0., 2*np.pi, 9)
    >>> data = np.empty((theta.shape[0], phi.shape[0]))
    >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
    >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
    >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
    >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
    >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
    >>> data[3,3:-2] = 3.
    >>> data = np.roll(data, 4, 1)

    We need to set up the interpolator object

    >>> lats, lons = np.meshgrid(theta, phi)
    >>> from scipy.interpolate import SmoothSphereBivariateSpline
    >>> lut = SmoothSphereBivariateSpline(lats.ravel(), lons.ravel(),
    ...                                   data.T.ravel(), s=3.5)

    As a first test, we'll see what the algorithm returns when run on the
    input coordinates

    >>> data_orig = lut(theta, phi)

    Finally we interpolate the data to a finer grid

    >>> fine_lats = np.linspace(0., np.pi, 70)
    >>> fine_lons = np.linspace(0., 2 * np.pi, 90)

    >>> data_smth = lut(fine_lats, fine_lons)

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(131)
    >>> ax1.imshow(data, interpolation='nearest')
    >>> ax2 = fig.add_subplot(132)
    >>> ax2.imshow(data_orig, interpolation='nearest')
    >>> ax3 = fig.add_subplot(133)
    >>> ax3.imshow(data_smth, interpolation='nearest')
    >>> plt.show()

    """

    def __init__(self, theta, phi, r, w=None, s=0., eps=1E-16):

        theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)

        # input validation
        if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
            raise ValueError('theta should be between [0, pi]')
        if not ((0.0 <= phi).all() and (phi <= 2.0 * np.pi).all()):
            raise ValueError('phi should be between [0, 2pi]')
        if w is not None:
            w = np.asarray(w)
            if not (w >= 0.0).all():
                raise ValueError('w should be positive')
        if not s >= 0.0:
            raise ValueError('s should be positive')
        if not 0.0 < eps < 1.0:
            raise ValueError('eps should be between (0, 1)')

        if np.issubclass_(w, float):
            w = ones(len(theta)) * w
        nt_, tt_, np_, tp_, c, fp, ier = dfitpack.spherfit_smth(theta, phi,
                                                                r, w=w, s=s,
                                                                eps=eps)
        if ier not in [0, -1, -2]:
            message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
            raise ValueError(message)

        self.fp = fp
        self.tck = tt_[:nt_], tp_[:np_], c[:(nt_ - 4) * (np_ - 4)]
        self.degrees = (3, 3)


class LSQSphereBivariateSpline(SphereBivariateSpline):
    """
    Weighted least-squares bivariate spline approximation in spherical
    coordinates.

    Determines a smooth bicubic spline according to a given
    set of knots in the `theta` and `phi` directions.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    theta, phi, r : array_like
        1-D sequences of data points (order is not important). Coordinates
        must be given in radians. Theta must lie within the interval
        ``[0, pi]``, and phi must lie within the interval ``[0, 2pi]``.
    tt, tp : array_like
        Strictly ordered 1-D sequences of knots coordinates.
        Coordinates must satisfy ``0 < tt[i] < pi``, ``0 < tp[i] < 2*pi``.
    w : array_like, optional
        Positive 1-D sequence of weights, of the same length as `theta`, `phi`
        and `r`.
    eps : float, optional
        A threshold for determining the effective rank of an over-determined
        linear system of equations. `eps` should have a value within the
        open interval ``(0, 1)``, the default is 1e-16.

    Notes
    -----
    For more information, see the FITPACK_ site about this function.

    .. _FITPACK: http://www.netlib.org/dierckx/sphere.f

    Examples
    --------
    Suppose we have global data on a coarse grid (the input data does not
    have to be on a grid):

    >>> theta = np.linspace(0., np.pi, 7)
    >>> phi = np.linspace(0., 2*np.pi, 9)
    >>> data = np.empty((theta.shape[0], phi.shape[0]))
    >>> data[:,0], data[0,:], data[-1,:] = 0., 0., 0.
    >>> data[1:-1,1], data[1:-1,-1] = 1., 1.
    >>> data[1,1:-1], data[-2,1:-1] = 1., 1.
    >>> data[2:-2,2], data[2:-2,-2] = 2., 2.
    >>> data[2,2:-2], data[-3,2:-2] = 2., 2.
    >>> data[3,3:-2] = 3.
    >>> data = np.roll(data, 4, 1)

    We need to set up the interpolator object. Here, we must also specify the
    coordinates of the knots to use.

