extras.py
57.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
"""
Masked arrays add-ons.
A collection of utilities for `numpy.ma`.
:author: Pierre Gerard-Marchant
:contact: pierregm_at_uga_dot_edu
:version: $Id: extras.py 3473 2007-10-29 15:18:13Z jarrod.millman $
"""
__all__ = [
'apply_along_axis', 'apply_over_axes', 'atleast_1d', 'atleast_2d',
'atleast_3d', 'average', 'clump_masked', 'clump_unmasked',
'column_stack', 'compress_cols', 'compress_nd', 'compress_rowcols',
'compress_rows', 'count_masked', 'corrcoef', 'cov', 'diagflat', 'dot',
'dstack', 'ediff1d', 'flatnotmasked_contiguous', 'flatnotmasked_edges',
'hsplit', 'hstack', 'isin', 'in1d', 'intersect1d', 'mask_cols', 'mask_rowcols',
'mask_rows', 'masked_all', 'masked_all_like', 'median', 'mr_',
'notmasked_contiguous', 'notmasked_edges', 'polyfit', 'row_stack',
'setdiff1d', 'setxor1d', 'stack', 'unique', 'union1d', 'vander', 'vstack',
]
import itertools
import warnings
from . import core as ma
from .core import (
MaskedArray, MAError, add, array, asarray, concatenate, filled, count,
getmask, getmaskarray, make_mask_descr, masked, masked_array, mask_or,
nomask, ones, sort, zeros, getdata, get_masked_subclass, dot,
mask_rowcols
)
import numpy as np
from numpy import ndarray, array as nxarray
import numpy.core.umath as umath
from numpy.core.multiarray import normalize_axis_index
from numpy.core.numeric import normalize_axis_tuple
from numpy.lib.function_base import _ureduce
from numpy.lib.index_tricks import AxisConcatenator
def issequence(seq):
"""
Is seq a sequence (ndarray, list or tuple)?
"""
return isinstance(seq, (ndarray, tuple, list))
def count_masked(arr, axis=None):
"""
Count the number of masked elements along the given axis.
Parameters
----------
arr : array_like
An array with (possibly) masked elements.
axis : int, optional
Axis along which to count. If None (default), a flattened
version of the array is used.
Returns
-------
count : int, ndarray
The total number of masked elements (axis=None) or the number
of masked elements along each slice of the given axis.
See Also
--------
MaskedArray.count : Count non-masked elements.
Examples
--------
>>> import numpy.ma as ma
>>> a = np.arange(9).reshape((3,3))
>>> a = ma.array(a)
>>> a[1, 0] = ma.masked
>>> a[1, 2] = ma.masked
>>> a[2, 1] = ma.masked
>>> a
masked_array(
data=[[0, 1, 2],
[--, 4, --],
[6, --, 8]],
mask=[[False, False, False],
[ True, False, True],
[False, True, False]],
fill_value=999999)
>>> ma.count_masked(a)
3
When the `axis` keyword is used an array is returned.
>>> ma.count_masked(a, axis=0)
array([1, 1, 1])
>>> ma.count_masked(a, axis=1)
array([0, 2, 1])
"""
m = getmaskarray(arr)
return m.sum(axis)
def masked_all(shape, dtype=float):
"""
Empty masked array with all elements masked.
Return an empty masked array of the given shape and dtype, where all the
data are masked.
Parameters
----------
shape : tuple
Shape of the required MaskedArray.
dtype : dtype, optional
Data type of the output.
Returns
-------
a : MaskedArray
A masked array with all data masked.
See Also
--------
masked_all_like : Empty masked array modelled on an existing array.
Examples
--------
>>> import numpy.ma as ma
>>> ma.masked_all((3, 3))
masked_array(
data=[[--, --, --],
[--, --, --],
[--, --, --]],
mask=[[ True, True, True],
[ True, True, True],
[ True, True, True]],
fill_value=1e+20,
dtype=float64)
The `dtype` parameter defines the underlying data type.
>>> a = ma.masked_all((3, 3))
>>> a.dtype
dtype('float64')
>>> a = ma.masked_all((3, 3), dtype=np.int32)
>>> a.dtype
dtype('int32')
"""
a = masked_array(np.empty(shape, dtype),
mask=np.ones(shape, make_mask_descr(dtype)))
return a
def masked_all_like(arr):
"""
Empty masked array with the properties of an existing array.
Return an empty masked array of the same shape and dtype as
the array `arr`, where all the data are masked.
Parameters
----------
arr : ndarray
An array describing the shape and dtype of the required MaskedArray.
Returns
-------
a : MaskedArray
A masked array with all data masked.
Raises
------
AttributeError
If `arr` doesn't have a shape attribute (i.e. not an ndarray)
See Also
--------
masked_all : Empty masked array with all elements masked.
Examples
--------
>>> import numpy.ma as ma
>>> arr = np.zeros((2, 3), dtype=np.float32)
>>> arr
array([[0., 0., 0.],
[0., 0., 0.]], dtype=float32)
>>> ma.masked_all_like(arr)
masked_array(
data=[[--, --, --],
[--, --, --]],
mask=[[ True, True, True],
[ True, True, True]],
fill_value=1e+20,
dtype=float32)
The dtype of the masked array matches the dtype of `arr`.
>>> arr.dtype
dtype('float32')
>>> ma.masked_all_like(arr).dtype
dtype('float32')
"""
a = np.empty_like(arr).view(MaskedArray)
a._mask = np.ones(a.shape, dtype=make_mask_descr(a.dtype))
return a
#####--------------------------------------------------------------------------
#---- --- Standard functions ---
#####--------------------------------------------------------------------------
class _fromnxfunction:
"""
Defines a wrapper to adapt NumPy functions to masked arrays.
An instance of `_fromnxfunction` can be called with the same parameters
as the wrapped NumPy function. The docstring of `newfunc` is adapted from
the wrapped function as well, see `getdoc`.
This class should not be used directly. Instead, one of its extensions that
provides support for a specific type of input should be used.
Parameters
----------
funcname : str
The name of the function to be adapted. The function should be
in the NumPy namespace (i.e. ``np.funcname``).
"""
def __init__(self, funcname):
self.__name__ = funcname
self.__doc__ = self.getdoc()
def getdoc(self):
"""
Retrieve the docstring and signature from the function.
The ``__doc__`` attribute of the function is used as the docstring for
the new masked array version of the function. A note on application
of the function to the mask is appended.
