bdf.py 16.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
import numpy as np
from scipy.linalg import lu_factor, lu_solve
from scipy.sparse import issparse, csc_matrix, eye
from scipy.sparse.linalg import splu
from scipy.optimize._numdiff import group_columns
from .common import (validate_max_step, validate_tol, select_initial_step,
                     norm, EPS, num_jac, validate_first_step,
                     warn_extraneous)
from .base import OdeSolver, DenseOutput


MAX_ORDER = 5
NEWTON_MAXITER = 4
MIN_FACTOR = 0.2
MAX_FACTOR = 10


def compute_R(order, factor):
    """Compute the matrix for changing the differences array."""
    I = np.arange(1, order + 1)[:, None]
    J = np.arange(1, order + 1)
    M = np.zeros((order + 1, order + 1))
    M[1:, 1:] = (I - 1 - factor * J) / I
    M[0] = 1
    return np.cumprod(M, axis=0)


def change_D(D, order, factor):
    """Change differences array in-place when step size is changed."""
    R = compute_R(order, factor)
    U = compute_R(order, 1)
    RU = R.dot(U)
    D[:order + 1] = np.dot(RU.T, D[:order + 1])


def solve_bdf_system(fun, t_new, y_predict, c, psi, LU, solve_lu, scale, tol):
    """Solve the algebraic system resulting from BDF method."""
    d = 0
    y = y_predict.copy()
    dy_norm_old = None
    converged = False
    for k in range(NEWTON_MAXITER):
        f = fun(t_new, y)
        if not np.all(np.isfinite(f)):
            break

        dy = solve_lu(LU, c * f - psi - d)
        dy_norm = norm(dy / scale)

        if dy_norm_old is None:
            rate = None
        else:
            rate = dy_norm / dy_norm_old

        if (rate is not None and (rate >= 1 or
                rate ** (NEWTON_MAXITER - k) / (1 - rate) * dy_norm > tol)):
            break

        y += dy
        d += dy

        if (dy_norm == 0 or
                rate is not None and rate / (1 - rate) * dy_norm < tol):
            converged = True
            break

        dy_norm_old = dy_norm

    return converged, k + 1, y, d


class BDF(OdeSolver):
    """Implicit method based on backward-differentiation formulas.

    This is a variable order method with the order varying automatically from
    1 to 5. The general framework of the BDF algorithm is described in [1]_.
    This class implements a quasi-constant step size as explained in [2]_.
    The error estimation strategy for the constant-step BDF is derived in [3]_.
    An accuracy enhancement using modified formulas (NDF) [2]_ is also implemented.

    Can be applied in the complex domain.

    Parameters
    ----------
    fun : callable
        Right-hand side of the system. The calling signature is ``fun(t, y)``.
        Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
        It can either have shape (n,); then ``fun`` must return array_like with
        shape (n,). Alternatively it can have shape (n, k); then ``fun``
        must return an array_like with shape (n, k), i.e. each column
        corresponds to a single column in ``y``. The choice between the two
        options is determined by `vectorized` argument (see below). The
        vectorized implementation allows a faster approximation of the Jacobian
        by finite differences (required for this solver).
    t0 : float
        Initial time.
    y0 : array_like, shape (n,)
        Initial state.
    t_bound : float
        Boundary time - the integration won't continue beyond it. It also
        determines the direction of the integration.
    first_step : float or None, optional
        Initial step size. Default is ``None`` which means that the algorithm
        should choose.
    max_step : float, optional
        Maximum allowed step size. Default is np.inf, i.e., the step size is not
        bounded and determined solely by the solver.
    rtol, atol : float and array_like, optional
        Relative and absolute tolerances. The solver keeps the local error
        estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
        relative accuracy (number of correct digits). But if a component of `y`
        is approximately below `atol`, the error only needs to fall within
        the same `atol` threshold, and the number of correct digits is not
        guaranteed. If components of y have different scales, it might be
        beneficial to set different `atol` values for different components by
        passing array_like with shape (n,) for `atol`. Default values are
        1e-3 for `rtol` and 1e-6 for `atol`.
    jac : {None, array_like, sparse_matrix, callable}, optional
        Jacobian matrix of the right-hand side of the system with respect to y,
        required by this method. The Jacobian matrix has shape (n, n) and its
        element (i, j) is equal to ``d f_i / d y_j``.
        There are three ways to define the Jacobian:

            * If array_like or sparse_matrix, the Jacobian is assumed to
              be constant.
            * If callable, the Jacobian is assumed to depend on both
              t and y; it will be called as ``jac(t, y)`` as necessary.
              For the 'Radau' and 'BDF' methods, the return value might be a
              sparse matrix.
            * If None (default), the Jacobian will be approximated by
              finite differences.

