ivp.py 26.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
import inspect
import numpy as np
from .bdf import BDF
from .radau import Radau
from .rk import RK23, RK45, DOP853
from .lsoda import LSODA
from scipy.optimize import OptimizeResult
from .common import EPS, OdeSolution
from .base import OdeSolver


METHODS = {'RK23': RK23,
           'RK45': RK45,
           'DOP853': DOP853,
           'Radau': Radau,
           'BDF': BDF,
           'LSODA': LSODA}


MESSAGES = {0: "The solver successfully reached the end of the integration interval.",
            1: "A termination event occurred."}


class OdeResult(OptimizeResult):
    pass


def prepare_events(events):
    """Standardize event functions and extract is_terminal and direction."""
    if callable(events):
        events = (events,)

    if events is not None:
        is_terminal = np.empty(len(events), dtype=bool)
        direction = np.empty(len(events))
        for i, event in enumerate(events):
            try:
                is_terminal[i] = event.terminal
            except AttributeError:
                is_terminal[i] = False

            try:
                direction[i] = event.direction
            except AttributeError:
                direction[i] = 0
    else:
        is_terminal = None
        direction = None

    return events, is_terminal, direction


def solve_event_equation(event, sol, t_old, t):
    """Solve an equation corresponding to an ODE event.

    The equation is ``event(t, y(t)) = 0``, here ``y(t)`` is known from an
    ODE solver using some sort of interpolation. It is solved by
    `scipy.optimize.brentq` with xtol=atol=4*EPS.

    Parameters
    ----------
    event : callable
        Function ``event(t, y)``.
    sol : callable
        Function ``sol(t)`` which evaluates an ODE solution between `t_old`
        and  `t`.
    t_old, t : float
        Previous and new values of time. They will be used as a bracketing
        interval.

    Returns
    -------
    root : float
        Found solution.
    """
    from scipy.optimize import brentq
    return brentq(lambda t: event(t, sol(t)), t_old, t,
                  xtol=4 * EPS, rtol=4 * EPS)


def handle_events(sol, events, active_events, is_terminal, t_old, t):
    """Helper function to handle events.

    Parameters
    ----------
    sol : DenseOutput
        Function ``sol(t)`` which evaluates an ODE solution between `t_old`
        and  `t`.
    events : list of callables, length n_events
        Event functions with signatures ``event(t, y)``.
    active_events : ndarray
        Indices of events which occurred.
    is_terminal : ndarray, shape (n_events,)
        Which events are terminal.
    t_old, t : float
        Previous and new values of time.

    Returns
    -------
    root_indices : ndarray
        Indices of events which take zero between `t_old` and `t` and before
        a possible termination.
    roots : ndarray
        Values of t at which events occurred.
    terminate : bool
        Whether a terminal event occurred.
    """
    roots = [solve_event_equation(events[event_index], sol, t_old, t)
             for event_index in active_events]

    roots = np.asarray(roots)

    if np.any(is_terminal[active_events]):
        if t > t_old:
            order = np.argsort(roots)
        else:
            order = np.argsort(-roots)
        active_events = active_events[order]
        roots = roots[order]
        t = np.nonzero(is_terminal[active_events])[0][0]
        active_events = active_events[:t + 1]
        roots = roots[:t + 1]
        terminate = True
    else:
        terminate = False

    return active_events, roots, terminate


def find_active_events(g, g_new, direction):
    """Find which event occurred during an integration step.

    Parameters
    ----------
    g, g_new : array_like, shape (n_events,)
        Values of event functions at a current and next points.
    direction : ndarray, shape (n_events,)
        Event "direction" according to the definition in `solve_ivp`.