.. warning::
If the function docstring already contained a Notes section, the
new docstring will have two Notes sections instead of appending a note
to the existing section.
Parameters
----------
None
"""
npfunc = getattr(np, self.__name__, None)
doc = getattr(npfunc, '__doc__', None)
if doc:
sig = self.__name__ + ma.get_object_signature(npfunc)
locdoc = "Notes\n-----\nThe function is applied to both the _data"\
" and the _mask, if any."
return '\n'.join((sig, doc, locdoc))
return
def __call__(self, *args, **params):
pass
class _fromnxfunction_single(_fromnxfunction):
"""
A version of `_fromnxfunction` that is called with a single array
argument followed by auxiliary args that are passed verbatim for
both the data and mask calls.
"""
def __call__(self, x, *args, **params):
func = getattr(np, self.__name__)
if isinstance(x, ndarray):
_d = func(x.__array__(), *args, **params)
_m = func(getmaskarray(x), *args, **params)
return masked_array(_d, mask=_m)
else:
_d = func(np.asarray(x), *args, **params)
_m = func(getmaskarray(x), *args, **params)
return masked_array(_d, mask=_m)
class _fromnxfunction_seq(_fromnxfunction):
"""
A version of `_fromnxfunction` that is called with a single sequence
of arrays followed by auxiliary args that are passed verbatim for
both the data and mask calls.
"""
def __call__(self, x, *args, **params):
func = getattr(np, self.__name__)
_d = func(tuple([np.asarray(a) for a in x]), *args, **params)
_m = func(tuple([getmaskarray(a) for a in x]), *args, **params)
return masked_array(_d, mask=_m)
class _fromnxfunction_args(_fromnxfunction):
"""
A version of `_fromnxfunction` that is called with multiple array
arguments. The first non-array-like input marks the beginning of the
arguments that are passed verbatim for both the data and mask calls.
Array arguments are processed independently and the results are
returned in a list. If only one array is found, the return value is
just the processed array instead of a list.
"""
def __call__(self, *args, **params):
func = getattr(np, self.__name__)
arrays = []
args = list(args)
while len(args) > 0 and issequence(args[0]):
arrays.append(args.pop(0))
res = []
for x in arrays:
_d = func(np.asarray(x), *args, **params)
_m = func(getmaskarray(x), *args, **params)
res.append(masked_array(_d, mask=_m))
if len(arrays) == 1:
return res[0]
return res
class _fromnxfunction_allargs(_fromnxfunction):
"""
A version of `_fromnxfunction` that is called with multiple array
arguments. Similar to `_fromnxfunction_args` except that all args
are converted to arrays even if they are not so already. This makes
it possible to process scalars as 1-D arrays. Only keyword arguments
are passed through verbatim for the data and mask calls. Arrays
arguments are processed independently and the results are returned
in a list. If only one arg is present, the return value is just the
processed array instead of a list.
"""
def __call__(self, *args, **params):
func = getattr(np, self.__name__)
res = []
for x in args:
_d = func(np.asarray(x), **params)
_m = func(getmaskarray(x), **params)
res.append(masked_array(_d, mask=_m))
if len(args) == 1:
return res[0]
return res
atleast_1d = _fromnxfunction_allargs('atleast_1d')
atleast_2d = _fromnxfunction_allargs('atleast_2d')
atleast_3d = _fromnxfunction_allargs('atleast_3d')
vstack = row_stack = _fromnxfunction_seq('vstack')
hstack = _fromnxfunction_seq('hstack')
column_stack = _fromnxfunction_seq('column_stack')
dstack = _fromnxfunction_seq('dstack')
stack = _fromnxfunction_seq('stack')
hsplit = _fromnxfunction_single('hsplit')
diagflat = _fromnxfunction_single('diagflat')
#####--------------------------------------------------------------------------
#----
#####--------------------------------------------------------------------------
def flatten_inplace(seq):
"""Flatten a sequence in place."""
k = 0
while (k != len(seq)):
while hasattr(seq[k], '__iter__'):
seq[k:(k + 1)] = seq[k]
k += 1
return seq
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
"""
(This docstring should be overwritten)
"""
arr = array(arr, copy=False, subok=True)
nd = arr.ndim
axis = normalize_axis_index(axis, nd)
ind = [0] * (nd - 1)
i = np.zeros(nd, 'O')
indlist = list(range(nd))
indlist.remove(axis)
i[axis] = slice(None, None)
outshape = np.asarray(arr.shape).take(indlist)
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
# if res is a number, then we have a smaller output array
asscalar = np.isscalar(res)
if not asscalar:
try:
len(res)
except TypeError:
asscalar = True
# Note: we shouldn't set the dtype of the output from the first result
# so we force the type to object, and build a list of dtypes. We'll
# just take the largest, to avoid some downcasting
dtypes = []
if asscalar:
dtypes.append(np.asarray(res).dtype)
outarr = zeros(outshape, object)
outarr[tuple(ind)] = res
Ntot = np.product(outshape)
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= outshape[n]) and (n > (1 - nd)):
ind[n - 1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
outarr[tuple(ind)] = res
dtypes.append(asarray(res).dtype)
k += 1
else:
res = array(res, copy=False, subok=True)
j = i.copy()
j[axis] = ([slice(None, None)] * res.ndim)
j.put(indlist, ind)
Ntot = np.product(outshape)
holdshape = outshape
outshape = list(arr.shape)
outshape[axis] = res.shape
dtypes.append(asarray(res).dtype)
outshape = flatten_inplace(outshape)
outarr = zeros(outshape, object)
outarr[tuple(flatten_inplace(j.tolist()))] = res
k = 1
while k < Ntot:
# increment the index
ind[-1] += 1
n = -1
while (ind[n] >= holdshape[n]) and (n > (1 - nd)):
ind[n - 1] += 1
ind[n] = 0
n -= 1
i.put(indlist, ind)
j.put(indlist, ind)
res = func1d(arr[tuple(i.tolist())], *args, **kwargs)
outarr[tuple(flatten_inplace(j.tolist()))] = res
dtypes.append(asarray(res).dtype)
k += 1
max_dtypes = np.dtype(np.asarray(dtypes).max())
if not hasattr(arr, '_mask'):
result = np.asarray(outarr, dtype=max_dtypes)
else:
result = asarray(outarr, dtype=max_dtypes)
result.fill_value = ma.default_fill_value(result)
return result
apply_along_axis.__doc__ = np.apply_along_axis.__doc__
def apply_over_axes(func, a, axes):
"""
(This docstring will be overwritten)
"""
val = asarray(a)
N = a.ndim
if array(axes).ndim == 0:
axes = (axes,)
for axis in axes:
if axis < 0:
axis = N + axis
args = (val, axis)
res = func(*args)
if res.ndim == val.ndim:
val = res
else:
res = ma.expand_dims(res, axis)
if res.ndim == val.ndim:
val = res
else:
raise ValueError("function is not returning "
"an array of the correct shape")
return val
if apply_over_axes.__doc__ is not None:
apply_over_axes.__doc__ = np.apply_over_axes.__doc__[
:np.apply_over_axes.__doc__.find('Notes')].rstrip() + \
"""
Examples
--------
>>> a = np.ma.arange(24).reshape(2,3,4)
>>> a[:,0,1] = np.ma.masked
>>> a[:,1,:] = np.ma.masked
>>> a
masked_array(
data=[[[0, --, 2, 3],
[--, --, --, --],
[8, 9, 10, 11]],
[[12, --, 14, 15],
[--, --, --, --],
[20, 21, 22, 23]]],
mask=[[[False, True, False, False],
[ True, True, True, True],
[False, False, False, False]],
[[False, True, False, False],
[ True, True, True, True],
[False, False, False, False]]],
fill_value=999999)
>>> np.ma.apply_over_axes(np.ma.sum, a, [0,2])
masked_array(
data=[[[46],
[--],
[124]]],
mask=[[[False],
[ True],
[False]]],
fill_value=999999)
Tuple axis arguments to ufuncs are equivalent:
>>> np.ma.sum(a, axis=(0,2)).reshape((1,-1,1))
masked_array(
data=[[[46],
[--],
[124]]],
mask=[[[False],
[ True],
[False]]],
fill_value=999999)
"""
def average(a, axis=None, weights=None, returned=False):
"""
Return the weighted average of array over the given axis.
