polyutils.py 22.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
"""
Utility classes and functions for the polynomial modules.

This module provides: error and warning objects; a polynomial base class;
and some routines used in both the `polynomial` and `chebyshev` modules.

Error objects
-------------

.. autosummary::
   :toctree: generated/

   PolyError            base class for this sub-package's errors.
   PolyDomainError      raised when domains are mismatched.

Warning objects
---------------

.. autosummary::
   :toctree: generated/

   RankWarning  raised in least-squares fit for rank-deficient matrix.

Base class
----------

.. autosummary::
   :toctree: generated/

   PolyBase Obsolete base class for the polynomial classes. Do not use.

Functions
---------

.. autosummary::
   :toctree: generated/

   as_series    convert list of array_likes into 1-D arrays of common type.
   trimseq      remove trailing zeros.
   trimcoef     remove small trailing coefficients.
   getdomain    return the domain appropriate for a given set of abscissae.
   mapdomain    maps points between domains.
   mapparms     parameters of the linear map between domains.

"""
import operator
import functools
import warnings

import numpy as np

__all__ = [
    'RankWarning', 'PolyError', 'PolyDomainError', 'as_series', 'trimseq',
    'trimcoef', 'getdomain', 'mapdomain', 'mapparms', 'PolyBase']

#
# Warnings and Exceptions
#

class RankWarning(UserWarning):
    """Issued by chebfit when the design matrix is rank deficient."""
    pass

class PolyError(Exception):
    """Base class for errors in this module."""
    pass

class PolyDomainError(PolyError):
    """Issued by the generic Poly class when two domains don't match.

    This is raised when an binary operation is passed Poly objects with
    different domains.

    """
    pass

#
# Base class for all polynomial types
#

class PolyBase:
    """
    Base class for all polynomial types.

    Deprecated in numpy 1.9.0, use the abstract
    ABCPolyBase class instead. Note that the latter
    requires a number of virtual functions to be
    implemented.

    """
    pass

#
# Helper functions to convert inputs to 1-D arrays
#
def trimseq(seq):
    """Remove small Poly series coefficients.

    Parameters
    ----------
    seq : sequence
        Sequence of Poly series coefficients. This routine fails for
        empty sequences.

    Returns
    -------
    series : sequence
        Subsequence with trailing zeros removed. If the resulting sequence
        would be empty, return the first element. The returned sequence may
        or may not be a view.

    Notes
    -----
    Do not lose the type info if the sequence contains unknown objects.

    """
    if len(seq) == 0:
        return seq
    else:
        for i in range(len(seq) - 1, -1, -1):
            if seq[i] != 0:
                break
        return seq[:i+1]


def as_series(alist, trim=True):
    """
    Return argument as a list of 1-d arrays.

    The returned list contains array(s) of dtype double, complex double, or
    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of
    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays
    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array
    raises a Value Error if it is not first reshaped into either a 1-d or 2-d
    array.

    Parameters
    ----------
    alist : array_like
        A 1- or 2-d array_like
    trim : boolean, optional
        When True, trailing zeros are removed from the inputs.
        When False, the inputs are passed through intact.

    Returns
    -------
    [a1, a2,...] : list of 1-D arrays
        A copy of the input data as a list of 1-d arrays.

    Raises
    ------
    ValueError
        Raised when `as_series` cannot convert its input to 1-d arrays, or at
        least one of the resulting arrays is empty.

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> a = np.arange(4)
    >>> pu.as_series(a)
    [array([0.]), array([1.]), array([2.]), array([3.])]
    >>> b = np.arange(6).reshape((2,3))
    >>> pu.as_series(b)
    [array([0., 1., 2.]), array([3., 4., 5.])]

    >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))
    [array([1.]), array([0., 1., 2.]), array([0., 1.])]

