realtransforms.py
18.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
"""
Real spectrum transforms (DCT, DST, MDCT)
"""
__all__ = ['dct', 'idct', 'dst', 'idst', 'dctn', 'idctn', 'dstn', 'idstn']
from scipy.fft import _pocketfft
from .helper import _good_shape
_inverse_typemap = {1: 1, 2: 3, 3: 2, 4: 4}
def dctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
"""
Return multidimensional Discrete Cosine Transform along the specified axes.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DCT (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
The shape of the result. If both `shape` and `axes` (see below) are
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
length ``shape[i]``.
If any element of `shape` is -1, the size of the corresponding
dimension of `x` is used.
axes : int or array_like of ints or None, optional
Axes along which the DCT is computed.
The default is over all axes.
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
idctn : Inverse multidimensional DCT
Notes
-----
For full details of the DCT types and normalization modes, as well as
references, see `dct`.
Examples
--------
>>> from scipy.fftpack import dctn, idctn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True
"""
shape = _good_shape(x, shape, axes)
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
def idctn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
"""
Return multidimensional Discrete Cosine Transform along the specified axes.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DCT (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
The shape of the result. If both `shape` and `axes` (see below) are
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
length ``shape[i]``.
If any element of `shape` is -1, the size of the corresponding
dimension of `x` is used.
axes : int or array_like of ints or None, optional
Axes along which the IDCT is computed.
The default is over all axes.
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
dctn : multidimensional DCT
Notes
-----
For full details of the IDCT types and normalization modes, as well as
references, see `idct`.
Examples
--------
>>> from scipy.fftpack import dctn, idctn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idctn(dctn(y, norm='ortho'), norm='ortho'))
True
"""
type = _inverse_typemap[type]
shape = _good_shape(x, shape, axes)
return _pocketfft.dctn(x, type, shape, axes, norm, overwrite_x)
def dstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
"""
Return multidimensional Discrete Sine Transform along the specified axes.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
The shape of the result. If both `shape` and `axes` (see below) are
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
length ``shape[i]``.
If any element of `shape` is -1, the size of the corresponding
dimension of `x` is used.
axes : int or array_like of ints or None, optional
Axes along which the DCT is computed.
The default is over all axes.
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
idstn : Inverse multidimensional DST
Notes
-----
For full details of the DST types and normalization modes, as well as
references, see `dst`.
Examples
--------
>>> from scipy.fftpack import dstn, idstn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True
"""
shape = _good_shape(x, shape, axes)
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
def idstn(x, type=2, shape=None, axes=None, norm=None, overwrite_x=False):
"""
Return multidimensional Discrete Sine Transform along the specified axes.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
shape : int or array_like of ints or None, optional
The shape of the result. If both `shape` and `axes` (see below) are
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
length ``shape[i]``.
If any element of `shape` is -1, the size of the corresponding
dimension of `x` is used.
axes : int or array_like of ints or None, optional
Axes along which the IDST is computed.
The default is over all axes.
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
dstn : multidimensional DST
Notes
-----
For full details of the IDST types and normalization modes, as well as
references, see `idst`.
Examples
--------
>>> from scipy.fftpack import dstn, idstn
>>> y = np.random.randn(16, 16)
>>> np.allclose(y, idstn(dstn(y, norm='ortho'), norm='ortho'))
True
"""
type = _inverse_typemap[type]
shape = _good_shape(x, shape, axes)
return _pocketfft.dstn(x, type, shape, axes, norm, overwrite_x)
def dct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
r"""
Return the Discrete Cosine Transform of arbitrary type sequence x.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the dct is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
y : ndarray of real
The transformed input array.
See Also
--------
idct : Inverse DCT
Notes
-----
For a single dimension array ``x``, ``dct(x, norm='ortho')`` is equal to
MATLAB ``dct(x)``.
There are, theoretically, 8 types of the DCT, only the first 4 types are
implemented in scipy. 'The' DCT generally refers to DCT type 2, and 'the'
Inverse DCT generally refers to DCT type 3.