Parameters
----------
a : array_like
Data to be averaged.
Masked entries are not taken into account in the computation.
axis : int, optional
Axis along which to average `a`. If None, averaging is done over
the flattened array.
weights : array_like, optional
The importance that each element has in the computation of the average.
The weights array can either be 1-D (in which case its length must be
the size of `a` along the given axis) or of the same shape as `a`.
If ``weights=None``, then all data in `a` are assumed to have a
weight equal to one. The 1-D calculation is::
avg = sum(a * weights) / sum(weights)
The only constraint on `weights` is that `sum(weights)` must not be 0.
returned : bool, optional
Flag indicating whether a tuple ``(result, sum of weights)``
should be returned as output (True), or just the result (False).
Default is False.
Returns
-------
average, [sum_of_weights] : (tuple of) scalar or MaskedArray
The average along the specified axis. When returned is `True`,
return a tuple with the average as the first element and the sum
of the weights as the second element. The return type is `np.float64`
if `a` is of integer type and floats smaller than `float64`, or the
input data-type, otherwise. If returned, `sum_of_weights` is always
`float64`.
Examples
--------
>>> a = np.ma.array([1., 2., 3., 4.], mask=[False, False, True, True])
>>> np.ma.average(a, weights=[3, 1, 0, 0])
1.25
>>> x = np.ma.arange(6.).reshape(3, 2)
>>> x
masked_array(
data=[[0., 1.],
[2., 3.],
[4., 5.]],
mask=False,
fill_value=1e+20)
>>> avg, sumweights = np.ma.average(x, axis=0, weights=[1, 2, 3],
... returned=True)
>>> avg
masked_array(data=[2.6666666666666665, 3.6666666666666665],
mask=[False, False],
fill_value=1e+20)
"""
a = asarray(a)
m = getmask(a)
# inspired by 'average' in numpy/lib/function_base.py
if weights is None:
avg = a.mean(axis)
scl = avg.dtype.type(a.count(axis))
else:
wgt = np.asanyarray(weights)
if issubclass(a.dtype.type, (np.integer, np.bool_)):
result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
else:
result_dtype = np.result_type(a.dtype, wgt.dtype)
# Sanity checks
if a.shape != wgt.shape:
if axis is None:
raise TypeError(
"Axis must be specified when shapes of a and weights "
"differ.")
if wgt.ndim != 1:
raise TypeError(
"1D weights expected when shapes of a and weights differ.")
if wgt.shape[0] != a.shape[axis]:
raise ValueError(
"Length of weights not compatible with specified axis.")
# setup wgt to broadcast along axis
wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape)
wgt = wgt.swapaxes(-1, axis)
if m is not nomask:
wgt = wgt*(~a.mask)
scl = wgt.sum(axis=axis, dtype=result_dtype)
avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl
if returned:
if scl.shape != avg.shape:
scl = np.broadcast_to(scl, avg.shape).copy()
return avg, scl
else:
return avg
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
"""
Compute the median along the specified axis.
Returns the median of the array elements.
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int, optional
Axis along which the medians are computed. The default (None) is
to compute the median along a flattened version of the array.
out : ndarray, optional
Alternative output array in which to place the result. It must
have the same shape and buffer length as the expected output
but the type will be cast if necessary.
overwrite_input : bool, optional
If True, then allow use of memory of input array (a) for
calculations. The input array will be modified by the call to
median. This will save memory when you do not need to preserve
the contents of the input array. Treat the input as undefined,
but it will probably be fully or partially sorted. Default is
False. Note that, if `overwrite_input` is True, and the input
is not already an `ndarray`, an error will be raised.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left
in the result as dimensions with size one. With this option,
the result will broadcast correctly against the input array.
.. versionadded:: 1.10.0
Returns
-------
median : ndarray
A new array holding the result is returned unless out is
specified, in which case a reference to out is returned.
Return data-type is `float64` for integers and floats smaller than
`float64`, or the input data-type, otherwise.
See Also
--------
mean
Notes
-----
Given a vector ``V`` with ``N`` non masked values, the median of ``V``
is the middle value of a sorted copy of ``V`` (``Vs``) - i.e.
``Vs[(N-1)/2]``, when ``N`` is odd, or ``{Vs[N/2 - 1] + Vs[N/2]}/2``
when ``N`` is even.