    >>> pu.as_series([2, [1.1, 0.]])
    [array([2.]), array([1.1])]

    >>> pu.as_series([2, [1.1, 0.]], trim=False)
    [array([2.]), array([1.1, 0. ])]

    """
    arrays = [np.array(a, ndmin=1, copy=False) for a in alist]
    if min([a.size for a in arrays]) == 0:
        raise ValueError("Coefficient array is empty")
    if any([a.ndim != 1 for a in arrays]):
        raise ValueError("Coefficient array is not 1-d")
    if trim:
        arrays = [trimseq(a) for a in arrays]

    if any([a.dtype == np.dtype(object) for a in arrays]):
        ret = []
        for a in arrays:
            if a.dtype != np.dtype(object):
                tmp = np.empty(len(a), dtype=np.dtype(object))
                tmp[:] = a[:]
                ret.append(tmp)
            else:
                ret.append(a.copy())
    else:
        try:
            dtype = np.common_type(*arrays)
        except Exception as e:
            raise ValueError("Coefficient arrays have no common type") from e
        ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
    return ret


def trimcoef(c, tol=0):
    """
    Remove "small" "trailing" coefficients from a polynomial.

    "Small" means "small in absolute value" and is controlled by the
    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in
    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)
    both the 3-rd and 4-th order coefficients would be "trimmed."

    Parameters
    ----------
    c : array_like
        1-d array of coefficients, ordered from lowest order to highest.
    tol : number, optional
        Trailing (i.e., highest order) elements with absolute value less
        than or equal to `tol` (default value is zero) are removed.

    Returns
    -------
    trimmed : ndarray
        1-d array with trailing zeros removed.  If the resulting series
        would be empty, a series containing a single zero is returned.

    Raises
    ------
    ValueError
        If `tol` < 0

    See Also
    --------
    trimseq

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> pu.trimcoef((0,0,3,0,5,0,0))
    array([0.,  0.,  3.,  0.,  5.])
    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed
    array([0.])
    >>> i = complex(0,1) # works for complex
    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)
    array([0.0003+0.j   , 0.001 -0.001j])

    """
    if tol < 0:
        raise ValueError("tol must be non-negative")

    [c] = as_series([c])
    [ind] = np.nonzero(np.abs(c) > tol)
    if len(ind) == 0:
        return c[:1]*0
    else:
        return c[:ind[-1] + 1].copy()

def getdomain(x):
    """
    Return a domain suitable for given abscissae.

    Find a domain suitable for a polynomial or Chebyshev series
    defined at the values supplied.

    Parameters
    ----------
    x : array_like
        1-d array of abscissae whose domain will be determined.

    Returns
    -------
    domain : ndarray
        1-d array containing two values.  If the inputs are complex, then
        the two returned points are the lower left and upper right corners
        of the smallest rectangle (aligned with the axes) in the complex
        plane containing the points `x`. If the inputs are real, then the
        two points are the ends of the smallest interval containing the
        points `x`.

    See Also
    --------
    mapparms, mapdomain

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> points = np.arange(4)**2 - 5; points
    array([-5, -4, -1,  4])
    >>> pu.getdomain(points)
    array([-5.,  4.])
    >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle
    >>> pu.getdomain(c)
    array([-1.-1.j,  1.+1.j])

    """
    [x] = as_series([x], trim=False)
    if x.dtype.char in np.typecodes['Complex']:
        rmin, rmax = x.real.min(), x.real.max()
        imin, imax = x.imag.min(), x.imag.max()
        return np.array((complex(rmin, imin), complex(rmax, imax)))
    else:
        return np.array((x.min(), x.max()))

def mapparms(old, new):
    """
    Linear map parameters between domains.

    Return the parameters of the linear map ``offset + scale*x`` that maps
    `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.

    Parameters
    ----------
    old, new : array_like
        Domains. Each domain must (successfully) convert to a 1-d array
        containing precisely two values.

    Returns
    -------
    offset, scale : scalars
        The map ``L(x) = offset + scale*x`` maps the first domain to the
        second.

    See Also
    --------
    getdomain, mapdomain

    Notes
    -----
    Also works for complex numbers, and thus can be used to calculate the
    parameters required to map any line in the complex plane to any other
    line therein.

