test_utils.py 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
from copy import copy
from itertools import chain
import warnings
import string
import timeit

import pytest
import numpy as np
import scipy.sparse as sp

from sklearn.utils._testing import (assert_array_equal,
                                    assert_allclose_dense_sparse,
                                    assert_warns_message,
                                    assert_no_warnings,
                                    _convert_container)
from sklearn.utils import check_random_state
from sklearn.utils import _determine_key_type
from sklearn.utils import deprecated
from sklearn.utils import gen_batches
from sklearn.utils import _get_column_indices
from sklearn.utils import resample
from sklearn.utils import safe_mask
from sklearn.utils import column_or_1d
from sklearn.utils import _safe_indexing
from sklearn.utils import shuffle
from sklearn.utils import gen_even_slices
from sklearn.utils import _message_with_time, _print_elapsed_time
from sklearn.utils import get_chunk_n_rows
from sklearn.utils import is_scalar_nan
from sklearn.utils import _to_object_array
from sklearn.utils._mocking import MockDataFrame
from sklearn import config_context

# toy array
X_toy = np.arange(9).reshape((3, 3))


def test_make_rng():
    # Check the check_random_state utility function behavior
    assert check_random_state(None) is np.random.mtrand._rand
    assert check_random_state(np.random) is np.random.mtrand._rand

    rng_42 = np.random.RandomState(42)
    assert check_random_state(42).randint(100) == rng_42.randint(100)

    rng_42 = np.random.RandomState(42)
    assert check_random_state(rng_42) is rng_42

    rng_42 = np.random.RandomState(42)
    assert check_random_state(43).randint(100) != rng_42.randint(100)

    with pytest.raises(ValueError):
        check_random_state("some invalid seed")


def test_gen_batches():
    # Make sure gen_batches errors on invalid batch_size

    assert_array_equal(
        list(gen_batches(4, 2)),
        [slice(0, 2, None), slice(2, 4, None)]
    )
    msg_zero = "gen_batches got batch_size=0, must be positive"
    with pytest.raises(ValueError, match=msg_zero):
        next(gen_batches(4, 0))

    msg_float = "gen_batches got batch_size=0.5, must be an integer"
    with pytest.raises(TypeError, match=msg_float):
        next(gen_batches(4, 0.5))


def test_deprecated():
    # Test whether the deprecated decorator issues appropriate warnings
    # Copied almost verbatim from https://docs.python.org/library/warnings.html

    # First a function...
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated()
        def ham():
            return "spam"

        spam = ham()

        assert spam == "spam"     # function must remain usable

        assert len(w) == 1
        assert issubclass(w[0].category, FutureWarning)
        assert "deprecated" in str(w[0].message).lower()

    # ... then a class.
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated("don't use this")
        class Ham:
            SPAM = 1

        ham = Ham()

        assert hasattr(ham, "SPAM")

        assert len(w) == 1
        assert issubclass(w[0].category, FutureWarning)
        assert "deprecated" in str(w[0].message).lower()


def test_resample():
    # Border case not worth mentioning in doctests
    assert resample() is None

    # Check that invalid arguments yield ValueError
    with pytest.raises(ValueError):
        resample([0], [0, 1])
    with pytest.raises(ValueError):
        resample([0, 1], [0, 1], replace=False, n_samples=3)

    with pytest.raises(ValueError):
        resample([0, 1], [0, 1], meaning_of_life=42)
    # Issue:6581, n_samples can be more when replace is True (default).
    assert len(resample([1, 2], n_samples=5)) == 5


def test_resample_stratified():
    # Make sure resample can stratify
    rng = np.random.RandomState(0)
    n_samples = 100
    p = .9
    X = rng.normal(size=(n_samples, 1))
    y = rng.binomial(1, p, size=n_samples)

    _, y_not_stratified = resample(X, y, n_samples=10, random_state=0,
                                   stratify=None)
    assert np.all(y_not_stratified == 1)

    _, y_stratified = resample(X, y, n_samples=10, random_state=0, stratify=y)
    assert not np.all(y_stratified == 1)
    assert np.sum(y_stratified) == 9  # all 1s, one 0


def test_resample_stratified_replace():
    # Make sure stratified resampling supports the replace parameter
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 1))
    y = rng.randint(0, 2, size=n_samples)

