_cubic.py 32.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
"""Interpolation algorithms using piecewise cubic polynomials."""

import numpy as np

from . import PPoly
from .polyint import _isscalar
from scipy.linalg import solve_banded, solve


__all__ = ["CubicHermiteSpline", "PchipInterpolator", "pchip_interpolate",
           "Akima1DInterpolator", "CubicSpline"]


def prepare_input(x, y, axis, dydx=None):
    """Prepare input for cubic spline interpolators.

    All data are converted to numpy arrays and checked for correctness.
    Axes equal to `axis` of arrays `y` and `dydx` are rolled to be the 0th
    axis. The value of `axis` is converted to lie in
    [0, number of dimensions of `y`).
    """

    x, y = map(np.asarray, (x, y))
    if np.issubdtype(x.dtype, np.complexfloating):
        raise ValueError("`x` must contain real values.")
    x = x.astype(float)

    if np.issubdtype(y.dtype, np.complexfloating):
        dtype = complex
    else:
        dtype = float

    if dydx is not None:
        dydx = np.asarray(dydx)
        if y.shape != dydx.shape:
            raise ValueError("The shapes of `y` and `dydx` must be identical.")
        if np.issubdtype(dydx.dtype, np.complexfloating):
            dtype = complex
        dydx = dydx.astype(dtype, copy=False)

    y = y.astype(dtype, copy=False)
    axis = axis % y.ndim
    if x.ndim != 1:
        raise ValueError("`x` must be 1-dimensional.")
    if x.shape[0] < 2:
        raise ValueError("`x` must contain at least 2 elements.")
    if x.shape[0] != y.shape[axis]:
        raise ValueError("The length of `y` along `axis`={0} doesn't "
                         "match the length of `x`".format(axis))

    if not np.all(np.isfinite(x)):
        raise ValueError("`x` must contain only finite values.")
    if not np.all(np.isfinite(y)):
        raise ValueError("`y` must contain only finite values.")

    if dydx is not None and not np.all(np.isfinite(dydx)):
        raise ValueError("`dydx` must contain only finite values.")

    dx = np.diff(x)
    if np.any(dx <= 0):
        raise ValueError("`x` must be strictly increasing sequence.")

    y = np.rollaxis(y, axis)
    if dydx is not None:
        dydx = np.rollaxis(dydx, axis)

    return x, dx, y, axis, dydx


class CubicHermiteSpline(PPoly):
    """Piecewise-cubic interpolator matching values and first derivatives.

    The result is represented as a `PPoly` instance.

    Parameters
    ----------
    x : array_like, shape (n,)
        1-D array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    y : array_like
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    dydx : array_like
        Array containing derivatives of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), it is set to True.

    Attributes
    ----------
    x : ndarray, shape (n,)
        Breakpoints. The same ``x`` which was passed to the constructor.
    c : ndarray, shape (4, n-1, ...)
        Coefficients of the polynomials on each segment. The trailing
        dimensions match the dimensions of `y`, excluding ``axis``.
        For example, if `y` is 1-D, then ``c[k, i]`` is a coefficient for
        ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
    axis : int
        Interpolation axis. The same axis which was passed to the
        constructor.

    Methods
    -------
    __call__
    derivative
    antiderivative
    integrate
    roots

    See Also
    --------
    Akima1DInterpolator : Akima 1D interpolator.
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints

    Notes
    -----
    If you want to create a higher-order spline matching higher-order
    derivatives, use `BPoly.from_derivatives`.

    References
    ----------
    .. [1] `Cubic Hermite spline
            <https://en.wikipedia.org/wiki/Cubic_Hermite_spline>`_
            on Wikipedia.
    """
    def __init__(self, x, y, dydx, axis=0, extrapolate=None):
        if extrapolate is None:
            extrapolate = True

        x, dx, y, axis, dydx = prepare_input(x, y, axis, dydx)

        dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
        slope = np.diff(y, axis=0) / dxr
        t = (dydx[:-1] + dydx[1:] - 2 * slope) / dxr

        c = np.empty((4, len(x) - 1) + y.shape[1:], dtype=t.dtype)
        c[0] = t / dxr
        c[1] = (slope - dydx[:-1]) / dxr - t
        c[2] = dydx[:-1]
        c[3] = y[:-1]

        super(CubicHermiteSpline, self).__init__(c, x, extrapolate=extrapolate)
        self.axis = axis


class PchipInterpolator(CubicHermiteSpline):
    r"""PCHIP 1-D monotonic cubic interpolation.