    Returns
    -------
    active_events : ndarray
        Indices of events which occurred during the step.
    """
    g, g_new = np.asarray(g), np.asarray(g_new)
    up = (g <= 0) & (g_new >= 0)
    down = (g >= 0) & (g_new <= 0)
    either = up | down
    mask = (up & (direction > 0) |
            down & (direction < 0) |
            either & (direction == 0))

    return np.nonzero(mask)[0]


def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,
              events=None, vectorized=False, args=None, **options):
    """Solve an initial value problem for a system of ODEs.

    This function numerically integrates a system of ordinary differential
    equations given an initial value::

        dy / dt = f(t, y)
        y(t0) = y0

    Here t is a 1-D independent variable (time), y(t) is an
    N-D vector-valued function (state), and an N-D
    vector-valued function f(t, y) determines the differential equations.
    The goal is to find y(t) approximately satisfying the differential
    equations, given an initial value y(t0)=y0.

    Some of the solvers support integration in the complex domain, but note
    that for stiff ODE solvers, the right-hand side must be
    complex-differentiable (satisfy Cauchy-Riemann equations [11]_).
    To solve a problem in the complex domain, pass y0 with a complex data type.
    Another option always available is to rewrite your problem for real and
    imaginary parts separately.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system. The calling signature is ``fun(t, y)``.
        Here `t` is a scalar, and there are two options for the ndarray `y`:
        It can either have shape (n,); then `fun` must return array_like with
        shape (n,). Alternatively, it can have shape (n, k); then `fun`
        must return an array_like with shape (n, k), i.e., each column
        corresponds to a single column in `y`. The choice between the two
        options is determined by `vectorized` argument (see below). The
        vectorized implementation allows a faster approximation of the Jacobian
        by finite differences (required for stiff solvers).
    t_span : 2-tuple of floats
        Interval of integration (t0, tf). The solver starts with t=t0 and
        integrates until it reaches t=tf.
    y0 : array_like, shape (n,)
        Initial state. For problems in the complex domain, pass `y0` with a
        complex data type (even if the initial value is purely real).
    method : string or `OdeSolver`, optional
        Integration method to use:

            * 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]_.
              The error is controlled assuming accuracy of the fourth-order
              method, but steps are taken using the fifth-order accurate
              formula (local extrapolation is done). A quartic interpolation
              polynomial is used for the dense output [2]_. Can be applied in
              the complex domain.
            * 'RK23': Explicit Runge-Kutta method of order 3(2) [3]_. The error
              is controlled assuming accuracy of the second-order method, but
              steps are taken using the third-order accurate formula (local
              extrapolation is done). A cubic Hermite polynomial is used for the
              dense output. Can be applied in the complex domain.
            * 'DOP853': Explicit Runge-Kutta method of order 8 [13]_.
              Python implementation of the "DOP853" algorithm originally
              written in Fortran [14]_. A 7-th order interpolation polynomial
              accurate to 7-th order is used for the dense output.
              Can be applied in the complex domain.
            * 'Radau': Implicit Runge-Kutta method of the Radau IIA family of
              order 5 [4]_. The error is controlled with a third-order accurate
              embedded formula. A cubic polynomial which satisfies the
              collocation conditions is used for the dense output.
            * 'BDF': Implicit multi-step variable-order (1 to 5) method based
              on a backward differentiation formula for the derivative
              approximation [5]_. The implementation follows the one described
              in [6]_. A quasi-constant step scheme is used and accuracy is
              enhanced using the NDF modification. Can be applied in the
              complex domain.
            * 'LSODA': Adams/BDF method with automatic stiffness detection and
              switching [7]_, [8]_. This is a wrapper of the Fortran solver
              from ODEPACK.

        Explicit Runge-Kutta methods ('RK23', 'RK45', 'DOP853') should be used
        for non-stiff problems and implicit methods ('Radau', 'BDF') for
        stiff problems [9]_. Among Runge-Kutta methods, 'DOP853' is recommended
        for solving with high precision (low values of `rtol` and `atol`).