**Type I**
There are several definitions of the DCT-I; we use the following
(for ``norm=None``)
.. math::
y_k = x_0 + (-1)^k x_{N-1} + 2 \sum_{n=1}^{N-2} x_n \cos\left(
\frac{\pi k n}{N-1} \right)
If ``norm='ortho'``, ``x[0]`` and ``x[N-1]`` are multiplied by a scaling
factor of :math:`\sqrt{2}`, and ``y[k]`` is multiplied by a scaling factor
``f``
.. math::
f = \begin{cases}
\frac{1}{2}\sqrt{\frac{1}{N-1}} & \text{if }k=0\text{ or }N-1, \\
\frac{1}{2}\sqrt{\frac{2}{N-1}} & \text{otherwise} \end{cases}
.. versionadded:: 1.2.0
Orthonormalization in DCT-I.
.. note::
The DCT-I is only supported for input size > 1.
**Type II**
There are several definitions of the DCT-II; we use the following
(for ``norm=None``)
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi k(2n+1)}{2N} \right)
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
.. math::
f = \begin{cases}
\sqrt{\frac{1}{4N}} & \text{if }k=0, \\
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
which makes the corresponding matrix of coefficients orthonormal
(``O @ O.T = np.eye(N)``).
**Type III**
There are several definitions, we use the following (for ``norm=None``)
.. math::
y_k = x_0 + 2 \sum_{n=1}^{N-1} x_n \cos\left(\frac{\pi(2k+1)n}{2N}\right)
or, for ``norm='ortho'``
.. math::
y_k = \frac{x_0}{\sqrt{N}} + \sqrt{\frac{2}{N}} \sum_{n=1}^{N-1} x_n
\cos\left(\frac{\pi(2k+1)n}{2N}\right)
The (unnormalized) DCT-III is the inverse of the (unnormalized) DCT-II, up
to a factor `2N`. The orthonormalized DCT-III is exactly the inverse of
the orthonormalized DCT-II.
**Type IV**
There are several definitions of the DCT-IV; we use the following
(for ``norm=None``)
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \cos\left(\frac{\pi(2k+1)(2n+1)}{4N} \right)
If ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
.. math::
f = \frac{1}{\sqrt{2N}}
.. versionadded:: 1.2.0
Support for DCT-IV.
References
----------
.. [1] 'A Fast Cosine Transform in One and Two Dimensions', by J.
Makhoul, `IEEE Transactions on acoustics, speech and signal
processing` vol. 28(1), pp. 27-34,
:doi:`10.1109/TASSP.1980.1163351` (1980).
.. [2] Wikipedia, "Discrete cosine transform",
https://en.wikipedia.org/wiki/Discrete_cosine_transform
Examples
--------
The Type 1 DCT is equivalent to the FFT (though faster) for real,
even-symmetrical inputs. The output is also real and even-symmetrical.
Half of the FFT input is used to generate half of the FFT output:
>>> from scipy.fftpack import fft, dct
>>> fft(np.array([4., 3., 5., 10., 5., 3.])).real
array([ 30., -8., 6., -2., 6., -8.])
>>> dct(np.array([4., 3., 5., 10.]), 1)
array([ 30., -8., 6., -2.])
"""
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
def idct(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
"""
Return the Inverse Discrete Cosine Transform of an arbitrary type sequence.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DCT (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the idct is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
idct : ndarray of real
The transformed input array.
See Also
--------
dct : Forward DCT
Notes
-----
For a single dimension array `x`, ``idct(x, norm='ortho')`` is equal to
MATLAB ``idct(x)``.
'The' IDCT is the IDCT of type 2, which is the same as DCT of type 3.
IDCT of type 1 is the DCT of type 1, IDCT of type 2 is the DCT of type
3, and IDCT of type 3 is the DCT of type 2. IDCT of type 4 is the DCT
of type 4. For the definition of these types, see `dct`.
Examples
--------
The Type 1 DCT is equivalent to the DFT for real, even-symmetrical
inputs. The output is also real and even-symmetrical. Half of the IFFT
input is used to generate half of the IFFT output:
>>> from scipy.fftpack import ifft, idct
>>> ifft(np.array([ 30., -8., 6., -2., 6., -8.])).real
array([ 4., 3., 5., 10., 5., 3.])