    ``x`` and ``y`` are arrays of values used to approximate some function f,
    with ``y = f(x)``. The interpolant uses monotonic cubic splines
    to find the value of new points. (PCHIP stands for Piecewise Cubic
    Hermite Interpolating Polynomial).

    Parameters
    ----------
    x : ndarray
        A 1-D array of monotonically increasing real values. ``x`` cannot
        include duplicate values (otherwise f is overspecified)
    y : ndarray
        A 1-D array of real values. ``y``'s length along the interpolation
        axis must be equal to the length of ``x``. If N-D array, use ``axis``
        parameter to select correct axis.
    axis : int, optional
        Axis in the y array corresponding to the x-coordinate values.
    extrapolate : bool, optional
        Whether to extrapolate to out-of-bounds points based on first
        and last intervals, or to return NaNs.

    Methods
    -------
    __call__
    derivative
    antiderivative
    roots

    See Also
    --------
    CubicHermiteSpline : Piecewise-cubic interpolator.
    Akima1DInterpolator : Akima 1D interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints.

    Notes
    -----
    The interpolator preserves monotonicity in the interpolation data and does
    not overshoot if the data is not smooth.

    The first derivatives are guaranteed to be continuous, but the second
    derivatives may jump at :math:`x_k`.

    Determines the derivatives at the points :math:`x_k`, :math:`f'_k`,
    by using PCHIP algorithm [1]_.

    Let :math:`h_k = x_{k+1} - x_k`, and  :math:`d_k = (y_{k+1} - y_k) / h_k`
    are the slopes at internal points :math:`x_k`.
    If the signs of :math:`d_k` and :math:`d_{k-1}` are different or either of
    them equals zero, then :math:`f'_k = 0`. Otherwise, it is given by the
    weighted harmonic mean

    .. math::

        \frac{w_1 + w_2}{f'_k} = \frac{w_1}{d_{k-1}} + \frac{w_2}{d_k}

    where :math:`w_1 = 2 h_k + h_{k-1}` and :math:`w_2 = h_k + 2 h_{k-1}`.

    The end slopes are set using a one-sided scheme [2]_.


    References
    ----------
    .. [1] F. N. Fritsch and R. E. Carlson, Monotone Piecewise Cubic Interpolation,
           SIAM J. Numer. Anal., 17(2), 238 (1980).
           :doi:`10.1137/0717021`.
    .. [2] see, e.g., C. Moler, Numerical Computing with Matlab, 2004.
           :doi:`10.1137/1.9780898717952`


    """
    def __init__(self, x, y, axis=0, extrapolate=None):
        x, _, y, axis, _ = prepare_input(x, y, axis)
        xp = x.reshape((x.shape[0],) + (1,)*(y.ndim-1))
        dk = self._find_derivatives(xp, y)
        super(PchipInterpolator, self).__init__(x, y, dk, axis=0,
                                                extrapolate=extrapolate)
        self.axis = axis

    @staticmethod
    def _edge_case(h0, h1, m0, m1):
        # one-sided three-point estimate for the derivative
        d = ((2*h0 + h1)*m0 - h0*m1) / (h0 + h1)