Examples
--------
>>> x = np.ma.array(np.arange(8), mask=[0]*4 + [1]*4)
>>> np.ma.median(x)
1.5
>>> x = np.ma.array(np.arange(10).reshape(2, 5), mask=[0]*6 + [1]*4)
>>> np.ma.median(x)
2.5
>>> np.ma.median(x, axis=-1, overwrite_input=True)
masked_array(data=[2.0, 5.0],
mask=[False, False],
fill_value=1e+20)
"""
if not hasattr(a, 'mask'):
m = np.median(getdata(a, subok=True), axis=axis,
out=out, overwrite_input=overwrite_input,
keepdims=keepdims)
if isinstance(m, np.ndarray) and 1 <= m.ndim:
return masked_array(m, copy=False)
else:
return m
r, k = _ureduce(a, func=_median, axis=axis, out=out,
overwrite_input=overwrite_input)
if keepdims:
return r.reshape(k)
else:
return r
def _median(a, axis=None, out=None, overwrite_input=False):
# when an unmasked NaN is present return it, so we need to sort the NaN
# values behind the mask
if np.issubdtype(a.dtype, np.inexact):
fill_value = np.inf
else:
fill_value = None
if overwrite_input:
if axis is None:
asorted = a.ravel()
asorted.sort(fill_value=fill_value)
else:
a.sort(axis=axis, fill_value=fill_value)
asorted = a
else:
asorted = sort(a, axis=axis, fill_value=fill_value)
if axis is None:
axis = 0
else:
axis = normalize_axis_index(axis, asorted.ndim)
if asorted.shape[axis] == 0:
# for empty axis integer indices fail so use slicing to get same result
# as median (which is mean of empty slice = nan)
indexer = [slice(None)] * asorted.ndim
indexer[axis] = slice(0, 0)
indexer = tuple(indexer)
return np.ma.mean(asorted[indexer], axis=axis, out=out)
if asorted.ndim == 1:
counts = count(asorted)
idx, odd = divmod(count(asorted), 2)
mid = asorted[idx + odd - 1:idx + 1]
if np.issubdtype(asorted.dtype, np.inexact) and asorted.size > 0:
# avoid inf / x = masked
s = mid.sum(out=out)
if not odd:
s = np.true_divide(s, 2., casting='safe', out=out)
s = np.lib.utils._median_nancheck(asorted, s, axis, out)
else:
s = mid.mean(out=out)
# if result is masked either the input contained enough
# minimum_fill_value so that it would be the median or all values
# masked
if np.ma.is_masked(s) and not np.all(asorted.mask):
return np.ma.minimum_fill_value(asorted)
return s
counts = count(asorted, axis=axis, keepdims=True)
h = counts // 2
# duplicate high if odd number of elements so mean does nothing
odd = counts % 2 == 1
l = np.where(odd, h, h-1)
lh = np.concatenate([l,h], axis=axis)
# get low and high median
low_high = np.take_along_axis(asorted, lh, axis=axis)
def replace_masked(s):
# Replace masked entries with minimum_full_value unless it all values
# are masked. This is required as the sort order of values equal or
# larger than the fill value is undefined and a valid value placed
# elsewhere, e.g. [4, --, inf].
if np.ma.is_masked(s):
rep = (~np.all(asorted.mask, axis=axis, keepdims=True)) & s.mask
s.data[rep] = np.ma.minimum_fill_value(asorted)
s.mask[rep] = False
replace_masked(low_high)
if np.issubdtype(asorted.dtype, np.inexact):
# avoid inf / x = masked
s = np.ma.sum(low_high, axis=axis, out=out)
np.true_divide(s.data, 2., casting='unsafe', out=s.data)
s = np.lib.utils._median_nancheck(asorted, s, axis, out)
else:
s = np.ma.mean(low_high, axis=axis, out=out)
return s
def compress_nd(x, axis=None):
"""Suppress slices from multiple dimensions which contain masked values.
Parameters
----------
x : array_like, MaskedArray
The array to operate on. If not a MaskedArray instance (or if no array
elements are masked), `x` is interpreted as a MaskedArray with `mask`
set to `nomask`.
axis : tuple of ints or int, optional
Which dimensions to suppress slices from can be configured with this
parameter.
- If axis is a tuple of ints, those are the axes to suppress slices from.
- If axis is an int, then that is the only axis to suppress slices from.
- If axis is None, all axis are selected.
Returns
-------
compress_array : ndarray
The compressed array.
"""
x = asarray(x)
m = getmask(x)
# Set axis to tuple of ints
if axis is None:
axis = tuple(range(x.ndim))
else:
axis = normalize_axis_tuple(axis, x.ndim)
# Nothing is masked: return x
if m is nomask or not m.any():
return x._data
# All is masked: return empty
if m.all():
return nxarray([])
# Filter elements through boolean indexing
data = x._data
for ax in axis:
axes = tuple(list(range(ax)) + list(range(ax + 1, x.ndim)))
data = data[(slice(None),)*ax + (~m.any(axis=axes),)]
return data
def compress_rowcols(x, axis=None):
"""
Suppress the rows and/or columns of a 2-D array that contain
masked values.
The suppression behavior is selected with the `axis` parameter.
- If axis is None, both rows and columns are suppressed.
- If axis is 0, only rows are suppressed.
- If axis is 1 or -1, only columns are suppressed.
Parameters
----------
x : array_like, MaskedArray
The array to operate on. If not a MaskedArray instance (or if no array
elements are masked), `x` is interpreted as a MaskedArray with
`mask` set to `nomask`. Must be a 2D array.
axis : int, optional
Axis along which to perform the operation. Default is None.
Returns
-------
compressed_array : ndarray
The compressed array.
Examples
--------
>>> x = np.ma.array(np.arange(9).reshape(3, 3), mask=[[1, 0, 0],
... [1, 0, 0],
... [0, 0, 0]])
>>> x
masked_array(
data=[[--, 1, 2],
[--, 4, 5],
[6, 7, 8]],
mask=[[ True, False, False],
[ True, False, False],
[False, False, False]],
fill_value=999999)
>>> np.ma.compress_rowcols(x)
array([[7, 8]])
>>> np.ma.compress_rowcols(x, 0)
array([[6, 7, 8]])
>>> np.ma.compress_rowcols(x, 1)
array([[1, 2],
[4, 5],
[7, 8]])
"""
if asarray(x).ndim != 2:
raise NotImplementedError("compress_rowcols works for 2D arrays only.")
return compress_nd(x, axis=axis)
def compress_rows(a):
"""
Suppress whole rows of a 2-D array that contain masked values.
This is equivalent to ``np.ma.compress_rowcols(a, 0)``, see
`extras.compress_rowcols` for details.