        It is generally recommended to provide the Jacobian rather than
        relying on a finite-difference approximation.
    jac_sparsity : {None, array_like, sparse matrix}, optional
        Defines a sparsity structure of the Jacobian matrix for a
        finite-difference approximation. Its shape must be (n, n). This argument
        is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
        elements in *each* row, providing the sparsity structure will greatly
        speed up the computations [4]_. A zero entry means that a corresponding
        element in the Jacobian is always zero. If None (default), the Jacobian
        is assumed to be dense.
    vectorized : bool, optional
        Whether `fun` is implemented in a vectorized fashion. Default is False.

    Attributes
    ----------
    n : int
        Number of equations.
    status : string
        Current status of the solver: 'running', 'finished' or 'failed'.
    t_bound : float
        Boundary time.
    direction : float
        Integration direction: +1 or -1.
    t : float
        Current time.
    y : ndarray
        Current state.
    t_old : float
        Previous time. None if no steps were made yet.
    step_size : float
        Size of the last successful step. None if no steps were made yet.
    nfev : int
        Number of evaluations of the right-hand side.
    njev : int
        Number of evaluations of the Jacobian.
    nlu : int
        Number of LU decompositions.

    References
    ----------
    .. [1] G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical
           Solution of Ordinary Differential Equations", ACM Transactions on
           Mathematical Software, Vol. 1, No. 1, pp. 71-96, March 1975.
    .. [2] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
           COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
    .. [3] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations I:
           Nonstiff Problems", Sec. III.2.
    .. [4] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
           sparse Jacobian matrices", Journal of the Institute of Mathematics
           and its Applications, 13, pp. 117-120, 1974.
    """
    def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
                 rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
                 vectorized=False, first_step=None, **extraneous):
        warn_extraneous(extraneous)
        super(BDF, self).__init__(fun, t0, y0, t_bound, vectorized,
                                  support_complex=True)
        self.max_step = validate_max_step(max_step)
        self.rtol, self.atol = validate_tol(rtol, atol, self.n)
        f = self.fun(self.t, self.y)
        if first_step is None:
            self.h_abs = select_initial_step(self.fun, self.t, self.y, f,
                                             self.direction, 1,
                                             self.rtol, self.atol)
        else:
            self.h_abs = validate_first_step(first_step, t0, t_bound)
        self.h_abs_old = None
        self.error_norm_old = None

        self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))

        self.jac_factor = None
        self.jac, self.J = self._validate_jac(jac, jac_sparsity)
        if issparse(self.J):
            def lu(A):
                self.nlu += 1
                return splu(A)

            def solve_lu(LU, b):
                return LU.solve(b)

            I = eye(self.n, format='csc', dtype=self.y.dtype)
        else:
            def lu(A):
                self.nlu += 1
                return lu_factor(A, overwrite_a=True)

            def solve_lu(LU, b):
                return lu_solve(LU, b, overwrite_b=True)

            I = np.identity(self.n, dtype=self.y.dtype)

        self.lu = lu
        self.solve_lu = solve_lu
        self.I = I

        kappa = np.array([0, -0.1850, -1/9, -0.0823, -0.0415, 0])
        self.gamma = np.hstack((0, np.cumsum(1 / np.arange(1, MAX_ORDER + 1))))
        self.alpha = (1 - kappa) * self.gamma
        self.error_const = kappa * self.gamma + 1 / np.arange(1, MAX_ORDER + 2)

        D = np.empty((MAX_ORDER + 3, self.n), dtype=self.y.dtype)
        D[0] = self.y
        D[1] = f * self.h_abs * self.direction
        self.D = D

        self.order = 1
        self.n_equal_steps = 0
        self.LU = None

    def _validate_jac(self, jac, sparsity):
        t0 = self.t
        y0 = self.y

        if jac is None:
            if sparsity is not None:
                if issparse(sparsity):
                    sparsity = csc_matrix(sparsity)
                groups = group_columns(sparsity)
                sparsity = (sparsity, groups)

            def jac_wrapped(t, y):
                self.njev += 1
                f = self.fun_single(t, y)
                J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
                                             self.atol, self.jac_factor,
                                             sparsity)
                return J
            J = jac_wrapped(t0, y0)
        elif callable(jac):
            J = jac(t0, y0)
            self.njev += 1
            if issparse(J):
                J = csc_matrix(J, dtype=y0.dtype)

                def jac_wrapped(t, y):
                    self.njev += 1
                    return csc_matrix(jac(t, y), dtype=y0.dtype)
            else:
                J = np.asarray(J, dtype=y0.dtype)

                def jac_wrapped(t, y):
                    self.njev += 1
                    return np.asarray(jac(t, y), dtype=y0.dtype)

            if J.shape != (self.n, self.n):
                raise ValueError("`jac` is expected to have shape {}, but "
                                 "actually has {}."
                                 .format((self.n, self.n), J.shape))
        else:
            if issparse(jac):
                J = csc_matrix(jac, dtype=y0.dtype)
            else:
                J = np.asarray(jac, dtype=y0.dtype)

            if J.shape != (self.n, self.n):
                raise ValueError("`jac` is expected to have shape {}, but "
                                 "actually has {}."
                                 .format((self.n, self.n), J.shape))
            jac_wrapped = None

        return jac_wrapped, J

    def _step_impl(self):
        t = self.t
        D = self.D

        max_step = self.max_step
        min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
        if self.h_abs > max_step:
            h_abs = max_step
            change_D(D, self.order, max_step / self.h_abs)
            self.n_equal_steps = 0
        elif self.h_abs < min_step:
            h_abs = min_step
            change_D(D, self.order, min_step / self.h_abs)
            self.n_equal_steps = 0
        else:
            h_abs = self.h_abs

        atol = self.atol
        rtol = self.rtol
        order = self.order

        alpha = self.alpha
        gamma = self.gamma
        error_const = self.error_const