        # try to preserve shape
        mask = np.sign(d) != np.sign(m0)
        mask2 = (np.sign(m0) != np.sign(m1)) & (np.abs(d) > 3.*np.abs(m0))
        mmm = (~mask) & mask2

        d[mask] = 0.
        d[mmm] = 3.*m0[mmm]

        return d

    @staticmethod
    def _find_derivatives(x, y):
        # Determine the derivatives at the points y_k, d_k, by using
        #  PCHIP algorithm is:
        # We choose the derivatives at the point x_k by
        # Let m_k be the slope of the kth segment (between k and k+1)
        # If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0
        # else use weighted harmonic mean:
        #   w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1}
        #   1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
        #   where h_k is the spacing between x_k and x_{k+1}
        y_shape = y.shape
        if y.ndim == 1:
            # So that _edge_case doesn't end up assigning to scalars
            x = x[:, None]
            y = y[:, None]

        hk = x[1:] - x[:-1]
        mk = (y[1:] - y[:-1]) / hk

        if y.shape[0] == 2:
            # edge case: only have two points, use linear interpolation
            dk = np.zeros_like(y)
            dk[0] = mk
            dk[1] = mk
            return dk.reshape(y_shape)

        smk = np.sign(mk)
        condition = (smk[1:] != smk[:-1]) | (mk[1:] == 0) | (mk[:-1] == 0)

        w1 = 2*hk[1:] + hk[:-1]
        w2 = hk[1:] + 2*hk[:-1]

        # values where division by zero occurs will be excluded
        # by 'condition' afterwards
        with np.errstate(divide='ignore'):
            whmean = (w1/mk[:-1] + w2/mk[1:]) / (w1 + w2)

        dk = np.zeros_like(y)
        dk[1:-1][condition] = 0.0
        dk[1:-1][~condition] = 1.0 / whmean[~condition]

        # special case endpoints, as suggested in
        # Cleve Moler, Numerical Computing with MATLAB, Chap 3.4
        dk[0] = PchipInterpolator._edge_case(hk[0], hk[1], mk[0], mk[1])
        dk[-1] = PchipInterpolator._edge_case(hk[-1], hk[-2], mk[-1], mk[-2])

        return dk.reshape(y_shape)


def pchip_interpolate(xi, yi, x, der=0, axis=0):
    """
    Convenience function for pchip interpolation.

    xi and yi are arrays of values used to approximate some function f,
    with ``yi = f(xi)``. The interpolant uses monotonic cubic splines
    to find the value of new points x and the derivatives there.

    See `scipy.interpolate.PchipInterpolator` for details.

    Parameters
    ----------
    xi : array_like
        A sorted list of x-coordinates, of length N.
    yi :  array_like
        A 1-D array of real values. `yi`'s length along the interpolation
        axis must be equal to the length of `xi`. If N-D array, use axis
        parameter to select correct axis.
    x : scalar or array_like
        Of length M.
    der : int or list, optional
        Derivatives to extract. The 0th derivative can be included to
        return the function value.
    axis : int, optional
        Axis in the yi array corresponding to the x-coordinate values.

    See Also
    --------
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.

    Returns
    -------
    y : scalar or array_like
        The result, of length R or length M or M by R,

    Examples
    --------
    We can interpolate 2D observed data using pchip interpolation:

    >>> import matplotlib.pyplot as plt
    >>> from scipy.interpolate import pchip_interpolate
    >>> x_observed = np.linspace(0.0, 10.0, 11)
    >>> y_observed = np.sin(x_observed)
    >>> x = np.linspace(min(x_observed), max(x_observed), num=100)
    >>> y = pchip_interpolate(x_observed, y_observed, x)
    >>> plt.plot(x_observed, y_observed, "o", label="observation")
    >>> plt.plot(x, y, label="pchip interpolation")
    >>> plt.legend()
    >>> plt.show()

    """
    P = PchipInterpolator(xi, yi, axis=axis)

    if der == 0:
        return P(x)
    elif _isscalar(der):
        return P.derivative(der)(x)
    else:
        return [P.derivative(nu)(x) for nu in der]


class Akima1DInterpolator(CubicHermiteSpline):
    """
    Akima interpolator

    Fit piecewise cubic polynomials, given vectors x and y. The interpolation
    method by Akima uses a continuously differentiable sub-spline built from
    piecewise cubic polynomials. The resultant curve passes through the given
    data points and will appear smooth and natural.