>>> idct(np.array([ 30., -8., 6., -2.]), 1) / 6
array([ 4., 3., 5., 10.])
"""
type = _inverse_typemap[type]
return _pocketfft.dct(x, type, n, axis, norm, overwrite_x)
def dst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
r"""
Return the Discrete Sine Transform of arbitrary type sequence x.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the dst is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
dst : ndarray of reals
The transformed input array.
See Also
--------
idst : Inverse DST
Notes
-----
For a single dimension array ``x``.
There are, theoretically, 8 types of the DST for different combinations of
even/odd boundary conditions and boundary off sets [1]_, only the first
4 types are implemented in scipy.
**Type I**
There are several definitions of the DST-I; we use the following
for ``norm=None``. DST-I assumes the input is odd around `n=-1` and `n=N`.
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(n+1)}{N+1}\right)
Note that the DST-I is only supported for input size > 1.
The (unnormalized) DST-I is its own inverse, up to a factor `2(N+1)`.
The orthonormalized DST-I is exactly its own inverse.
**Type II**
There are several definitions of the DST-II; we use the following for
``norm=None``. DST-II assumes the input is odd around `n=-1/2` and
`n=N-1/2`; the output is odd around :math:`k=-1` and even around `k=N-1`
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(k+1)(2n+1)}{2N}\right)
if ``norm='ortho'``, ``y[k]`` is multiplied by a scaling factor ``f``
.. math::
f = \begin{cases}
\sqrt{\frac{1}{4N}} & \text{if }k = 0, \\
\sqrt{\frac{1}{2N}} & \text{otherwise} \end{cases}
**Type III**
There are several definitions of the DST-III, we use the following (for
``norm=None``). DST-III assumes the input is odd around `n=-1` and even
around `n=N-1`
.. math::
y_k = (-1)^k x_{N-1} + 2 \sum_{n=0}^{N-2} x_n \sin\left(
\frac{\pi(2k+1)(n+1)}{2N}\right)
The (unnormalized) DST-III is the inverse of the (unnormalized) DST-II, up
to a factor `2N`. The orthonormalized DST-III is exactly the inverse of the
orthonormalized DST-II.
.. versionadded:: 0.11.0
**Type IV**
There are several definitions of the DST-IV, we use the following (for
``norm=None``). DST-IV assumes the input is odd around `n=-0.5` and even
around `n=N-0.5`
.. math::
y_k = 2 \sum_{n=0}^{N-1} x_n \sin\left(\frac{\pi(2k+1)(2n+1)}{4N}\right)
The (unnormalized) DST-IV is its own inverse, up to a factor `2N`. The
orthonormalized DST-IV is exactly its own inverse.
.. versionadded:: 1.2.0
Support for DST-IV.
References
----------
.. [1] Wikipedia, "Discrete sine transform",
https://en.wikipedia.org/wiki/Discrete_sine_transform
"""
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)
def idst(x, type=2, n=None, axis=-1, norm=None, overwrite_x=False):
"""
Return the Inverse Discrete Sine Transform of an arbitrary type sequence.
Parameters
----------
x : array_like
The input array.
type : {1, 2, 3, 4}, optional
Type of the DST (see Notes). Default type is 2.
n : int, optional
Length of the transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the idst is computed; the default is over the
last axis (i.e., ``axis=-1``).
norm : {None, 'ortho'}, optional
Normalization mode (see Notes). Default is None.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
idst : ndarray of real
The transformed input array.
See Also
--------
dst : Forward DST
Notes
-----
'The' IDST is the IDST of type 2, which is the same as DST of type 3.
IDST of type 1 is the DST of type 1, IDST of type 2 is the DST of type
3, and IDST of type 3 is the DST of type 2. For the definition of these
types, see `dst`.
.. versionadded:: 0.11.0
"""
type = _inverse_typemap[type]
return _pocketfft.dst(x, type, n, axis, norm, overwrite_x)