        J = self.J
        LU = self.LU
        current_jac = self.jac is None

        step_accepted = False
        while not step_accepted:
            if h_abs < min_step:
                return False, self.TOO_SMALL_STEP

            h = h_abs * self.direction
            t_new = t + h

            if self.direction * (t_new - self.t_bound) > 0:
                t_new = self.t_bound
                change_D(D, order, np.abs(t_new - t) / h_abs)
                self.n_equal_steps = 0
                LU = None

            h = t_new - t
            h_abs = np.abs(h)

            y_predict = np.sum(D[:order + 1], axis=0)

            scale = atol + rtol * np.abs(y_predict)
            psi = np.dot(D[1: order + 1].T, gamma[1: order + 1]) / alpha[order]

            converged = False
            c = h / alpha[order]
            while not converged:
                if LU is None:
                    LU = self.lu(self.I - c * J)

                converged, n_iter, y_new, d = solve_bdf_system(
                    self.fun, t_new, y_predict, c, psi, LU, self.solve_lu,
                    scale, self.newton_tol)

                if not converged:
                    if current_jac:
                        break
                    J = self.jac(t_new, y_predict)
                    LU = None
                    current_jac = True

            if not converged:
                factor = 0.5
                h_abs *= factor
                change_D(D, order, factor)
                self.n_equal_steps = 0
                LU = None
                continue

            safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
                                                       + n_iter)

            scale = atol + rtol * np.abs(y_new)
            error = error_const[order] * d
            error_norm = norm(error / scale)

            if error_norm > 1:
                factor = max(MIN_FACTOR,
                             safety * error_norm ** (-1 / (order + 1)))
                h_abs *= factor
                change_D(D, order, factor)
                self.n_equal_steps = 0
                # As we didn't have problems with convergence, we don't
                # reset LU here.
            else:
                step_accepted = True

        self.n_equal_steps += 1

        self.t = t_new
        self.y = y_new

        self.h_abs = h_abs
        self.J = J
        self.LU = LU

        # Update differences. The principal relation here is
        # D^{j + 1} y_n = D^{j} y_n - D^{j} y_{n - 1}. Keep in mind that D
        # contained difference for previous interpolating polynomial and
        # d = D^{k + 1} y_n. Thus this elegant code follows.
        D[order + 2] = d - D[order + 1]
        D[order + 1] = d
        for i in reversed(range(order + 1)):
            D[i] += D[i + 1]

        if self.n_equal_steps < order + 1:
            return True, None

        if order > 1:
            error_m = error_const[order - 1] * D[order]
            error_m_norm = norm(error_m / scale)
        else:
            error_m_norm = np.inf

        if order < MAX_ORDER:
            error_p = error_const[order + 1] * D[order + 2]
            error_p_norm = norm(error_p / scale)
        else:
            error_p_norm = np.inf

        error_norms = np.array([error_m_norm, error_norm, error_p_norm])
        with np.errstate(divide='ignore'):
            factors = error_norms ** (-1 / np.arange(order, order + 3))

        delta_order = np.argmax(factors) - 1
        order += delta_order
        self.order = order

        factor = min(MAX_FACTOR, safety * np.max(factors))
        self.h_abs *= factor
        change_D(D, order, factor)
        self.n_equal_steps = 0
        self.LU = None

        return True, None

    def _dense_output_impl(self):
        return BdfDenseOutput(self.t_old, self.t, self.h_abs * self.direction,
                              self.order, self.D[:self.order + 1].copy())


class BdfDenseOutput(DenseOutput):
    def __init__(self, t_old, t, h, order, D):
        super(BdfDenseOutput, self).__init__(t_old, t)
        self.order = order
        self.t_shift = self.t - h * np.arange(self.order)
        self.denom = h * (1 + np.arange(self.order))
        self.D = D

    def _call_impl(self, t):
        if t.ndim == 0:
            x = (t - self.t_shift) / self.denom
            p = np.cumprod(x)
        else:
            x = (t - self.t_shift[:, None]) / self.denom[:, None]
            p = np.cumprod(x, axis=0)

        y = np.dot(self.D[1:].T, p)
        if y.ndim == 1:
            y += self.D[0]
        else:
            y += self.D[0, :, None]

        return y