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> pu.mapparms((-1,1),(-1,1))
    (0.0, 1.0)
    >>> pu.mapparms((1,-1),(-1,1))
    (-0.0, -1.0)
    >>> i = complex(0,1)
    >>> pu.mapparms((-i,-1),(1,i))
    ((1+1j), (1-0j))

    """
    oldlen = old[1] - old[0]
    newlen = new[1] - new[0]
    off = (old[1]*new[0] - old[0]*new[1])/oldlen
    scl = newlen/oldlen
    return off, scl

def mapdomain(x, old, new):
    """
    Apply linear map to input points.

    The linear map ``offset + scale*x`` that maps the domain `old` to
    the domain `new` is applied to the points `x`.

    Parameters
    ----------
    x : array_like
        Points to be mapped. If `x` is a subtype of ndarray the subtype
        will be preserved.
    old, new : array_like
        The two domains that determine the map.  Each must (successfully)
        convert to 1-d arrays containing precisely two values.

    Returns
    -------
    x_out : ndarray
        Array of points of the same shape as `x`, after application of the
        linear map between the two domains.

    See Also
    --------
    getdomain, mapparms

    Notes
    -----
    Effectively, this implements:

    .. math ::
        x\\_out = new[0] + m(x - old[0])

    where

    .. math ::
        m = \\frac{new[1]-new[0]}{old[1]-old[0]}

    Examples
    --------
    >>> from numpy.polynomial import polyutils as pu
    >>> old_domain = (-1,1)
    >>> new_domain = (0,2*np.pi)
    >>> x = np.linspace(-1,1,6); x
    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ])
    >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out
    array([ 0.        ,  1.25663706,  2.51327412,  3.76991118,  5.02654825, # may vary
            6.28318531])
    >>> x - pu.mapdomain(x_out, new_domain, old_domain)
    array([0., 0., 0., 0., 0., 0.])

    Also works for complex numbers (and thus can be used to map any line in
    the complex plane to any other line therein).

    >>> i = complex(0,1)
    >>> old = (-1 - i, 1 + i)
    >>> new = (-1 + i, 1 - i)
    >>> z = np.linspace(old[0], old[1], 6); z
    array([-1. -1.j , -0.6-0.6j, -0.2-0.2j,  0.2+0.2j,  0.6+0.6j,  1. +1.j ])
    >>> new_z = pu.mapdomain(z, old, new); new_z
    array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j,  0.2-0.2j,  0.6-0.6j,  1.0-1.j ]) # may vary

    """
    x = np.asanyarray(x)
    off, scl = mapparms(old, new)
    return off + scl*x


def _nth_slice(i, ndim):
    sl = [np.newaxis] * ndim
    sl[i] = slice(None)
    return tuple(sl)


def _vander_nd(vander_fs, points, degrees):
    r"""
    A generalization of the Vandermonde matrix for N dimensions

    The result is built by combining the results of 1d Vandermonde matrices,

    .. math::
        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}

    where

    .. math::
        N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\
        M &= \texttt{points[k].ndim} \\
        V_k &= \texttt{vander\_fs[k]} \\
        x_k &= \texttt{points[k]} \\
        0 \le j_k &\le \texttt{degrees[k]}

    Expanding the one-dimensional :math:`V_k` functions gives:

    .. math::
        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}

    where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along
    dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.

    Parameters
    ----------
    vander_fs : Sequence[function(array_like, int) -> ndarray]
        The 1d vander function to use for each axis, such as ``polyvander``
    points : Sequence[array_like]
        Arrays of point coordinates, all of the same shape. The dtypes
        will be converted to either float64 or complex128 depending on
        whether any of the elements are complex. Scalars are converted to
        1-D arrays.
        This must be the same length as `vander_fs`.
    degrees : Sequence[int]
        The maximum degree (inclusive) to use for each axis.
        This must be the same length as `vander_fs`.