    X_replace, _ = resample(X, y, replace=True, n_samples=50,
                            random_state=rng, stratify=y)
    X_no_replace, _ = resample(X, y, replace=False, n_samples=50,
                               random_state=rng, stratify=y)
    assert np.unique(X_replace).shape[0] < 50
    assert np.unique(X_no_replace).shape[0] == 50

    # make sure n_samples can be greater than X.shape[0] if we sample with
    # replacement
    X_replace, _ = resample(X, y, replace=True, n_samples=1000,
                            random_state=rng, stratify=y)
    assert X_replace.shape[0] == 1000
    assert np.unique(X_replace).shape[0] == 100


def test_resample_stratify_2dy():
    # Make sure y can be 2d when stratifying
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 1))
    y = rng.randint(0, 2, size=(n_samples, 2))
    X, y = resample(X, y, n_samples=50, random_state=rng, stratify=y)
    assert y.ndim == 2


def test_resample_stratify_sparse_error():
    # resample must be ndarray
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 2))
    y = rng.randint(0, 2, size=n_samples)
    stratify = sp.csr_matrix(y)
    with pytest.raises(TypeError, match='A sparse matrix was passed'):
        X, y = resample(X, y, n_samples=50, random_state=rng,
                        stratify=stratify)


def test_safe_mask():
    random_state = check_random_state(0)
    X = random_state.rand(5, 4)
    X_csr = sp.csr_matrix(X)
    mask = [False, False, True, True, True]

    mask = safe_mask(X, mask)
    assert X[mask].shape[0] == 3

    mask = safe_mask(X_csr, mask)
    assert X_csr[mask].shape[0] == 3


def test_column_or_1d():
    EXAMPLES = [
        ("binary", ["spam", "egg", "spam"]),
        ("binary", [0, 1, 0, 1]),
        ("continuous", np.arange(10) / 20.),
        ("multiclass", [1, 2, 3]),
        ("multiclass", [0, 1, 2, 2, 0]),
        ("multiclass", [[1], [2], [3]]),
        ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
        ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("continuous-multioutput", np.arange(30).reshape((-1, 3))),
    ]

    for y_type, y in EXAMPLES:
        if y_type in ["binary", 'multiclass', "continuous"]:
            assert_array_equal(column_or_1d(y), np.ravel(y))
        else:
            with pytest.raises(ValueError):
                column_or_1d(y)


@pytest.mark.parametrize(
    "key, dtype",
    [(0, 'int'),
     ('0', 'str'),
     (True, 'bool'),
     (np.bool_(True), 'bool'),
     ([0, 1, 2], 'int'),
     (['0', '1', '2'], 'str'),
     ((0, 1, 2), 'int'),
     (('0', '1', '2'), 'str'),
     (slice(None, None), None),
     (slice(0, 2), 'int'),
     (np.array([0, 1, 2], dtype=np.int32), 'int'),
     (np.array([0, 1, 2], dtype=np.int64), 'int'),
     (np.array([0, 1, 2], dtype=np.uint8), 'int'),
     ([True, False], 'bool'),
     ((True, False), 'bool'),
     (np.array([True, False]), 'bool'),
     ('col_0', 'str'),
     (['col_0', 'col_1', 'col_2'], 'str'),
     (('col_0', 'col_1', 'col_2'), 'str'),
     (slice('begin', 'end'), 'str'),
     (np.array(['col_0', 'col_1', 'col_2']), 'str'),
     (np.array(['col_0', 'col_1', 'col_2'], dtype=object), 'str')]
)
def test_determine_key_type(key, dtype):
    assert _determine_key_type(key) == dtype


def test_determine_key_type_error():
    with pytest.raises(ValueError, match="No valid specification of the"):
        _determine_key_type(1.0)


def test_determine_key_type_slice_error():
    with pytest.raises(TypeError, match="Only array-like or scalar are"):
        _determine_key_type(slice(0, 2, 1), accept_slice=False)


@pytest.mark.parametrize(
    "array_type", ["list", "array", "sparse", "dataframe"]
)
@pytest.mark.parametrize(
    "indices_type", ["list", "tuple", "array", "series", "slice"]
)
def test_safe_indexing_2d_container_axis_0(array_type, indices_type):
    indices = [1, 2]
    if indices_type == 'slice' and isinstance(indices[1], int):
        indices[1] += 1
    array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(
        subset, _convert_container([[4, 5, 6], [7, 8, 9]], array_type)
    )