See Also
--------
extras.compress_rowcols
"""
a = asarray(a)
if a.ndim != 2:
raise NotImplementedError("compress_rows works for 2D arrays only.")
return compress_rowcols(a, 0)
def compress_cols(a):
"""
Suppress whole columns of a 2-D array that contain masked values.
This is equivalent to ``np.ma.compress_rowcols(a, 1)``, see
`extras.compress_rowcols` for details.
See Also
--------
extras.compress_rowcols
"""
a = asarray(a)
if a.ndim != 2:
raise NotImplementedError("compress_cols works for 2D arrays only.")
return compress_rowcols(a, 1)
def mask_rows(a, axis=np._NoValue):
"""
Mask rows of a 2D array that contain masked values.
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 0.
See Also
--------
mask_rowcols : Mask rows and/or columns of a 2D array.
masked_where : Mask where a condition is met.
Examples
--------
>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(
data=[[0, 0, 0],
[0, --, 0],
[0, 0, 0]],
mask=[[False, False, False],
[False, True, False],
[False, False, False]],
fill_value=1)
>>> ma.mask_rows(a)
masked_array(
data=[[0, 0, 0],
[--, --, --],
[0, 0, 0]],
mask=[[False, False, False],
[ True, True, True],
[False, False, False]],
fill_value=1)
"""
if axis is not np._NoValue:
# remove the axis argument when this deprecation expires
# NumPy 1.18.0, 2019-11-28
warnings.warn(
"The axis argument has always been ignored, in future passing it "
"will raise TypeError", DeprecationWarning, stacklevel=2)
return mask_rowcols(a, 0)
def mask_cols(a, axis=np._NoValue):
"""
Mask columns of a 2D array that contain masked values.
This function is a shortcut to ``mask_rowcols`` with `axis` equal to 1.
See Also
--------
mask_rowcols : Mask rows and/or columns of a 2D array.
masked_where : Mask where a condition is met.
Examples
--------
>>> import numpy.ma as ma
>>> a = np.zeros((3, 3), dtype=int)
>>> a[1, 1] = 1
>>> a
array([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
>>> a = ma.masked_equal(a, 1)
>>> a
masked_array(
data=[[0, 0, 0],
[0, --, 0],
[0, 0, 0]],
mask=[[False, False, False],
[False, True, False],
[False, False, False]],
fill_value=1)
>>> ma.mask_cols(a)
masked_array(
data=[[0, --, 0],
[0, --, 0],
[0, --, 0]],
mask=[[False, True, False],
[False, True, False],
[False, True, False]],
fill_value=1)
"""
if axis is not np._NoValue:
# remove the axis argument when this deprecation expires
# NumPy 1.18.0, 2019-11-28
warnings.warn(
"The axis argument has always been ignored, in future passing it "
"will raise TypeError", DeprecationWarning, stacklevel=2)
return mask_rowcols(a, 1)
#####--------------------------------------------------------------------------
#---- --- arraysetops ---
#####--------------------------------------------------------------------------
def ediff1d(arr, to_end=None, to_begin=None):
"""
Compute the differences between consecutive elements of an array.
This function is the equivalent of `numpy.ediff1d` that takes masked
values into account, see `numpy.ediff1d` for details.
See Also
--------
numpy.ediff1d : Equivalent function for ndarrays.
"""
arr = ma.asanyarray(arr).flat
ed = arr[1:] - arr[:-1]
arrays = [ed]
#
if to_begin is not None:
arrays.insert(0, to_begin)
if to_end is not None:
arrays.append(to_end)
#
if len(arrays) != 1:
# We'll save ourselves a copy of a potentially large array in the common
# case where neither to_begin or to_end was given.
ed = hstack(arrays)
#
return ed
def unique(ar1, return_index=False, return_inverse=False):
"""
Finds the unique elements of an array.
Masked values are considered the same element (masked). The output array
is always a masked array. See `numpy.unique` for more details.
See Also
--------
numpy.unique : Equivalent function for ndarrays.
"""
output = np.unique(ar1,
return_index=return_index,
return_inverse=return_inverse)
if isinstance(output, tuple):
output = list(output)
output[0] = output[0].view(MaskedArray)
output = tuple(output)
else:
output = output.view(MaskedArray)
return output
def intersect1d(ar1, ar2, assume_unique=False):
"""
Returns the unique elements common to both arrays.
Masked values are considered equal one to the other.
The output is always a masked array.
See `numpy.intersect1d` for more details.
See Also
--------
numpy.intersect1d : Equivalent function for ndarrays.
Examples
--------
>>> x = np.ma.array([1, 3, 3, 3], mask=[0, 0, 0, 1])
>>> y = np.ma.array([3, 1, 1, 1], mask=[0, 0, 0, 1])
>>> np.ma.intersect1d(x, y)
masked_array(data=[1, 3, --],
mask=[False, False, True],
fill_value=999999)
"""
if assume_unique:
aux = ma.concatenate((ar1, ar2))
else:
# Might be faster than unique( intersect1d( ar1, ar2 ) )?
aux = ma.concatenate((unique(ar1), unique(ar2)))
aux.sort()
return aux[:-1][aux[1:] == aux[:-1]]
def setxor1d(ar1, ar2, assume_unique=False):
"""
Set exclusive-or of 1-D arrays with unique elements.
The output is always a masked array. See `numpy.setxor1d` for more details.
See Also
--------
numpy.setxor1d : Equivalent function for ndarrays.
"""
if not assume_unique:
ar1 = unique(ar1)
ar2 = unique(ar2)
aux = ma.concatenate((ar1, ar2))
if aux.size == 0:
return aux
aux.sort()
auxf = aux.filled()
# flag = ediff1d( aux, to_end = 1, to_begin = 1 ) == 0
flag = ma.concatenate(([True], (auxf[1:] != auxf[:-1]), [True]))
# flag2 = ediff1d( flag ) == 0
flag2 = (flag[1:] == flag[:-1])
return aux[flag2]
def in1d(ar1, ar2, assume_unique=False, invert=False):
"""
Test whether each element of an array is also present in a second
array.
The output is always a masked array. See `numpy.in1d` for more details.
We recommend using :func:`isin` instead of `in1d` for new code.
See Also
--------
isin : Version of this function that preserves the shape of ar1.
numpy.in1d : Equivalent function for ndarrays.