    Parameters
    ----------
    x : ndarray, shape (m, )
        1-D array of monotonically increasing real values.
    y : ndarray, shape (m, ...)
        N-D array of real values. The length of ``y`` along the first axis
        must be equal to the length of ``x``.
    axis : int, optional
        Specifies the axis of ``y`` along which to interpolate. Interpolation
        defaults to the first axis of ``y``.

    Methods
    -------
    __call__
    derivative
    antiderivative
    roots

    See Also
    --------
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    CubicSpline : Cubic spline data interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints

    Notes
    -----
    .. versionadded:: 0.14

    Use only for precise data, as the fitted curve passes through the given
    points exactly. This routine is useful for plotting a pleasingly smooth
    curve through a few given points for purposes of plotting.

    References
    ----------
    [1] A new method of interpolation and smooth curve fitting based
        on local procedures. Hiroshi Akima, J. ACM, October 1970, 17(4),
        589-602.

    """

    def __init__(self, x, y, axis=0):
        # Original implementation in MATLAB by N. Shamsundar (BSD licensed), see
        # https://www.mathworks.com/matlabcentral/fileexchange/1814-akima-interpolation
        x, dx, y, axis, _ = prepare_input(x, y, axis)
        # determine slopes between breakpoints
        m = np.empty((x.size + 3, ) + y.shape[1:])
        dx = dx[(slice(None), ) + (None, ) * (y.ndim - 1)]
        m[2:-2] = np.diff(y, axis=0) / dx

        # add two additional points on the left ...
        m[1] = 2. * m[2] - m[3]
        m[0] = 2. * m[1] - m[2]
        # ... and on the right
        m[-2] = 2. * m[-3] - m[-4]
        m[-1] = 2. * m[-2] - m[-3]

        # if m1 == m2 != m3 == m4, the slope at the breakpoint is not defined.
        # This is the fill value:
        t = .5 * (m[3:] + m[:-3])
        # get the denominator of the slope t
        dm = np.abs(np.diff(m, axis=0))
        f1 = dm[2:]
        f2 = dm[:-2]
        f12 = f1 + f2
        # These are the mask of where the the slope at breakpoint is defined:
        ind = np.nonzero(f12 > 1e-9 * np.max(f12))
        x_ind, y_ind = ind[0], ind[1:]
        # Set the slope at breakpoint
        t[ind] = (f1[ind] * m[(x_ind + 1,) + y_ind] +
                  f2[ind] * m[(x_ind + 2,) + y_ind]) / f12[ind]

        super(Akima1DInterpolator, self).__init__(x, y, t, axis=0,
                                                  extrapolate=False)
        self.axis = axis

    def extend(self, c, x, right=True):
        raise NotImplementedError("Extending a 1-D Akima interpolator is not "
                                  "yet implemented")

    # These are inherited from PPoly, but they do not produce an Akima
    # interpolator. Hence stub them out.
    @classmethod
    def from_spline(cls, tck, extrapolate=None):
        raise NotImplementedError("This method does not make sense for "
                                  "an Akima interpolator.")

    @classmethod
    def from_bernstein_basis(cls, bp, extrapolate=None):
        raise NotImplementedError("This method does not make sense for "
                                  "an Akima interpolator.")


class CubicSpline(CubicHermiteSpline):
    """Cubic spline data interpolator.

    Interpolate data with a piecewise cubic polynomial which is twice
    continuously differentiable [1]_. The result is represented as a `PPoly`
    instance with breakpoints matching the given data.

    Parameters
    ----------
    x : array_like, shape (n,)
        1-D array containing values of the independent variable.
        Values must be real, finite and in strictly increasing order.
    y : array_like
        Array containing values of the dependent variable. It can have
        arbitrary number of dimensions, but the length along ``axis``
        (see below) must match the length of ``x``. Values must be finite.
    axis : int, optional
        Axis along which `y` is assumed to be varying. Meaning that for
        ``x[i]`` the corresponding values are ``np.take(y, i, axis=axis)``.
        Default is 0.
    bc_type : string or 2-tuple, optional
        Boundary condition type. Two additional equations, given by the
        boundary conditions, are required to determine all coefficients of
        polynomials on each segment [2]_.

