test_vq.py
12.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import warnings
import sys
import numpy as np
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
assert_allclose, assert_equal, assert_,
suppress_warnings)
import pytest
from pytest import raises as assert_raises
from scipy.cluster.vq import (kmeans, kmeans2, py_vq, vq, whiten,
ClusterError, _krandinit)
from scipy.cluster import _vq
from scipy.sparse.sputils import matrix
TESTDATA_2D = np.array([
-2.2, 1.17, -1.63, 1.69, -2.04, 4.38, -3.09, 0.95, -1.7, 4.79, -1.68, 0.68,
-2.26, 3.34, -2.29, 2.55, -1.72, -0.72, -1.99, 2.34, -2.75, 3.43, -2.45,
2.41, -4.26, 3.65, -1.57, 1.87, -1.96, 4.03, -3.01, 3.86, -2.53, 1.28,
-4.0, 3.95, -1.62, 1.25, -3.42, 3.17, -1.17, 0.12, -3.03, -0.27, -2.07,
-0.55, -1.17, 1.34, -2.82, 3.08, -2.44, 0.24, -1.71, 2.48, -5.23, 4.29,
-2.08, 3.69, -1.89, 3.62, -2.09, 0.26, -0.92, 1.07, -2.25, 0.88, -2.25,
2.02, -4.31, 3.86, -2.03, 3.42, -2.76, 0.3, -2.48, -0.29, -3.42, 3.21,
-2.3, 1.73, -2.84, 0.69, -1.81, 2.48, -5.24, 4.52, -2.8, 1.31, -1.67,
-2.34, -1.18, 2.17, -2.17, 2.82, -1.85, 2.25, -2.45, 1.86, -6.79, 3.94,
-2.33, 1.89, -1.55, 2.08, -1.36, 0.93, -2.51, 2.74, -2.39, 3.92, -3.33,
2.99, -2.06, -0.9, -2.83, 3.35, -2.59, 3.05, -2.36, 1.85, -1.69, 1.8,
-1.39, 0.66, -2.06, 0.38, -1.47, 0.44, -4.68, 3.77, -5.58, 3.44, -2.29,
2.24, -1.04, -0.38, -1.85, 4.23, -2.88, 0.73, -2.59, 1.39, -1.34, 1.75,
-1.95, 1.3, -2.45, 3.09, -1.99, 3.41, -5.55, 5.21, -1.73, 2.52, -2.17,
0.85, -2.06, 0.49, -2.54, 2.07, -2.03, 1.3, -3.23, 3.09, -1.55, 1.44,
-0.81, 1.1, -2.99, 2.92, -1.59, 2.18, -2.45, -0.73, -3.12, -1.3, -2.83,
0.2, -2.77, 3.24, -1.98, 1.6, -4.59, 3.39, -4.85, 3.75, -2.25, 1.71, -3.28,
3.38, -1.74, 0.88, -2.41, 1.92, -2.24, 1.19, -2.48, 1.06, -1.68, -0.62,
-1.3, 0.39, -1.78, 2.35, -3.54, 2.44, -1.32, 0.66, -2.38, 2.76, -2.35,
3.95, -1.86, 4.32, -2.01, -1.23, -1.79, 2.76, -2.13, -0.13, -5.25, 3.84,
-2.24, 1.59, -4.85, 2.96, -2.41, 0.01, -0.43, 0.13, -3.92, 2.91, -1.75,
-0.53, -1.69, 1.69, -1.09, 0.15, -2.11, 2.17, -1.53, 1.22, -2.1, -0.86,
-2.56, 2.28, -3.02, 3.33, -1.12, 3.86, -2.18, -1.19, -3.03, 0.79, -0.83,
0.97, -3.19, 1.45, -1.34, 1.28, -2.52, 4.22, -4.53, 3.22, -1.97, 1.75,
-2.36, 3.19, -0.83, 1.53, -1.59, 1.86, -2.17, 2.3, -1.63, 2.71, -2.03,
3.75, -2.57, -0.6, -1.47, 1.33, -1.95, 0.7, -1.65, 1.27, -1.42, 1.09, -3.0,
3.87, -2.51, 3.06, -2.6, 0.74, -1.08, -0.03, -2.44, 1.31, -2.65, 2.99,
-1.84, 1.65, -4.76, 3.75, -2.07, 3.98, -2.4, 2.67, -2.21, 1.49, -1.21,
1.22, -5.29, 2.38, -2.85, 2.28, -5.6, 3.78, -2.7, 0.8, -1.81, 3.5, -3.75,
4.17, -1.29, 2.99, -5.92, 3.43, -1.83, 1.23, -1.24, -1.04, -2.56, 2.37,
-3.26, 0.39, -4.63, 2.51, -4.52, 3.04, -1.7, 0.36, -1.41, 0.04, -2.1, 1.0,
-1.87, 3.78, -4.32, 3.59, -2.24, 1.38, -1.99, -0.22, -1.87, 1.95, -0.84,
2.17, -5.38, 3.56, -1.27, 2.9, -1.79, 3.31, -5.47, 3.85, -1.44, 3.69,
-2.02, 0.37, -1.29, 0.33, -2.34, 2.56, -1.74, -1.27, -1.97, 1.22, -2.51,
-0.16, -1.64, -0.96, -2.99, 1.4, -1.53, 3.31, -2.24, 0.45, -2.46, 1.71,
-2.88, 1.56, -1.63, 1.46, -1.41, 0.68, -1.96, 2.76, -1.61,
2.11]).reshape((200, 2))