Notes
-----
.. versionadded:: 1.4.0
"""
if not assume_unique:
ar1, rev_idx = unique(ar1, return_inverse=True)
ar2 = unique(ar2)
ar = ma.concatenate((ar1, ar2))
# We need this to be a stable sort, so always use 'mergesort'
# here. The values from the first array should always come before
# the values from the second array.
order = ar.argsort(kind='mergesort')
sar = ar[order]
if invert:
bool_ar = (sar[1:] != sar[:-1])
else:
bool_ar = (sar[1:] == sar[:-1])
flag = ma.concatenate((bool_ar, [invert]))
indx = order.argsort(kind='mergesort')[:len(ar1)]
if assume_unique:
return flag[indx]
else:
return flag[indx][rev_idx]
def isin(element, test_elements, assume_unique=False, invert=False):
"""
Calculates `element in test_elements`, broadcasting over
`element` only.
The output is always a masked array of the same shape as `element`.
See `numpy.isin` for more details.
See Also
--------
in1d : Flattened version of this function.
numpy.isin : Equivalent function for ndarrays.
Notes
-----
.. versionadded:: 1.13.0
"""
element = ma.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
invert=invert).reshape(element.shape)
def union1d(ar1, ar2):
"""
Union of two arrays.
The output is always a masked array. See `numpy.union1d` for more details.
See also
--------
numpy.union1d : Equivalent function for ndarrays.
"""
return unique(ma.concatenate((ar1, ar2), axis=None))
def setdiff1d(ar1, ar2, assume_unique=False):
"""
Set difference of 1D arrays with unique elements.
The output is always a masked array. See `numpy.setdiff1d` for more
details.
See Also
--------
numpy.setdiff1d : Equivalent function for ndarrays.
Examples
--------
>>> x = np.ma.array([1, 2, 3, 4], mask=[0, 1, 0, 1])
>>> np.ma.setdiff1d(x, [1, 2])
masked_array(data=[3, --],
mask=[False, True],
fill_value=999999)
"""
if assume_unique:
ar1 = ma.asarray(ar1).ravel()
else:
ar1 = unique(ar1)
ar2 = unique(ar2)
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
###############################################################################
# Covariance #
###############################################################################
def _covhelper(x, y=None, rowvar=True, allow_masked=True):
"""
Private function for the computation of covariance and correlation
coefficients.
"""
x = ma.array(x, ndmin=2, copy=True, dtype=float)
xmask = ma.getmaskarray(x)
# Quick exit if we can't process masked data
if not allow_masked and xmask.any():
raise ValueError("Cannot process masked data.")
#
if x.shape[0] == 1:
rowvar = True
# Make sure that rowvar is either 0 or 1
rowvar = int(bool(rowvar))
axis = 1 - rowvar
if rowvar:
tup = (slice(None), None)
else:
tup = (None, slice(None))
#
if y is None:
xnotmask = np.logical_not(xmask).astype(int)
else:
y = array(y, copy=False, ndmin=2, dtype=float)
ymask = ma.getmaskarray(y)
if not allow_masked and ymask.any():
raise ValueError("Cannot process masked data.")
if xmask.any() or ymask.any():
if y.shape == x.shape:
# Define some common mask
common_mask = np.logical_or(xmask, ymask)
if common_mask is not nomask:
xmask = x._mask = y._mask = ymask = common_mask
x._sharedmask = False
y._sharedmask = False
x = ma.concatenate((x, y), axis)
xnotmask = np.logical_not(np.concatenate((xmask, ymask), axis)).astype(int)
x -= x.mean(axis=rowvar)[tup]
return (x, xnotmask, rowvar)
def cov(x, y=None, rowvar=True, bias=False, allow_masked=True, ddof=None):
"""
Estimate the covariance matrix.
Except for the handling of missing data this function does the same as
`numpy.cov`. For more details and examples, see `numpy.cov`.
By default, masked values are recognized as such. If `x` and `y` have the
same shape, a common mask is allocated: if ``x[i,j]`` is masked, then
``y[i,j]`` will also be masked.
Setting `allow_masked` to False will raise an exception if values are
missing in either of the input arrays.
Parameters
----------
x : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of `x` represents a variable, and each column a single
observation of all those variables. Also see `rowvar` below.
y : array_like, optional
An additional set of variables and observations. `y` has the same
form as `x`.
rowvar : bool, optional
If `rowvar` is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : bool, optional
Default normalization (False) is by ``(N-1)``, where ``N`` is the
number of observations given (unbiased estimate). If `bias` is True,
then normalization is by ``N``. This keyword can be overridden by
the keyword ``ddof`` in numpy versions >= 1.5.
allow_masked : bool, optional
If True, masked values are propagated pair-wise: if a value is masked
in `x`, the corresponding value is masked in `y`.
If False, raises a `ValueError` exception when some values are missing.
ddof : {None, int}, optional
If not ``None`` normalization is by ``(N - ddof)``, where ``N`` is
the number of observations; this overrides the value implied by
``bias``. The default value is ``None``.
.. versionadded:: 1.5
Raises
------
ValueError
Raised if some values are missing and `allow_masked` is False.
See Also
--------
numpy.cov
"""
# Check inputs
if ddof is not None and ddof != int(ddof):
raise ValueError("ddof must be an integer")
# Set up ddof
if ddof is None:
if bias:
ddof = 0
else:
ddof = 1
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
if not rowvar:
fact = np.dot(xnotmask.T, xnotmask) * 1. - ddof
result = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
else:
fact = np.dot(xnotmask, xnotmask.T) * 1. - ddof
result = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
return result
def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, allow_masked=True,
ddof=np._NoValue):
"""
Return Pearson product-moment correlation coefficients.
Except for the handling of missing data this function does the same as
`numpy.corrcoef`. For more details and examples, see `numpy.corrcoef`.
Parameters
----------
x : array_like
A 1-D or 2-D array containing multiple variables and observations.
Each row of `x` represents a variable, and each column a single
observation of all those variables. Also see `rowvar` below.
y : array_like, optional
An additional set of variables and observations. `y` has the same
shape as `x`.
rowvar : bool, optional
If `rowvar` is True (default), then each row represents a
variable, with observations in the columns. Otherwise, the relationship
is transposed: each column represents a variable, while the rows
contain observations.
bias : _NoValue, optional
Has no effect, do not use.
.. deprecated:: 1.10.0
allow_masked : bool, optional
If True, masked values are propagated pair-wise: if a value is masked
in `x`, the corresponding value is masked in `y`.
If False, raises an exception. Because `bias` is deprecated, this
argument needs to be treated as keyword only to avoid a warning.
ddof : _NoValue, optional
Has no effect, do not use.