        If `bc_type` is a string, then the specified condition will be applied
        at both ends of a spline. Available conditions are:

        * 'not-a-knot' (default): The first and second segment at a curve end
          are the same polynomial. It is a good default when there is no
          information on boundary conditions.
        * 'periodic': The interpolated functions is assumed to be periodic
          of period ``x[-1] - x[0]``. The first and last value of `y` must be
          identical: ``y[0] == y[-1]``. This boundary condition will result in
          ``y'[0] == y'[-1]`` and ``y''[0] == y''[-1]``.
        * 'clamped': The first derivative at curves ends are zero. Assuming
          a 1D `y`, ``bc_type=((1, 0.0), (1, 0.0))`` is the same condition.
        * 'natural': The second derivative at curve ends are zero. Assuming
          a 1D `y`, ``bc_type=((2, 0.0), (2, 0.0))`` is the same condition.

        If `bc_type` is a 2-tuple, the first and the second value will be
        applied at the curve start and end respectively. The tuple values can
        be one of the previously mentioned strings (except 'periodic') or a
        tuple `(order, deriv_values)` allowing to specify arbitrary
        derivatives at curve ends:

        * `order`: the derivative order, 1 or 2.
        * `deriv_value`: array_like containing derivative values, shape must
          be the same as `y`, excluding ``axis`` dimension. For example, if
          `y` is 1-D, then `deriv_value` must be a scalar. If `y` is 3-D with
          the shape (n0, n1, n2) and axis=2, then `deriv_value` must be 2-D
          and have the shape (n0, n1).
    extrapolate : {bool, 'periodic', None}, optional
        If bool, determines whether to extrapolate to out-of-bounds points
        based on first and last intervals, or to return NaNs. If 'periodic',
        periodic extrapolation is used. If None (default), ``extrapolate`` is
        set to 'periodic' for ``bc_type='periodic'`` and to True otherwise.

    Attributes
    ----------
    x : ndarray, shape (n,)
        Breakpoints. The same ``x`` which was passed to the constructor.
    c : ndarray, shape (4, n-1, ...)
        Coefficients of the polynomials on each segment. The trailing
        dimensions match the dimensions of `y`, excluding ``axis``.
        For example, if `y` is 1-d, then ``c[k, i]`` is a coefficient for
        ``(x-x[i])**(3-k)`` on the segment between ``x[i]`` and ``x[i+1]``.
    axis : int
        Interpolation axis. The same axis which was passed to the
        constructor.

    Methods
    -------
    __call__
    derivative
    antiderivative
    integrate
    roots

    See Also
    --------
    Akima1DInterpolator : Akima 1D interpolator.
    PchipInterpolator : PCHIP 1-D monotonic cubic interpolator.
    PPoly : Piecewise polynomial in terms of coefficients and breakpoints.

    Notes
    -----
    Parameters `bc_type` and ``interpolate`` work independently, i.e. the
    former controls only construction of a spline, and the latter only
    evaluation.

    When a boundary condition is 'not-a-knot' and n = 2, it is replaced by
    a condition that the first derivative is equal to the linear interpolant
    slope. When both boundary conditions are 'not-a-knot' and n = 3, the
    solution is sought as a parabola passing through given points.

    When 'not-a-knot' boundary conditions is applied to both ends, the
    resulting spline will be the same as returned by `splrep` (with ``s=0``)
    and `InterpolatedUnivariateSpline`, but these two methods use a
    representation in B-spline basis.

    .. versionadded:: 0.18.0

    Examples
    --------
    In this example the cubic spline is used to interpolate a sampled sinusoid.
    You can see that the spline continuity property holds for the first and
    second derivatives and violates only for the third derivative.