    >>> lats, lons = np.meshgrid(theta, phi)
    >>> knotst, knotsp = theta.copy(), phi.copy()
    >>> knotst[0] += .0001
    >>> knotst[-1] -= .0001
    >>> knotsp[0] += .0001
    >>> knotsp[-1] -= .0001
    >>> from scipy.interpolate import LSQSphereBivariateSpline
    >>> lut = LSQSphereBivariateSpline(lats.ravel(), lons.ravel(),
    ...                                data.T.ravel(), knotst, knotsp)

    As a first test, we'll see what the algorithm returns when run on the
    input coordinates

    >>> data_orig = lut(theta, phi)

    Finally we interpolate the data to a finer grid

    >>> fine_lats = np.linspace(0., np.pi, 70)
    >>> fine_lons = np.linspace(0., 2*np.pi, 90)

    >>> data_lsq = lut(fine_lats, fine_lons)

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(131)
    >>> ax1.imshow(data, interpolation='nearest')
    >>> ax2 = fig.add_subplot(132)
    >>> ax2.imshow(data_orig, interpolation='nearest')
    >>> ax3 = fig.add_subplot(133)
    >>> ax3.imshow(data_lsq, interpolation='nearest')
    >>> plt.show()

    """

    def __init__(self, theta, phi, r, tt, tp, w=None, eps=1E-16):

        theta, phi, r = np.asarray(theta), np.asarray(phi), np.asarray(r)
        tt, tp = np.asarray(tt), np.asarray(tp)

        if not ((0.0 <= theta).all() and (theta <= np.pi).all()):
            raise ValueError('theta should be between [0, pi]')
        if not ((0.0 <= phi).all() and (phi <= 2*np.pi).all()):
            raise ValueError('phi should be between [0, 2pi]')
        if not ((0.0 < tt).all() and (tt < np.pi).all()):
            raise ValueError('tt should be between (0, pi)')
        if not ((0.0 < tp).all() and (tp < 2*np.pi).all()):
            raise ValueError('tp should be between (0, 2pi)')
        if w is not None:
            w = np.asarray(w)
            if not (w >= 0.0).all():
                raise ValueError('w should be positive')
        if not 0.0 < eps < 1.0:
            raise ValueError('eps should be between (0, 1)')

        if np.issubclass_(w, float):
            w = ones(len(theta)) * w
        nt_, np_ = 8 + len(tt), 8 + len(tp)
        tt_, tp_ = zeros((nt_,), float), zeros((np_,), float)
        tt_[4:-4], tp_[4:-4] = tt, tp
        tt_[-4:], tp_[-4:] = np.pi, 2. * np.pi
        tt_, tp_, c, fp, ier = dfitpack.spherfit_lsq(theta, phi, r, tt_, tp_,
                                                     w=w, eps=eps)
        if ier < -2:
            deficiency = 6 + (nt_ - 8) * (np_ - 7) + ier
            message = _spherefit_messages.get(-3) % (deficiency, -ier)
            warnings.warn(message, stacklevel=2)
        elif ier not in [0, -1, -2]:
            message = _spherefit_messages.get(ier, 'ier=%s' % (ier))
            raise ValueError(message)

        self.fp = fp
        self.tck = tt_, tp_, c
        self.degrees = (3, 3)


_spfit_messages = _surfit_messages.copy()
_spfit_messages[10] = """
ERROR: on entry, the input data are controlled on validity
       the following restrictions must be satisfied.
          -1<=iopt(1)<=1, 0<=iopt(2)<=1, 0<=iopt(3)<=1,
          -1<=ider(1)<=1, 0<=ider(2)<=1, ider(2)=0 if iopt(2)=0.
          -1<=ider(3)<=1, 0<=ider(4)<=1, ider(4)=0 if iopt(3)=0.
          mu >= mumin (see above), mv >= 4, nuest >=8, nvest >= 8,
          kwrk>=5+mu+mv+nuest+nvest,
          lwrk >= 12+nuest*(mv+nvest+3)+nvest*24+4*mu+8*mv+max(nuest,mv+nvest)
          0< u(i-1)<u(i)< pi,i=2,..,mu,
          -pi<=v(1)< pi, v(1)<v(i-1)<v(i)<v(1)+2*pi, i=3,...,mv
          if iopt(1)=-1: 8<=nu<=min(nuest,mu+6+iopt(2)+iopt(3))
                         0<tu(5)<tu(6)<...<tu(nu-4)< pi
                         8<=nv<=min(nvest,mv+7)
                         v(1)<tv(5)<tv(6)<...<tv(nv-4)<v(1)+2*pi
                         the schoenberg-whitney conditions, i.e. there must be
                         subset of grid co-ordinates uu(p) and vv(q) such that
                            tu(p) < uu(p) < tu(p+4) ,p=1,...,nu-4
                            (iopt(2)=1 and iopt(3)=1 also count for a uu-value
                            tv(q) < vv(q) < tv(q+4) ,q=1,...,nv-4
                            (vv(q) is either a value v(j) or v(j)+2*pi)
          if iopt(1)>=0: s>=0
          if s=0: nuest>=mu+6+iopt(2)+iopt(3), nvest>=mv+7
       if one of these conditions is found to be violated,control is
       immediately repassed to the calling program. in that case there is no
       approximation returned."""