    Returns
    -------
    vander_nd : ndarray
        An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.
    """
    n_dims = len(vander_fs)
    if n_dims != len(points):
        raise ValueError(
            f"Expected {n_dims} dimensions of sample points, got {len(points)}")
    if n_dims != len(degrees):
        raise ValueError(
            f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
    if n_dims == 0:
        raise ValueError("Unable to guess a dtype or shape when no points are given")

    # convert to the same shape and type
    points = tuple(np.array(tuple(points), copy=False) + 0.0)

    # produce the vandermonde matrix for each dimension, placing the last
    # axis of each in an independent trailing axis of the output
    vander_arrays = (
        vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
        for i in range(n_dims)
    )

    # we checked this wasn't empty already, so no `initial` needed
    return functools.reduce(operator.mul, vander_arrays)


def _vander_nd_flat(vander_fs, points, degrees):
    """
    Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis

    Used to implement the public ``<type>vander<n>d`` functions.
    """
    v = _vander_nd(vander_fs, points, degrees)
    return v.reshape(v.shape[:-len(degrees)] + (-1,))


def _fromroots(line_f, mul_f, roots):
    """
    Helper function used to implement the ``<type>fromroots`` functions.

    Parameters
    ----------
    line_f : function(float, float) -> ndarray
        The ``<type>line`` function, such as ``polyline``
    mul_f : function(array_like, array_like) -> ndarray
        The ``<type>mul`` function, such as ``polymul``
    roots :
        See the ``<type>fromroots`` functions for more detail
    """
    if len(roots) == 0:
        return np.ones(1)
    else:
        [roots] = as_series([roots], trim=False)
        roots.sort()
        p = [line_f(-r, 1) for r in roots]
        n = len(p)
        while n > 1:
            m, r = divmod(n, 2)
            tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
            if r:
                tmp[0] = mul_f(tmp[0], p[-1])
            p = tmp
            n = m
        return p[0]


def _valnd(val_f, c, *args):
    """
    Helper function used to implement the ``<type>val<n>d`` functions.

    Parameters
    ----------
    val_f : function(array_like, array_like, tensor: bool) -> array_like
        The ``<type>val`` function, such as ``polyval``
    c, args :
        See the ``<type>val<n>d`` functions for more detail
    """
    args = [np.asanyarray(a) for a in args]
    shape0 = args[0].shape
    if not all((a.shape == shape0 for a in args[1:])):
        if len(args) == 3:
            raise ValueError('x, y, z are incompatible')
        elif len(args) == 2:
            raise ValueError('x, y are incompatible')
        else:
            raise ValueError('ordinates are incompatible')
    it = iter(args)
    x0 = next(it)

    # use tensor on only the first
    c = val_f(x0, c)
    for xi in it:
        c = val_f(xi, c, tensor=False)
    return c


def _gridnd(val_f, c, *args):
    """
    Helper function used to implement the ``<type>grid<n>d`` functions.

    Parameters
    ----------
    val_f : function(array_like, array_like, tensor: bool) -> array_like
        The ``<type>val`` function, such as ``polyval``
    c, args :
        See the ``<type>grid<n>d`` functions for more detail
    """
    for xi in args:
        c = val_f(xi, c)
    return c


def _div(mul_f, c1, c2):
    """
    Helper function used to implement the ``<type>div`` functions.

    Implementation uses repeated subtraction of c2 multiplied by the nth basis.
    For some polynomial types, a more efficient approach may be possible.

    Parameters
    ----------
    mul_f : function(array_like, array_like) -> array_like
        The ``<type>mul`` function, such as ``polymul``
    c1, c2 :
        See the ``<type>div`` functions for more detail
    """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if c2[-1] == 0:
        raise ZeroDivisionError()

    lc1 = len(c1)
    lc2 = len(c2)
    if lc1 < lc2:
        return c1[:1]*0, c1
    elif lc2 == 1:
        return c1/c2[-1], c1[:1]*0
    else:
        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
        rem = c1
        for i in range(lc1 - lc2, - 1, -1):
            p = mul_f([0]*i + [1], c2)
            q = rem[-1]/p[-1]
            rem = rem[:-1] - q*p[:-1]
            quo[i] = q
        return quo, trimseq(rem)


def _add(c1, c2):
    """ Helper function used to implement the ``<type>add`` functions. """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] += c2
        ret = c1
    else:
        c2[:c1.size] += c1
        ret = c2
    return trimseq(ret)


def _sub(c1, c2):
    """ Helper function used to implement the ``<type>sub`` functions. """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] -= c2
        ret = c1
    else:
        c2 = -c2
        c2[:c1.size] += c1
        ret = c2
    return trimseq(ret)


def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
    """
    Helper function used to implement the ``<type>fit`` functions.