    >>> from scipy.interpolate import CubicSpline
    >>> import matplotlib.pyplot as plt
    >>> x = np.arange(10)
    >>> y = np.sin(x)
    >>> cs = CubicSpline(x, y)
    >>> xs = np.arange(-0.5, 9.6, 0.1)
    >>> fig, ax = plt.subplots(figsize=(6.5, 4))
    >>> ax.plot(x, y, 'o', label='data')
    >>> ax.plot(xs, np.sin(xs), label='true')
    >>> ax.plot(xs, cs(xs), label="S")
    >>> ax.plot(xs, cs(xs, 1), label="S'")
    >>> ax.plot(xs, cs(xs, 2), label="S''")
    >>> ax.plot(xs, cs(xs, 3), label="S'''")
    >>> ax.set_xlim(-0.5, 9.5)
    >>> ax.legend(loc='lower left', ncol=2)
    >>> plt.show()

    In the second example, the unit circle is interpolated with a spline. A
    periodic boundary condition is used. You can see that the first derivative
    values, ds/dx=0, ds/dy=1 at the periodic point (1, 0) are correctly
    computed. Note that a circle cannot be exactly represented by a cubic
    spline. To increase precision, more breakpoints would be required.

    >>> theta = 2 * np.pi * np.linspace(0, 1, 5)
    >>> y = np.c_[np.cos(theta), np.sin(theta)]
    >>> cs = CubicSpline(theta, y, bc_type='periodic')
    >>> print("ds/dx={:.1f} ds/dy={:.1f}".format(cs(0, 1)[0], cs(0, 1)[1]))
    ds/dx=0.0 ds/dy=1.0
    >>> xs = 2 * np.pi * np.linspace(0, 1, 100)
    >>> fig, ax = plt.subplots(figsize=(6.5, 4))
    >>> ax.plot(y[:, 0], y[:, 1], 'o', label='data')
    >>> ax.plot(np.cos(xs), np.sin(xs), label='true')
    >>> ax.plot(cs(xs)[:, 0], cs(xs)[:, 1], label='spline')
    >>> ax.axes.set_aspect('equal')
    >>> ax.legend(loc='center')
    >>> plt.show()

    The third example is the interpolation of a polynomial y = x**3 on the
    interval 0 <= x<= 1. A cubic spline can represent this function exactly.
    To achieve that we need to specify values and first derivatives at
    endpoints of the interval. Note that y' = 3 * x**2 and thus y'(0) = 0 and
    y'(1) = 3.

    >>> cs = CubicSpline([0, 1], [0, 1], bc_type=((1, 0), (1, 3)))
    >>> x = np.linspace(0, 1)
    >>> np.allclose(x**3, cs(x))
    True

    References
    ----------
    .. [1] `Cubic Spline Interpolation
            <https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation>`_
            on Wikiversity.
    .. [2] Carl de Boor, "A Practical Guide to Splines", Springer-Verlag, 1978.
    """
    def __init__(self, x, y, axis=0, bc_type='not-a-knot', extrapolate=None):
        x, dx, y, axis, _ = prepare_input(x, y, axis)
        n = len(x)

        bc, y = self._validate_bc(bc_type, y, y.shape[1:], axis)

        if extrapolate is None:
            if bc[0] == 'periodic':
                extrapolate = 'periodic'
            else:
                extrapolate = True

        dxr = dx.reshape([dx.shape[0]] + [1] * (y.ndim - 1))
        slope = np.diff(y, axis=0) / dxr

        # If bc is 'not-a-knot' this change is just a convention.
        # If bc is 'periodic' then we already checked that y[0] == y[-1],
        # and the spline is just a constant, we handle this case in the same
        # way by setting the first derivatives to slope, which is 0.
        if n == 2:
            if bc[0] in ['not-a-knot', 'periodic']:
                bc[0] = (1, slope[0])
            if bc[1] in ['not-a-knot', 'periodic']:
                bc[1] = (1, slope[0])

        # This is a very special case, when both conditions are 'not-a-knot'
        # and n == 3. In this case 'not-a-knot' can't be handled regularly
        # as the both conditions are identical. We handle this case by
        # constructing a parabola passing through given points.
        if n == 3 and bc[0] == 'not-a-knot' and bc[1] == 'not-a-knot':
            A = np.zeros((3, 3))  # This is a standard matrix.
            b = np.empty((3,) + y.shape[1:], dtype=y.dtype)