        If not sure, first try to run 'RK45'. If it makes unusually many
        iterations, diverges, or fails, your problem is likely to be stiff and
        you should use 'Radau' or 'BDF'. 'LSODA' can also be a good universal
        choice, but it might be somewhat less convenient to work with as it
        wraps old Fortran code.

        You can also pass an arbitrary class derived from `OdeSolver` which
        implements the solver.
    t_eval : array_like or None, optional
        Times at which to store the computed solution, must be sorted and lie
        within `t_span`. If None (default), use points selected by the solver.
    dense_output : bool, optional
        Whether to compute a continuous solution. Default is False.
    events : callable, or list of callables, optional
        Events to track. If None (default), no events will be tracked.
        Each event occurs at the zeros of a continuous function of time and
        state. Each function must have the signature ``event(t, y)`` and return
        a float. The solver will find an accurate value of `t` at which
        ``event(t, y(t)) = 0`` using a root-finding algorithm. By default, all
        zeros will be found. The solver looks for a sign change over each step,
        so if multiple zero crossings occur within one step, events may be
        missed. Additionally each `event` function might have the following
        attributes:

            terminal: bool, optional
                Whether to terminate integration if this event occurs.
                Implicitly False if not assigned.
            direction: float, optional
                Direction of a zero crossing. If `direction` is positive,
                `event` will only trigger when going from negative to positive,
                and vice versa if `direction` is negative. If 0, then either
                direction will trigger event. Implicitly 0 if not assigned.

        You can assign attributes like ``event.terminal = True`` to any
        function in Python.
    vectorized : bool, optional
        Whether `fun` is implemented in a vectorized fashion. Default is False.
    args : tuple, optional
        Additional arguments to pass to the user-defined functions.  If given,
        the additional arguments are passed to all user-defined functions.
        So if, for example, `fun` has the signature ``fun(t, y, a, b, c)``,
        then `jac` (if given) and any event functions must have the same
        signature, and `args` must be a tuple of length 3.
    options
        Options passed to a chosen solver. All options available for already
        implemented solvers are listed below.
    first_step : float or None, optional
        Initial step size. Default is `None` which means that the algorithm
        should choose.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e., the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float or array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
        relative accuracy (number of correct digits). But if a component of `y`
        is approximately below `atol`, the error only needs to fall within
        the same `atol` threshold, and the number of correct digits is not
        guaranteed. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    jac : array_like, sparse_matrix, callable or None, optional
        Jacobian matrix of the right-hand side of the system with respect
        to y, required by the 'Radau', 'BDF' and 'LSODA' method. The
        Jacobian matrix has shape (n, n) and its element (i, j) is equal to
        ``d f_i / d y_j``.  There are three ways to define the Jacobian:

            * If array_like or sparse_matrix, the Jacobian is assumed to
              be constant. Not supported by 'LSODA'.
            * If callable, the Jacobian is assumed to depend on both
              t and y; it will be called as ``jac(t, y)``, as necessary.
              For 'Radau' and 'BDF' methods, the return value might be a
              sparse matrix.
            * If None (default), the Jacobian will be approximated by
              finite differences.

        It is generally recommended to provide the Jacobian rather than
        relying on a finite-difference approximation.
    jac_sparsity : array_like, sparse matrix or None, optional
        Defines a sparsity structure of the Jacobian matrix for a finite-
        difference approximation. Its shape must be (n, n). This argument
        is ignored if `jac` is not `None`. If the Jacobian has only few
        non-zero elements in *each* row, providing the sparsity structure
        will greatly speed up the computations [10]_. A zero entry means that
        a corresponding element in the Jacobian is always zero. If None
        (default), the Jacobian is assumed to be dense.
        Not supported by 'LSODA', see `lband` and `uband` instead.
    lband, uband : int or None, optional
        Parameters defining the bandwidth of the Jacobian for the 'LSODA'
        method, i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``.
        Default is None. Setting these requires your jac routine to return the
        Jacobian in the packed format: the returned array must have ``n``
        columns and ``uband + lband + 1`` rows in which Jacobian diagonals are
        written. Specifically ``jac_packed[uband + i - j , j] = jac[i, j]``.
        The same format is used in `scipy.linalg.solve_banded` (check for an
        illustration).  These parameters can be also used with ``jac=None`` to
        reduce the number of Jacobian elements estimated by finite differences.
    min_step : float, optional
        The minimum allowed step size for 'LSODA' method.
        By default `min_step` is zero.