class RectSphereBivariateSpline(SphereBivariateSpline):
    """
    Bivariate spline approximation over a rectangular mesh on a sphere.

    Can be used for smoothing data.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    u : array_like
        1-D array of colatitude coordinates in strictly ascending order.
        Coordinates must be given in radians and lie within the interval
        ``[0, pi]``.
    v : array_like
        1-D array of longitude coordinates in strictly ascending order.
        Coordinates must be given in radians. First element (``v[0]``) must lie
        within the interval ``[-pi, pi)``. Last element (``v[-1]``) must satisfy
        ``v[-1] <= v[0] + 2*pi``.
    r : array_like
        2-D array of data with shape ``(u.size, v.size)``.
    s : float, optional
        Positive smoothing factor defined for estimation condition
        (``s=0`` is for interpolation).
    pole_continuity : bool or (bool, bool), optional
        Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and
        ``u=pi`` (``pole_continuity[1]``).  The order of continuity at the pole
        will be 1 or 0 when this is True or False, respectively.
        Defaults to False.
    pole_values : float or (float, float), optional
        Data values at the poles ``u=0`` and ``u=pi``.  Either the whole
        parameter or each individual element can be None.  Defaults to None.
    pole_exact : bool or (bool, bool), optional
        Data value exactness at the poles ``u=0`` and ``u=pi``.  If True, the
        value is considered to be the right function value, and it will be
        fitted exactly. If False, the value will be considered to be a data
        value just like the other data values.  Defaults to False.
    pole_flat : bool or (bool, bool), optional
        For the poles at ``u=0`` and ``u=pi``, specify whether or not the
        approximation has vanishing derivatives.  Defaults to False.

    See Also
    --------
    RectBivariateSpline : bivariate spline approximation over a rectangular
        mesh

    Notes
    -----
    Currently, only the smoothing spline approximation (``iopt[0] = 0`` and
    ``iopt[0] = 1`` in the FITPACK routine) is supported.  The exact
    least-squares spline approximation is not implemented yet.

    When actually performing the interpolation, the requested `v` values must
    lie within the same length 2pi interval that the original `v` values were
    chosen from.

    For more information, see the FITPACK_ site about this function.

    .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f

    Examples
    --------
    Suppose we have global data on a coarse grid

    >>> lats = np.linspace(10, 170, 9) * np.pi / 180.
    >>> lons = np.linspace(0, 350, 18) * np.pi / 180.
    >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T,
    ...               np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T

    We want to interpolate it to a global one-degree grid

    >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180
    >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180
    >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons)

    We need to set up the interpolator object

    >>> from scipy.interpolate import RectSphereBivariateSpline
    >>> lut = RectSphereBivariateSpline(lats, lons, data)

    Finally we interpolate the data.  The `RectSphereBivariateSpline` object
    only takes 1-D arrays as input, therefore we need to do some reshaping.

    >>> data_interp = lut.ev(new_lats.ravel(),
    ...                      new_lons.ravel()).reshape((360, 180)).T

    Looking at the original and the interpolated data, one can see that the
    interpolant reproduces the original data very well:

    >>> import matplotlib.pyplot as plt
    >>> fig = plt.figure()
    >>> ax1 = fig.add_subplot(211)
    >>> ax1.imshow(data, interpolation='nearest')
    >>> ax2 = fig.add_subplot(212)
    >>> ax2.imshow(data_interp, interpolation='nearest')
    >>> plt.show()

    Choosing the optimal value of ``s`` can be a delicate task. Recommended
    values for ``s`` depend on the accuracy of the data values.  If the user
    has an idea of the statistical errors on the data, she can also find a
    proper estimate for ``s``. By assuming that, if she specifies the
    right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly
    reproduces the function underlying the data, she can evaluate
    ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``.
    For example, if she knows that the statistical errors on her
    ``r(i,j)``-values are not greater than 0.1, she may expect that a good
    ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``.