            A[0, 0] = 1
            A[0, 1] = 1
            A[1, 0] = dx[1]
            A[1, 1] = 2 * (dx[0] + dx[1])
            A[1, 2] = dx[0]
            A[2, 1] = 1
            A[2, 2] = 1

            b[0] = 2 * slope[0]
            b[1] = 3 * (dxr[0] * slope[1] + dxr[1] * slope[0])
            b[2] = 2 * slope[1]

            s = solve(A, b, overwrite_a=True, overwrite_b=True,
                      check_finite=False)
        else:
            # Find derivative values at each x[i] by solving a tridiagonal
            # system.
            A = np.zeros((3, n))  # This is a banded matrix representation.
            b = np.empty((n,) + y.shape[1:], dtype=y.dtype)

            # Filling the system for i=1..n-2
            #                         (x[i-1] - x[i]) * s[i-1] +\
            # 2 * ((x[i] - x[i-1]) + (x[i+1] - x[i])) * s[i]   +\
            #                         (x[i] - x[i-1]) * s[i+1] =\
            #       3 * ((x[i+1] - x[i])*(y[i] - y[i-1])/(x[i] - x[i-1]) +\
            #           (x[i] - x[i-1])*(y[i+1] - y[i])/(x[i+1] - x[i]))

            A[1, 1:-1] = 2 * (dx[:-1] + dx[1:])  # The diagonal
            A[0, 2:] = dx[:-1]                   # The upper diagonal
            A[-1, :-2] = dx[1:]                  # The lower diagonal

            b[1:-1] = 3 * (dxr[1:] * slope[:-1] + dxr[:-1] * slope[1:])

            bc_start, bc_end = bc

            if bc_start == 'periodic':
                # Due to the periodicity, and because y[-1] = y[0], the linear
                # system has (n-1) unknowns/equations instead of n:
                A = A[:, 0:-1]
                A[1, 0] = 2 * (dx[-1] + dx[0])
                A[0, 1] = dx[-1]

                b = b[:-1]

                # Also, due to the periodicity, the system is not tri-diagonal.
                # We need to compute a "condensed" matrix of shape (n-2, n-2).
                # See https://web.archive.org/web/20151220180652/http://www.cfm.brown.edu/people/gk/chap6/node14.html
                # for more explanations.
                # The condensed matrix is obtained by removing the last column
                # and last row of the (n-1, n-1) system matrix. The removed
                # values are saved in scalar variables with the (n-1, n-1)
                # system matrix indices forming their names:
                a_m1_0 = dx[-2]  # lower left corner value: A[-1, 0]
                a_m1_m2 = dx[-1]
                a_m1_m1 = 2 * (dx[-1] + dx[-2])
                a_m2_m1 = dx[-2]
                a_0_m1 = dx[0]

                b[0] = 3 * (dxr[0] * slope[-1] + dxr[-1] * slope[0])
                b[-1] = 3 * (dxr[-1] * slope[-2] + dxr[-2] * slope[-1])

                Ac = A[:, :-1]
                b1 = b[:-1]
                b2 = np.zeros_like(b1)
                b2[0] = -a_0_m1
                b2[-1] = -a_m2_m1

                # s1 and s2 are the solutions of (n-2, n-2) system
                s1 = solve_banded((1, 1), Ac, b1, overwrite_ab=False,
                                  overwrite_b=False, check_finite=False)

                s2 = solve_banded((1, 1), Ac, b2, overwrite_ab=False,
                                  overwrite_b=False, check_finite=False)

                # computing the s[n-2] solution:
                s_m1 = ((b[-1] - a_m1_0 * s1[0] - a_m1_m2 * s1[-1]) /
                        (a_m1_m1 + a_m1_0 * s2[0] + a_m1_m2 * s2[-1]))