    Returns
    -------
    Bunch object with the following fields defined:
    t : ndarray, shape (n_points,)
        Time points.
    y : ndarray, shape (n, n_points)
        Values of the solution at `t`.
    sol : `OdeSolution` or None
        Found solution as `OdeSolution` instance; None if `dense_output` was
        set to False.
    t_events : list of ndarray or None
        Contains for each event type a list of arrays at which an event of
        that type event was detected. None if `events` was None.
    y_events : list of ndarray or None
        For each value of `t_events`, the corresponding value of the solution.
        None if `events` was None.
    nfev : int
        Number of evaluations of the right-hand side.
    njev : int
        Number of evaluations of the Jacobian.
    nlu : int
        Number of LU decompositions.
    status : int
        Reason for algorithm termination:

            * -1: Integration step failed.
            *  0: The solver successfully reached the end of `tspan`.
            *  1: A termination event occurred.

    message : string
        Human-readable description of the termination reason.
    success : bool
        True if the solver reached the interval end or a termination event
        occurred (``status >= 0``).

    References
    ----------
    .. [1] J. R. Dormand, P. J. Prince, "A family of embedded Runge-Kutta
           formulae", Journal of Computational and Applied Mathematics, Vol. 6,
           No. 1, pp. 19-26, 1980.
    .. [2] L. W. Shampine, "Some Practical Runge-Kutta Formulas", Mathematics
           of Computation,, Vol. 46, No. 173, pp. 135-150, 1986.
    .. [3] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
           Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
    .. [4] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
           Stiff and Differential-Algebraic Problems", Sec. IV.8.
    .. [5] `Backward Differentiation Formula
            <https://en.wikipedia.org/wiki/Backward_differentiation_formula>`_
            on Wikipedia.
    .. [6] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
           COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
    .. [7] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
           Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
           pp. 55-64, 1983.
    .. [8] L. Petzold, "Automatic selection of methods for solving stiff and
           nonstiff systems of ordinary differential equations", SIAM Journal
           on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
           1983.
    .. [9] `Stiff equation <https://en.wikipedia.org/wiki/Stiff_equation>`_ on
           Wikipedia.
    .. [10] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
            sparse Jacobian matrices", Journal of the Institute of Mathematics
            and its Applications, 13, pp. 117-120, 1974.
    .. [11] `Cauchy-Riemann equations
             <https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
             Wikipedia.
    .. [12] `Lotka-Volterra equations
            <https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations>`_
            on Wikipedia.
    .. [13] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
            Equations I: Nonstiff Problems", Sec. II.
    .. [14] `Page with original Fortran code of DOP853
            <http://www.unige.ch/~hairer/software.html>`_.

    Examples
    --------
    Basic exponential decay showing automatically chosen time points.

    >>> from scipy.integrate import solve_ivp
    >>> def exponential_decay(t, y): return -0.5 * y
    >>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8])
    >>> print(sol.t)
    [ 0.          0.11487653  1.26364188  3.06061781  4.81611105  6.57445806
      8.33328988 10.        ]
    >>> print(sol.y)
    [[2.         1.88836035 1.06327177 0.43319312 0.18017253 0.07483045
      0.03107158 0.01350781]
     [4.         3.7767207  2.12654355 0.86638624 0.36034507 0.14966091
      0.06214316 0.02701561]
     [8.         7.5534414  4.25308709 1.73277247 0.72069014 0.29932181
      0.12428631 0.05403123]]

    Specifying points where the solution is desired.