    Parameters
    ----------
    vander_f : function(array_like, int) -> ndarray
        The 1d vander function, such as ``polyvander``
    c1, c2 :
        See the ``<type>fit`` functions for more detail
    """
    x = np.asarray(x) + 0.0
    y = np.asarray(y) + 0.0
    deg = np.asarray(deg)

    # check arguments.
    if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
        raise TypeError("deg must be an int or non-empty 1-D array of int")
    if deg.min() < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if len(x) != len(y):
        raise TypeError("expected x and y to have same length")

    if deg.ndim == 0:
        lmax = deg
        order = lmax + 1
        van = vander_f(x, lmax)
    else:
        deg = np.sort(deg)
        lmax = deg[-1]
        order = len(deg)
        van = vander_f(x, lmax)[:, deg]

    # set up the least squares matrices in transposed form
    lhs = van.T
    rhs = y.T
    if w is not None:
        w = np.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError("expected 1D vector for w")
        if len(x) != len(w):
            raise TypeError("expected x and w to have same length")
        # apply weights. Don't use inplace operations as they
        # can cause problems with NA.
        lhs = lhs * w
        rhs = rhs * w

    # set rcond
    if rcond is None:
        rcond = len(x)*np.finfo(x.dtype).eps

    # Determine the norms of the design matrix columns.
    if issubclass(lhs.dtype.type, np.complexfloating):
        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
    else:
        scl = np.sqrt(np.square(lhs).sum(1))
    scl[scl == 0] = 1

    # Solve the least squares problem.
    c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
    c = (c.T/scl).T

    # Expand c to include non-fitted coefficients which are set to zero
    if deg.ndim > 0:
        if c.ndim == 2:
            cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
        else:
            cc = np.zeros(lmax+1, dtype=c.dtype)
        cc[deg] = c
        c = cc

    # warn on rank reduction
    if rank != order and not full:
        msg = "The fit may be poorly conditioned"
        warnings.warn(msg, RankWarning, stacklevel=2)

    if full:
        return c, [resids, rank, s, rcond]
    else:
        return c


def _pow(mul_f, c, pow, maxpower):
    """
    Helper function used to implement the ``<type>pow`` functions.

    Parameters
    ----------
    vander_f : function(array_like, int) -> ndarray
        The 1d vander function, such as ``polyvander``
    pow, maxpower :
        See the ``<type>pow`` functions for more detail
    mul_f : function(array_like, array_like) -> ndarray
        The ``<type>mul`` function, such as ``polymul``
    """
    # c is a trimmed copy
    [c] = as_series([c])
    power = int(pow)
    if power != pow or power < 0:
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower:
        raise ValueError("Power is too large")
    elif power == 0:
        return np.array([1], dtype=c.dtype)
    elif power == 1:
        return c
    else:
        # This can be made more efficient by using powers of two
        # in the usual way.
        prd = c
        for i in range(2, power + 1):
            prd = mul_f(prd, c)
        return prd


def _deprecate_as_int(x, desc):
    """
    Like `operator.index`, but emits a deprecation warning when passed a float

    Parameters
    ----------
    x : int-like, or float with integral value
        Value to interpret as an integer
    desc : str
        description to include in any error message

    Raises
    ------
    TypeError : if x is a non-integral float or non-numeric
    DeprecationWarning : if x is an integral float
    """
    try:
        return operator.index(x)
    except TypeError as e:
        # Numpy 1.17.0, 2019-03-11
        try:
            ix = int(x)
        except TypeError:
            pass
        else:
            if ix == x:
                warnings.warn(
                    f"In future, this will raise TypeError, as {desc} will "
                    "need to be an integer not just an integral float.",
                    DeprecationWarning,
                    stacklevel=3
                )
                return ix

        raise TypeError(f"{desc} must be an integer") from e