                # s is the solution of the (n, n) system:
                s = np.empty((n,) + y.shape[1:], dtype=y.dtype)
                s[:-2] = s1 + s_m1 * s2
                s[-2] = s_m1
                s[-1] = s[0]
            else:
                if bc_start == 'not-a-knot':
                    A[1, 0] = dx[1]
                    A[0, 1] = x[2] - x[0]
                    d = x[2] - x[0]
                    b[0] = ((dxr[0] + 2*d) * dxr[1] * slope[0] +
                            dxr[0]**2 * slope[1]) / d
                elif bc_start[0] == 1:
                    A[1, 0] = 1
                    A[0, 1] = 0
                    b[0] = bc_start[1]
                elif bc_start[0] == 2:
                    A[1, 0] = 2 * dx[0]
                    A[0, 1] = dx[0]
                    b[0] = -0.5 * bc_start[1] * dx[0]**2 + 3 * (y[1] - y[0])

                if bc_end == 'not-a-knot':
                    A[1, -1] = dx[-2]
                    A[-1, -2] = x[-1] - x[-3]
                    d = x[-1] - x[-3]
                    b[-1] = ((dxr[-1]**2*slope[-2] +
                             (2*d + dxr[-1])*dxr[-2]*slope[-1]) / d)
                elif bc_end[0] == 1:
                    A[1, -1] = 1
                    A[-1, -2] = 0
                    b[-1] = bc_end[1]
                elif bc_end[0] == 2:
                    A[1, -1] = 2 * dx[-1]
                    A[-1, -2] = dx[-1]
                    b[-1] = 0.5 * bc_end[1] * dx[-1]**2 + 3 * (y[-1] - y[-2])

                s = solve_banded((1, 1), A, b, overwrite_ab=True,
                                 overwrite_b=True, check_finite=False)

        super(CubicSpline, self).__init__(x, y, s, axis=0,
                                          extrapolate=extrapolate)
        self.axis = axis

    @staticmethod
    def _validate_bc(bc_type, y, expected_deriv_shape, axis):
        """Validate and prepare boundary conditions.

        Returns
        -------
        validated_bc : 2-tuple
            Boundary conditions for a curve start and end.
        y : ndarray
            y casted to complex dtype if one of the boundary conditions has
            complex dtype.
        """
        if isinstance(bc_type, str):
            if bc_type == 'periodic':
                if not np.allclose(y[0], y[-1], rtol=1e-15, atol=1e-15):
                    raise ValueError(
                        "The first and last `y` point along axis {} must "
                        "be identical (within machine precision) when "
                        "bc_type='periodic'.".format(axis))

            bc_type = (bc_type, bc_type)

        else:
            if len(bc_type) != 2:
                raise ValueError("`bc_type` must contain 2 elements to "
                                 "specify start and end conditions.")

            if 'periodic' in bc_type:
                raise ValueError("'periodic' `bc_type` is defined for both "
                                 "curve ends and cannot be used with other "
                                 "boundary conditions.")

        validated_bc = []
        for bc in bc_type:
            if isinstance(bc, str):
                if bc == 'clamped':
                    validated_bc.append((1, np.zeros(expected_deriv_shape)))
                elif bc == 'natural':
                    validated_bc.append((2, np.zeros(expected_deriv_shape)))
                elif bc in ['not-a-knot', 'periodic']:
                    validated_bc.append(bc)
                else:
                    raise ValueError("bc_type={} is not allowed.".format(bc))
            else:
                try:
                    deriv_order, deriv_value = bc
                except Exception:
                    raise ValueError("A specified derivative value must be "
                                     "given in the form (order, value).")

                if deriv_order not in [1, 2]:
                    raise ValueError("The specified derivative order must "
                                     "be 1 or 2.")

                deriv_value = np.asarray(deriv_value)
                if deriv_value.shape != expected_deriv_shape:
                    raise ValueError(
                        "`deriv_value` shape {} is not the expected one {}."
                        .format(deriv_value.shape, expected_deriv_shape))

                if np.issubdtype(deriv_value.dtype, np.complexfloating):
                    y = y.astype(complex, copy=False)

                validated_bc.append((deriv_order, deriv_value))

        return validated_bc, y