# Global data
X = np.array([[3.0, 3], [4, 3], [4, 2],
[9, 2], [5, 1], [6, 2], [9, 4],
[5, 2], [5, 4], [7, 4], [6, 5]])
CODET1 = np.array([[3.0000, 3.0000],
[6.2000, 4.0000],
[5.8000, 1.8000]])
CODET2 = np.array([[11.0/3, 8.0/3],
[6.7500, 4.2500],
[6.2500, 1.7500]])
LABEL1 = np.array([0, 1, 2, 2, 2, 2, 1, 2, 1, 1, 1])
class TestWhiten(object):
def test_whiten(self):
desired = np.array([[5.08738849, 2.97091878],
[3.19909255, 0.69660580],
[4.51041982, 0.02640918],
[4.38567074, 0.95120889],
[2.32191480, 1.63195503]])
for tp in np.array, matrix:
obs = tp([[0.98744510, 0.82766775],
[0.62093317, 0.19406729],
[0.87545741, 0.00735733],
[0.85124403, 0.26499712],
[0.45067590, 0.45464607]])
assert_allclose(whiten(obs), desired, rtol=1e-5)
def test_whiten_zero_std(self):
desired = np.array([[0., 1.0, 2.86666544],
[0., 1.0, 1.32460034],
[0., 1.0, 3.74382172]])
for tp in np.array, matrix:
obs = tp([[0., 1., 0.74109533],
[0., 1., 0.34243798],
[0., 1., 0.96785929]])
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter('always')
assert_allclose(whiten(obs), desired, rtol=1e-5)
assert_equal(len(w), 1)
assert_(issubclass(w[-1].category, RuntimeWarning))
def test_whiten_not_finite(self):
for tp in np.array, matrix:
for bad_value in np.nan, np.inf, -np.inf:
obs = tp([[0.98744510, bad_value],
[0.62093317, 0.19406729],
[0.87545741, 0.00735733],
[0.85124403, 0.26499712],
[0.45067590, 0.45464607]])
assert_raises(ValueError, whiten, obs)
class TestVq(object):
def test_py_vq(self):
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
for tp in np.array, matrix:
label1 = py_vq(tp(X), tp(initc))[0]
assert_array_equal(label1, LABEL1)
def test_vq(self):
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
for tp in np.array, matrix:
label1, dist = _vq.vq(tp(X), tp(initc))
assert_array_equal(label1, LABEL1)
tlabel1, tdist = vq(tp(X), tp(initc))
def test_vq_1d(self):
# Test special rank 1 vq algo, python implementation.
data = X[:, 0]
initc = data[:3]
a, b = _vq.vq(data, initc)
ta, tb = py_vq(data[:, np.newaxis], initc[:, np.newaxis])
assert_array_equal(a, ta)
assert_array_equal(b, tb)
def test__vq_sametype(self):
a = np.array([1.0, 2.0], dtype=np.float64)
b = a.astype(np.float32)
assert_raises(TypeError, _vq.vq, a, b)
def test__vq_invalid_type(self):
a = np.array([1, 2], dtype=int)
assert_raises(TypeError, _vq.vq, a, a)
def test_vq_large_nfeat(self):
X = np.random.rand(20, 20)
code_book = np.random.rand(3, 20)
codes0, dis0 = _vq.vq(X, code_book)
codes1, dis1 = py_vq(X, code_book)
assert_allclose(dis0, dis1, 1e-5)
assert_array_equal(codes0, codes1)
X = X.astype(np.float32)
code_book = code_book.astype(np.float32)
codes0, dis0 = _vq.vq(X, code_book)
codes1, dis1 = py_vq(X, code_book)
assert_allclose(dis0, dis1, 1e-5)
assert_array_equal(codes0, codes1)
def test_vq_large_features(self):
X = np.random.rand(10, 5) * 1000000
code_book = np.random.rand(2, 5) * 1000000
codes0, dis0 = _vq.vq(X, code_book)
codes1, dis1 = py_vq(X, code_book)
assert_allclose(dis0, dis1, 1e-5)
assert_array_equal(codes0, codes1)
class TestKMean(object):
def test_large_features(self):