    >>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8],
    ...                 t_eval=[0, 1, 2, 4, 10])
    >>> print(sol.t)
    [ 0  1  2  4 10]
    >>> print(sol.y)
    [[2.         1.21305369 0.73534021 0.27066736 0.01350938]
     [4.         2.42610739 1.47068043 0.54133472 0.02701876]
     [8.         4.85221478 2.94136085 1.08266944 0.05403753]]

    Cannon fired upward with terminal event upon impact. The ``terminal`` and
    ``direction`` fields of an event are applied by monkey patching a function.
    Here ``y[0]`` is position and ``y[1]`` is velocity. The projectile starts
    at position 0 with velocity +10. Note that the integration never reaches
    t=100 because the event is terminal.

    >>> def upward_cannon(t, y): return [y[1], -0.5]
    >>> def hit_ground(t, y): return y[0]
    >>> hit_ground.terminal = True
    >>> hit_ground.direction = -1
    >>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10], events=hit_ground)
    >>> print(sol.t_events)
    [array([40.])]
    >>> print(sol.t)
    [0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
     1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]

    Use `dense_output` and `events` to find position, which is 100, at the apex
    of the cannonball's trajectory. Apex is not defined as terminal, so both
    apex and hit_ground are found. There is no information at t=20, so the sol
    attribute is used to evaluate the solution. The sol attribute is returned
    by setting ``dense_output=True``. Alternatively, the `y_events` attribute
    can be used to access the solution at the time of the event.

    >>> def apex(t, y): return y[1]
    >>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10],
    ...                 events=(hit_ground, apex), dense_output=True)
    >>> print(sol.t_events)
    [array([40.]), array([20.])]
    >>> print(sol.t)
    [0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
     1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
    >>> print(sol.sol(sol.t_events[1][0]))
    [100.   0.]
    >>> print(sol.y_events)
    [array([[-5.68434189e-14, -1.00000000e+01]]), array([[1.00000000e+02, 1.77635684e-15]])]

    As an example of a system with additional parameters, we'll implement
    the Lotka-Volterra equations [12]_.

    >>> def lotkavolterra(t, z, a, b, c, d):
    ...     x, y = z
    ...     return [a*x - b*x*y, -c*y + d*x*y]
    ...

    We pass in the parameter values a=1.5, b=1, c=3 and d=1 with the `args`
    argument.

    >>> sol = solve_ivp(lotkavolterra, [0, 15], [10, 5], args=(1.5, 1, 3, 1),
    ...                 dense_output=True)

    Compute a dense solution and plot it.

    >>> t = np.linspace(0, 15, 300)
    >>> z = sol.sol(t)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, z.T)
    >>> plt.xlabel('t')
    >>> plt.legend(['x', 'y'], shadow=True)
    >>> plt.title('Lotka-Volterra System')
    >>> plt.show()

    """
    if method not in METHODS and not (
            inspect.isclass(method) and issubclass(method, OdeSolver)):
        raise ValueError("`method` must be one of {} or OdeSolver class."
                         .format(METHODS))

    t0, tf = float(t_span[0]), float(t_span[1])

    if args is not None:
        # Wrap the user's fun (and jac, if given) in lambdas to hide the
        # additional parameters.  Pass in the original fun as a keyword
        # argument to keep it in the scope of the lambda.
        fun = lambda t, x, fun=fun: fun(t, x, *args)
        jac = options.get('jac')
        if callable(jac):
            options['jac'] = lambda t, x: jac(t, x, *args)

    if t_eval is not None:
        t_eval = np.asarray(t_eval)
        if t_eval.ndim != 1:
            raise ValueError("`t_eval` must be 1-dimensional.")

        if np.any(t_eval < min(t0, tf)) or np.any(t_eval > max(t0, tf)):
            raise ValueError("Values in `t_eval` are not within `t_span`.")

