test_mixins.py
6.87 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numbers
import operator
import numpy as np
from numpy.testing import assert_, assert_equal, assert_raises
# NOTE: This class should be kept as an exact copy of the example from the
# docstring for NDArrayOperatorsMixin.
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
def __init__(self, value):
self.value = np.asarray(value)
# One might also consider adding the built-in list type to this
# list, to support operations like np.add(array_like, list)
_HANDLED_TYPES = (np.ndarray, numbers.Number)
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
out = kwargs.get('out', ())
for x in inputs + out:
# Only support operations with instances of _HANDLED_TYPES.
# Use ArrayLike instead of type(self) for isinstance to
# allow subclasses that don't override __array_ufunc__ to
# handle ArrayLike objects.
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
return NotImplemented
# Defer to the implementation of the ufunc on unwrapped values.
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
for x in inputs)
if out:
kwargs['out'] = tuple(
x.value if isinstance(x, ArrayLike) else x
for x in out)
result = getattr(ufunc, method)(*inputs, **kwargs)
if type(result) is tuple:
# multiple return values
return tuple(type(self)(x) for x in result)
elif method == 'at':
# no return value
return None
else:
# one return value
return type(self)(result)
def __repr__(self):
return '%s(%r)' % (type(self).__name__, self.value)
def wrap_array_like(result):
if type(result) is tuple:
return tuple(ArrayLike(r) for r in result)
else:
return ArrayLike(result)
def _assert_equal_type_and_value(result, expected, err_msg=None):
assert_equal(type(result), type(expected), err_msg=err_msg)
if isinstance(result, tuple):
assert_equal(len(result), len(expected), err_msg=err_msg)
for result_item, expected_item in zip(result, expected):
_assert_equal_type_and_value(result_item, expected_item, err_msg)
else:
assert_equal(result.value, expected.value, err_msg=err_msg)
assert_equal(getattr(result.value, 'dtype', None),
getattr(expected.value, 'dtype', None), err_msg=err_msg)
_ALL_BINARY_OPERATORS = [
operator.lt,
operator.le,
operator.eq,
operator.ne,
operator.gt,
operator.ge,
operator.add,
operator.sub,
operator.mul,
operator.truediv,
operator.floordiv,
operator.mod,
divmod,
pow,
operator.lshift,
operator.rshift,
operator.and_,
operator.xor,
operator.or_,
]
class TestNDArrayOperatorsMixin:
def test_array_like_add(self):
def check(result):
_assert_equal_type_and_value(result, ArrayLike(0))
check(ArrayLike(0) + 0)
check(0 + ArrayLike(0))
check(ArrayLike(0) + np.array(0))
check(np.array(0) + ArrayLike(0))
check(ArrayLike(np.array(0)) + 0)
check(0 + ArrayLike(np.array(0)))
check(ArrayLike(np.array(0)) + np.array(0))
check(np.array(0) + ArrayLike(np.array(0)))
def test_inplace(self):
array_like = ArrayLike(np.array([0]))
array_like += 1
_assert_equal_type_and_value(array_like, ArrayLike(np.array([1])))
array = np.array([0])
array += ArrayLike(1)
_assert_equal_type_and_value(array, ArrayLike(np.array([1])))
def test_opt_out(self):
class OptOut:
"""Object that opts out of __array_ufunc__."""
__array_ufunc__ = None
def __add__(self, other):
return self
def __radd__(self, other):
return self
array_like = ArrayLike(1)
opt_out = OptOut()
# supported operations
assert_(array_like + opt_out is opt_out)
assert_(opt_out + array_like is opt_out)
# not supported
with assert_raises(TypeError):
# don't use the Python default, array_like = array_like + opt_out
array_like += opt_out
with assert_raises(TypeError):
array_like - opt_out
with assert_raises(TypeError):
opt_out - array_like
def test_subclass(self):
class SubArrayLike(ArrayLike):
"""Should take precedence over ArrayLike."""
x = ArrayLike(0)
y = SubArrayLike(1)
_assert_equal_type_and_value(x + y, y)
_assert_equal_type_and_value(y + x, y)
def test_object(self):
x = ArrayLike(0)
obj = object()
with assert_raises(TypeError):
x + obj
with assert_raises(TypeError):
obj + x
with assert_raises(TypeError):
x += obj
def test_unary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in [operator.neg,
operator.pos,
abs,
operator.invert]:
_assert_equal_type_and_value(op(array_like), ArrayLike(op(array)))
def test_forward_binary_methods(self):
array = np.array([-1, 0, 1, 2])
array_like = ArrayLike(array)
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(array, 1))
actual = op(array_like, 1)
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_reflected_binary_methods(self):
for op in _ALL_BINARY_OPERATORS:
expected = wrap_array_like(op(2, 1))
actual = op(2, ArrayLike(1))
err_msg = 'failed for operator {}'.format(op)
_assert_equal_type_and_value(expected, actual, err_msg=err_msg)
def test_matmul(self):
array = np.array([1, 2], dtype=np.float64)
array_like = ArrayLike(array)
expected = ArrayLike(np.float64(5))
_assert_equal_type_and_value(expected, np.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array_like, array))
_assert_equal_type_and_value(
expected, operator.matmul(array, array_like))
def test_ufunc_at(self):
array = ArrayLike(np.array([1, 2, 3, 4]))
assert_(np.negative.at(array, np.array([0, 1])) is None)
_assert_equal_type_and_value(array, ArrayLike([-1, -2, 3, 4]))
def test_ufunc_two_outputs(self):
mantissa, exponent = np.frexp(2 ** -3)
expected = (ArrayLike(mantissa), ArrayLike(exponent))
_assert_equal_type_and_value(
np.frexp(ArrayLike(2 ** -3)), expected)
_assert_equal_type_and_value(
np.frexp(ArrayLike(np.array(2 ** -3))), expected)