.. deprecated:: 1.10.0
See Also
--------
numpy.corrcoef : Equivalent function in top-level NumPy module.
cov : Estimate the covariance matrix.
Notes
-----
This function accepts but discards arguments `bias` and `ddof`. This is
for backwards compatibility with previous versions of this function. These
arguments had no effect on the return values of the function and can be
safely ignored in this and previous versions of numpy.
"""
msg = 'bias and ddof have no effect and are deprecated'
if bias is not np._NoValue or ddof is not np._NoValue:
# 2015-03-15, 1.10
warnings.warn(msg, DeprecationWarning, stacklevel=2)
# Get the data
(x, xnotmask, rowvar) = _covhelper(x, y, rowvar, allow_masked)
# Compute the covariance matrix
if not rowvar:
fact = np.dot(xnotmask.T, xnotmask) * 1.
c = (dot(x.T, x.conj(), strict=False) / fact).squeeze()
else:
fact = np.dot(xnotmask, xnotmask.T) * 1.
c = (dot(x, x.T.conj(), strict=False) / fact).squeeze()
# Check whether we have a scalar
try:
diag = ma.diagonal(c)
except ValueError:
return 1
#
if xnotmask.all():
_denom = ma.sqrt(ma.multiply.outer(diag, diag))
else:
_denom = diagflat(diag)
_denom._sharedmask = False # We know return is always a copy
n = x.shape[1 - rowvar]
if rowvar:
for i in range(n - 1):
for j in range(i + 1, n):
_x = mask_cols(vstack((x[i], x[j]))).var(axis=1)
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
else:
for i in range(n - 1):
for j in range(i + 1, n):
_x = mask_cols(
vstack((x[:, i], x[:, j]))).var(axis=1)
_denom[i, j] = _denom[j, i] = ma.sqrt(ma.multiply.reduce(_x))
return c / _denom
#####--------------------------------------------------------------------------
#---- --- Concatenation helpers ---
#####--------------------------------------------------------------------------
class MAxisConcatenator(AxisConcatenator):
"""
Translate slice objects to concatenation along an axis.
For documentation on usage, see `mr_class`.
See Also
--------
mr_class
"""
concatenate = staticmethod(concatenate)
@classmethod
def makemat(cls, arr):
# There used to be a view as np.matrix here, but we may eventually
# deprecate that class. In preparation, we use the unmasked version
# to construct the matrix (with copy=False for backwards compatibility
# with the .view)
data = super(MAxisConcatenator, cls).makemat(arr.data, copy=False)
return array(data, mask=arr.mask)
def __getitem__(self, key):
# matrix builder syntax, like 'a, b; c, d'
if isinstance(key, str):
raise MAError("Unavailable for masked array.")
return super(MAxisConcatenator, self).__getitem__(key)
class mr_class(MAxisConcatenator):
"""
Translate slice objects to concatenation along the first axis.
This is the masked array version of `lib.index_tricks.RClass`.
See Also
--------
lib.index_tricks.RClass
Examples
--------
>>> np.ma.mr_[np.ma.array([1,2,3]), 0, 0, np.ma.array([4,5,6])]
masked_array(data=[1, 2, 3, ..., 4, 5, 6],
mask=False,
fill_value=999999)
"""
def __init__(self):
MAxisConcatenator.__init__(self, 0)
mr_ = mr_class()
#####--------------------------------------------------------------------------
#---- Find unmasked data ---
#####--------------------------------------------------------------------------
def flatnotmasked_edges(a):
"""
Find the indices of the first and last unmasked values.
Expects a 1-D `MaskedArray`, returns None if all values are masked.
Parameters
----------
a : array_like
Input 1-D `MaskedArray`
Returns
-------
edges : ndarray or None
The indices of first and last non-masked value in the array.
Returns None if all values are masked.
See Also
--------
flatnotmasked_contiguous, notmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked
Notes
-----
Only accepts 1-D arrays.
Examples
--------
>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_edges(a)
array([0, 9])
>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])
>>> np.ma.flatnotmasked_edges(a)
array([3, 8])
>>> a[:] = np.ma.masked
>>> print(np.ma.flatnotmasked_edges(a))
None
"""
m = getmask(a)
if m is nomask or not np.any(m):
return np.array([0, a.size - 1])
unmasked = np.flatnonzero(~m)
if len(unmasked) > 0:
return unmasked[[0, -1]]
else:
return None
def notmasked_edges(a, axis=None):
"""
Find the indices of the first and last unmasked values along an axis.
If all values are masked, return None. Otherwise, return a list
of two tuples, corresponding to the indices of the first and last
unmasked values respectively.
Parameters
----------
a : array_like
The input array.
axis : int, optional
Axis along which to perform the operation.
If None (default), applies to a flattened version of the array.
Returns
-------
edges : ndarray or list
An array of start and end indexes if there are any masked data in
the array. If there are no masked data in the array, `edges` is a
list of the first and last index.
See Also
--------
flatnotmasked_contiguous, flatnotmasked_edges, notmasked_contiguous
clump_masked, clump_unmasked
Examples
--------
>>> a = np.arange(9).reshape((3, 3))
>>> m = np.zeros_like(a)
>>> m[1:, 1:] = 1
>>> am = np.ma.array(a, mask=m)
>>> np.array(am[~am.mask])
array([0, 1, 2, 3, 6])
>>> np.ma.notmasked_edges(am)
array([0, 6])
"""
a = asarray(a)
if axis is None or a.ndim == 1:
return flatnotmasked_edges(a)
m = getmaskarray(a)
idx = array(np.indices(a.shape), mask=np.asarray([m] * a.ndim))
return [tuple([idx[i].min(axis).compressed() for i in range(a.ndim)]),
tuple([idx[i].max(axis).compressed() for i in range(a.ndim)]), ]
def flatnotmasked_contiguous(a):
"""
Find contiguous unmasked data in a masked array along the given axis.
Parameters
----------
a : narray
The input array.
Returns
-------
slice_list : list
A sorted sequence of `slice` objects (start index, end index).
..versionchanged:: 1.15.0
Now returns an empty list instead of None for a fully masked array
See Also
--------
flatnotmasked_edges, notmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked
Notes
-----
Only accepts 2-D arrays at most.