    If nothing is known about the statistical error in ``r(i,j)``, ``s`` must
    be determined by trial and error.  The best is then to start with a very
    large value of ``s`` (to determine the least-squares polynomial and the
    corresponding upper bound ``fp0`` for ``s``) and then to progressively
    decrease the value of ``s`` (say by a factor 10 in the beginning, i.e.
    ``s = fp0 / 10, fp0 / 100, ...``  and more carefully as the approximation
    shows more detail) to obtain closer fits.

    The interpolation results for different values of ``s`` give some insight
    into this process:

    >>> fig2 = plt.figure()
    >>> s = [3e9, 2e9, 1e9, 1e8]
    >>> for ii in range(len(s)):
    ...     lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii])
    ...     data_interp = lut.ev(new_lats.ravel(),
    ...                          new_lons.ravel()).reshape((360, 180)).T
    ...     ax = fig2.add_subplot(2, 2, ii+1)
    ...     ax.imshow(data_interp, interpolation='nearest')
    ...     ax.set_title("s = %g" % s[ii])
    >>> plt.show()

    """

    def __init__(self, u, v, r, s=0., pole_continuity=False, pole_values=None,
                 pole_exact=False, pole_flat=False):
        iopt = np.array([0, 0, 0], dtype=dfitpack_int)
        ider = np.array([-1, 0, -1, 0], dtype=dfitpack_int)
        if pole_values is None:
            pole_values = (None, None)
        elif isinstance(pole_values, (float, np.float32, np.float64)):
            pole_values = (pole_values, pole_values)
        if isinstance(pole_continuity, bool):
            pole_continuity = (pole_continuity, pole_continuity)
        if isinstance(pole_exact, bool):
            pole_exact = (pole_exact, pole_exact)
        if isinstance(pole_flat, bool):
            pole_flat = (pole_flat, pole_flat)

        r0, r1 = pole_values
        iopt[1:] = pole_continuity
        if r0 is None:
            ider[0] = -1
        else:
            ider[0] = pole_exact[0]

        if r1 is None:
            ider[2] = -1
        else:
            ider[2] = pole_exact[1]

        ider[1], ider[3] = pole_flat

        u, v = np.ravel(u), np.ravel(v)
        r = np.asarray(r)

        if not ((0.0 <= u).all() and (u <= np.pi).all()):
            raise ValueError('u should be between [0, pi]')
        if not -np.pi <= v[0] < np.pi:
            raise ValueError('v[0] should be between [-pi, pi)')
        if not v[-1] <= v[0] + 2*np.pi:
            raise ValueError('v[-1] should be v[0] + 2pi or less ')

        if not np.all(np.diff(u) > 0.0):
            raise ValueError('u must be strictly increasing')
        if not np.all(np.diff(v) > 0.0):
            raise ValueError('v must be strictly increasing')

        if not u.size == r.shape[0]:
            raise ValueError('u dimension of r must have same number of '
                             'elements as u')
        if not v.size == r.shape[1]:
            raise ValueError('v dimension of r must have same number of '
                             'elements as v')

        if pole_continuity[1] is False and pole_flat[1] is True:
            raise ValueError('if pole_continuity is False, so must be '
                             'pole_flat')
        if pole_continuity[0] is False and pole_flat[0] is True:
            raise ValueError('if pole_continuity is False, so must be '
                             'pole_flat')

        if not s >= 0.0:
            raise ValueError('s should be positive')

        r = np.ravel(r)
        nu, tu, nv, tv, c, fp, ier = dfitpack.regrid_smth_spher(iopt, ider,
                                                                u.copy(),
                                                                v.copy(),
                                                                r.copy(),
                                                                r0, r1, s)

        if ier not in [0, -1, -2]:
            msg = _spfit_messages.get(ier, 'ier=%s' % (ier))
            raise ValueError(msg)

        self.fp = fp
        self.tck = tu[:nu], tv[:nv], c[:(nu - 4) * (nv-4)]
        self.degrees = (3, 3)