        d = np.diff(t_eval)
        if tf > t0 and np.any(d <= 0) or tf < t0 and np.any(d >= 0):
            raise ValueError("Values in `t_eval` are not properly sorted.")

        if tf > t0:
            t_eval_i = 0
        else:
            # Make order of t_eval decreasing to use np.searchsorted.
            t_eval = t_eval[::-1]
            # This will be an upper bound for slices.
            t_eval_i = t_eval.shape[0]

    if method in METHODS:
        method = METHODS[method]

    solver = method(fun, t0, y0, tf, vectorized=vectorized, **options)

    if t_eval is None:
        ts = [t0]
        ys = [y0]
    elif t_eval is not None and dense_output:
        ts = []
        ti = [t0]
        ys = []
    else:
        ts = []
        ys = []

    interpolants = []

    events, is_terminal, event_dir = prepare_events(events)

    if events is not None:
        if args is not None:
            # Wrap user functions in lambdas to hide the additional parameters.
            # The original event function is passed as a keyword argument to the
            # lambda to keep the original function in scope (i.e., avoid the
            # late binding closure "gotcha").
            events = [lambda t, x, event=event: event(t, x, *args)
                      for event in events]
        g = [event(t0, y0) for event in events]
        t_events = [[] for _ in range(len(events))]
        y_events = [[] for _ in range(len(events))]
    else:
        t_events = None
        y_events = None

    status = None
    while status is None:
        message = solver.step()

        if solver.status == 'finished':
            status = 0
        elif solver.status == 'failed':
            status = -1
            break

        t_old = solver.t_old
        t = solver.t
        y = solver.y

        if dense_output:
            sol = solver.dense_output()
            interpolants.append(sol)
        else:
            sol = None

        if events is not None:
            g_new = [event(t, y) for event in events]
            active_events = find_active_events(g, g_new, event_dir)
            if active_events.size > 0:
                if sol is None:
                    sol = solver.dense_output()

                root_indices, roots, terminate = handle_events(
                    sol, events, active_events, is_terminal, t_old, t)

                for e, te in zip(root_indices, roots):
                    t_events[e].append(te)
                    y_events[e].append(sol(te))

                if terminate:
                    status = 1
                    t = roots[-1]
                    y = sol(t)

            g = g_new

        if t_eval is None:
            ts.append(t)
            ys.append(y)
        else:
            # The value in t_eval equal to t will be included.
            if solver.direction > 0:
                t_eval_i_new = np.searchsorted(t_eval, t, side='right')
                t_eval_step = t_eval[t_eval_i:t_eval_i_new]
            else:
                t_eval_i_new = np.searchsorted(t_eval, t, side='left')
                # It has to be done with two slice operations, because
                # you can't slice to 0th element inclusive using backward
                # slicing.
                t_eval_step = t_eval[t_eval_i_new:t_eval_i][::-1]

            if t_eval_step.size > 0:
                if sol is None:
                    sol = solver.dense_output()
                ts.append(t_eval_step)
                ys.append(sol(t_eval_step))
                t_eval_i = t_eval_i_new

        if t_eval is not None and dense_output:
            ti.append(t)

    message = MESSAGES.get(status, message)

    if t_events is not None:
        t_events = [np.asarray(te) for te in t_events]
        y_events = [np.asarray(ye) for ye in y_events]

    if t_eval is None:
        ts = np.array(ts)
        ys = np.vstack(ys).T
    else:
        ts = np.hstack(ts)
        ys = np.hstack(ys)

    if dense_output:
        if t_eval is None:
            sol = OdeSolution(ts, interpolants)
        else:
            sol = OdeSolution(ti, interpolants)
    else:
        sol = None

    return OdeResult(t=ts, y=ys, sol=sol, t_events=t_events, y_events=y_events,
                     nfev=solver.nfev, njev=solver.njev, nlu=solver.nlu,
                     status=status, message=message, success=status >= 0)