Examples
--------
>>> a = np.ma.arange(10)
>>> np.ma.flatnotmasked_contiguous(a)
[slice(0, 10, None)]
>>> mask = (a < 3) | (a > 8) | (a == 5)
>>> a[mask] = np.ma.masked
>>> np.array(a[~a.mask])
array([3, 4, 6, 7, 8])
>>> np.ma.flatnotmasked_contiguous(a)
[slice(3, 5, None), slice(6, 9, None)]
>>> a[:] = np.ma.masked
>>> np.ma.flatnotmasked_contiguous(a)
[]
"""
m = getmask(a)
if m is nomask:
return [slice(0, a.size)]
i = 0
result = []
for (k, g) in itertools.groupby(m.ravel()):
n = len(list(g))
if not k:
result.append(slice(i, i + n))
i += n
return result
def notmasked_contiguous(a, axis=None):
"""
Find contiguous unmasked data in a masked array along the given axis.
Parameters
----------
a : array_like
The input array.
axis : int, optional
Axis along which to perform the operation.
If None (default), applies to a flattened version of the array, and this
is the same as `flatnotmasked_contiguous`.
Returns
-------
endpoints : list
A list of slices (start and end indexes) of unmasked indexes
in the array.
If the input is 2d and axis is specified, the result is a list of lists.
See Also
--------
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
clump_masked, clump_unmasked
Notes
-----
Only accepts 2-D arrays at most.
Examples
--------
>>> a = np.arange(12).reshape((3, 4))
>>> mask = np.zeros_like(a)
>>> mask[1:, :-1] = 1; mask[0, 1] = 1; mask[-1, 0] = 0
>>> ma = np.ma.array(a, mask=mask)
>>> ma
masked_array(
data=[[0, --, 2, 3],
[--, --, --, 7],
[8, --, --, 11]],
mask=[[False, True, False, False],
[ True, True, True, False],
[False, True, True, False]],
fill_value=999999)
>>> np.array(ma[~ma.mask])
array([ 0, 2, 3, 7, 8, 11])
>>> np.ma.notmasked_contiguous(ma)
[slice(0, 1, None), slice(2, 4, None), slice(7, 9, None), slice(11, 12, None)]
>>> np.ma.notmasked_contiguous(ma, axis=0)
[[slice(0, 1, None), slice(2, 3, None)], [], [slice(0, 1, None)], [slice(0, 3, None)]]
>>> np.ma.notmasked_contiguous(ma, axis=1)
[[slice(0, 1, None), slice(2, 4, None)], [slice(3, 4, None)], [slice(0, 1, None), slice(3, 4, None)]]
"""
a = asarray(a)
nd = a.ndim
if nd > 2:
raise NotImplementedError("Currently limited to atmost 2D array.")
if axis is None or nd == 1:
return flatnotmasked_contiguous(a)
#
result = []
#
other = (axis + 1) % 2
idx = [0, 0]
idx[axis] = slice(None, None)
#
for i in range(a.shape[other]):
idx[other] = i
result.append(flatnotmasked_contiguous(a[tuple(idx)]))
return result
def _ezclump(mask):
"""
Finds the clumps (groups of data with the same values) for a 1D bool array.
Returns a series of slices.
"""
if mask.ndim > 1:
mask = mask.ravel()
idx = (mask[1:] ^ mask[:-1]).nonzero()
idx = idx[0] + 1
if mask[0]:
if len(idx) == 0:
return [slice(0, mask.size)]
r = [slice(0, idx[0])]
r.extend((slice(left, right)
for left, right in zip(idx[1:-1:2], idx[2::2])))
else:
if len(idx) == 0:
return []
r = [slice(left, right) for left, right in zip(idx[:-1:2], idx[1::2])]
if mask[-1]:
r.append(slice(idx[-1], mask.size))
return r
def clump_unmasked(a):
"""
Return list of slices corresponding to the unmasked clumps of a 1-D array.
(A "clump" is defined as a contiguous region of the array).
Parameters
----------
a : ndarray
A one-dimensional masked array.
Returns
-------
slices : list of slice
The list of slices, one for each continuous region of unmasked
elements in `a`.
Notes
-----
.. versionadded:: 1.4.0
See Also
--------
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
notmasked_contiguous, clump_masked
Examples
--------
>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_unmasked(a)
[slice(3, 6, None), slice(7, 8, None)]
"""
mask = getattr(a, '_mask', nomask)
if mask is nomask:
return [slice(0, a.size)]
return _ezclump(~mask)
def clump_masked(a):
"""
Returns a list of slices corresponding to the masked clumps of a 1-D array.
(A "clump" is defined as a contiguous region of the array).
Parameters
----------
a : ndarray
A one-dimensional masked array.
Returns
-------
slices : list of slice
The list of slices, one for each continuous region of masked elements
in `a`.
Notes
-----
.. versionadded:: 1.4.0
See Also
--------
flatnotmasked_edges, flatnotmasked_contiguous, notmasked_edges
notmasked_contiguous, clump_unmasked
Examples
--------
>>> a = np.ma.masked_array(np.arange(10))
>>> a[[0, 1, 2, 6, 8, 9]] = np.ma.masked
>>> np.ma.clump_masked(a)
[slice(0, 3, None), slice(6, 7, None), slice(8, 10, None)]
"""
mask = ma.getmask(a)
if mask is nomask:
return []
return _ezclump(mask)
###############################################################################
# Polynomial fit #
###############################################################################
def vander(x, n=None):
"""
Masked values in the input array result in rows of zeros.
"""
_vander = np.vander(x, n)
m = getmask(x)
if m is not nomask:
_vander[m] = 0
return _vander
vander.__doc__ = ma.doc_note(np.vander.__doc__, vander.__doc__)
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
"""
Any masked values in x is propagated in y, and vice-versa.
"""
x = asarray(x)
y = asarray(y)
m = getmask(x)
if y.ndim == 1:
m = mask_or(m, getmask(y))
elif y.ndim == 2:
my = getmask(mask_rows(y))
if my is not nomask:
m = mask_or(m, my[:, 0])
else:
raise TypeError("Expected a 1D or 2D array for y!")
if w is not None:
w = asarray(w)
if w.ndim != 1:
raise TypeError("expected a 1-d array for weights")
if w.shape[0] != y.shape[0]:
raise TypeError("expected w and y to have the same length")
m = mask_or(m, getmask(w))
if m is not nomask:
not_m = ~m
if w is not None:
w = w[not_m]
return np.polyfit(x[not_m], y[not_m], deg, rcond, full, w, cov)
else:
return np.polyfit(x, y, deg, rcond, full, w, cov)
polyfit.__doc__ = ma.doc_note(np.polyfit.__doc__, polyfit.__doc__)