# Generate a data set with large values, and run kmeans on it to
# (regression for 1077).
d = 300
n = 100
m1 = np.random.randn(d)
m2 = np.random.randn(d)
x = 10000 * np.random.randn(n, d) - 20000 * m1
y = 10000 * np.random.randn(n, d) + 20000 * m2
data = np.empty((x.shape[0] + y.shape[0], d), np.double)
data[:x.shape[0]] = x
data[x.shape[0]:] = y
kmeans(data, 2)
def test_kmeans_simple(self):
np.random.seed(54321)
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
for tp in np.array, matrix:
code1 = kmeans(tp(X), tp(initc), iter=1)[0]
assert_array_almost_equal(code1, CODET2)
def test_kmeans_lost_cluster(self):
# This will cause kmeans to have a cluster with no points.
data = TESTDATA_2D
initk = np.array([[-1.8127404, -0.67128041],
[2.04621601, 0.07401111],
[-2.31149087, -0.05160469]])
kmeans(data, initk)
with suppress_warnings() as sup:
sup.filter(UserWarning,
"One of the clusters is empty. Re-run kmeans with a "
"different initialization")
kmeans2(data, initk, missing='warn')
assert_raises(ClusterError, kmeans2, data, initk, missing='raise')
def test_kmeans2_simple(self):
np.random.seed(12345678)
initc = np.concatenate(([[X[0]], [X[1]], [X[2]]]))
for tp in np.array, matrix:
code1 = kmeans2(tp(X), tp(initc), iter=1)[0]
code2 = kmeans2(tp(X), tp(initc), iter=2)[0]
assert_array_almost_equal(code1, CODET1)
assert_array_almost_equal(code2, CODET2)
def test_kmeans2_rank1(self):
data = TESTDATA_2D
data1 = data[:, 0]
initc = data1[:3]
code = initc.copy()
kmeans2(data1, code, iter=1)[0]
kmeans2(data1, code, iter=2)[0]
def test_kmeans2_rank1_2(self):
data = TESTDATA_2D
data1 = data[:, 0]
kmeans2(data1, 2, iter=1)
def test_kmeans2_high_dim(self):
# test kmeans2 when the number of dimensions exceeds the number
# of input points
data = TESTDATA_2D
data = data.reshape((20, 20))[:10]
kmeans2(data, 2)
def test_kmeans2_init(self):
np.random.seed(12345)
data = TESTDATA_2D
kmeans2(data, 3, minit='points')
kmeans2(data[:, :1], 3, minit='points') # special case (1-D)
kmeans2(data, 3, minit='++')
kmeans2(data[:, :1], 3, minit='++') # special case (1-D)
# minit='random' can give warnings, filter those
with suppress_warnings() as sup:
sup.filter(message="One of the clusters is empty. Re-run.")
kmeans2(data, 3, minit='random')
kmeans2(data[:, :1], 3, minit='random') # special case (1-D)
@pytest.mark.skipif(sys.platform == 'win32',
reason='Fails with MemoryError in Wine.')
def test_krandinit(self):
data = TESTDATA_2D
datas = [data.reshape((200, 2)), data.reshape((20, 20))[:10]]
k = int(1e6)
for data in datas:
np.random.seed(1234)
init = _krandinit(data, k)
orig_cov = np.cov(data, rowvar=0)
init_cov = np.cov(init, rowvar=0)
assert_allclose(orig_cov, init_cov, atol=1e-2)
def test_kmeans2_empty(self):
# Regression test for gh-1032.
assert_raises(ValueError, kmeans2, [], 2)
def test_kmeans_0k(self):
# Regression test for gh-1073: fail when k arg is 0.
assert_raises(ValueError, kmeans, X, 0)
assert_raises(ValueError, kmeans2, X, 0)
assert_raises(ValueError, kmeans2, X, np.array([]))
def test_kmeans_large_thres(self):
# Regression test for gh-1774
x = np.array([1, 2, 3, 4, 10], dtype=float)
res = kmeans(x, 1, thresh=1e16)
assert_allclose(res[0], np.array([4.]))
assert_allclose(res[1], 2.3999999999999999)
def test_kmeans2_kpp_low_dim(self):
# Regression test for gh-11462
prev_res = np.array([[-1.95266667, 0.898],
[-3.153375, 3.3945]])
np.random.seed(42)
res, _ = kmeans2(TESTDATA_2D, 2, minit='++')
assert_allclose(res, prev_res)
def test_kmeans2_kpp_high_dim(self):
# Regression test for gh-11462
n_dim = 100
size = 10
centers = np.vstack([5 * np.ones(n_dim),
-5 * np.ones(n_dim)])
np.random.seed(42)
data = np.vstack([
np.random.multivariate_normal(centers[0], np.eye(n_dim), size=size),
np.random.multivariate_normal(centers[1], np.eye(n_dim), size=size)
])
res, _ = kmeans2(data, 2, minit='++')
assert_array_almost_equal(res, centers, decimal=0)