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize(
    "indices_type", ["list", "tuple", "array", "series", "slice"]
)
def test_safe_indexing_1d_container(array_type, indices_type):
    indices = [1, 2]
    if indices_type == 'slice' and isinstance(indices[1], int):
        indices[1] += 1
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(
        subset, _convert_container([2, 3], array_type)
    )


@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize(
    "indices_type", ["list", "tuple", "array", "series", "slice"]
)
@pytest.mark.parametrize("indices", [[1, 2], ["col_1", "col_2"]])
def test_safe_indexing_2d_container_axis_1(array_type, indices_type, indices):
    # validation of the indices
    # we make a copy because indices is mutable and shared between tests
    indices_converted = copy(indices)
    if indices_type == 'slice' and isinstance(indices[1], int):
        indices_converted[1] += 1

    columns_name = ['col_0', 'col_1', 'col_2']
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )
    indices_converted = _convert_container(indices_converted, indices_type)

    if isinstance(indices[0], str) and array_type != 'dataframe':
        err_msg = ("Specifying the columns using strings is only supported "
                   "for pandas DataFrames")
        with pytest.raises(ValueError, match=err_msg):
            _safe_indexing(array, indices_converted, axis=1)
    else:
        subset = _safe_indexing(array, indices_converted, axis=1)
        assert_allclose_dense_sparse(
            subset, _convert_container([[2, 3], [5, 6], [8, 9]], array_type)
        )


@pytest.mark.parametrize("array_read_only", [True, False])
@pytest.mark.parametrize("indices_read_only", [True, False])
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["array", "series"])
@pytest.mark.parametrize(
    "axis, expected_array",
    [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])]
)
def test_safe_indexing_2d_read_only_axis_1(array_read_only, indices_read_only,
                                           array_type, indices_type, axis,
                                           expected_array):
    array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    if array_read_only:
        array.setflags(write=False)
    array = _convert_container(array, array_type)
    indices = np.array([1, 2])
    if indices_read_only:
        indices.setflags(write=False)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=axis)
    assert_allclose_dense_sparse(
        subset, _convert_container(expected_array, array_type)
    )


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
def test_safe_indexing_1d_container_mask(array_type, indices_type):
    indices = [False] + [True] * 2 + [False] * 6
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(
        subset, _convert_container([2, 3], array_type)
    )


@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
@pytest.mark.parametrize(
    "axis, expected_subset",
    [(0, [[4, 5, 6], [7, 8, 9]]),
     (1, [[2, 3], [5, 6], [8, 9]])]
)
def test_safe_indexing_2d_mask(array_type, indices_type, axis,
                               expected_subset):
    columns_name = ['col_0', 'col_1', 'col_2']
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )
    indices = [False, True, True]
    indices = _convert_container(indices, indices_type)

    subset = _safe_indexing(array, indices, axis=axis)
    assert_allclose_dense_sparse(
        subset, _convert_container(expected_subset, array_type)
    )


@pytest.mark.parametrize(
    "array_type, expected_output_type",
    [("list", "list"), ("array", "array"),
     ("sparse", "sparse"), ("dataframe", "series")]
)
def test_safe_indexing_2d_scalar_axis_0(array_type, expected_output_type):
    array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    indices = 2
    subset = _safe_indexing(array, indices, axis=0)
    expected_array = _convert_container([7, 8, 9], expected_output_type)
    assert_allclose_dense_sparse(subset, expected_array)


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
def test_safe_indexing_1d_scalar(array_type):
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = 2
    subset = _safe_indexing(array, indices, axis=0)
    assert subset == 3


@pytest.mark.parametrize(
    "array_type, expected_output_type",
    [("array", "array"), ("sparse", "sparse"), ("dataframe", "series")]
)
@pytest.mark.parametrize("indices", [2, "col_2"])
def test_safe_indexing_2d_scalar_axis_1(array_type, expected_output_type,
                                        indices):
    columns_name = ['col_0', 'col_1', 'col_2']
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )

    if isinstance(indices, str) and array_type != 'dataframe':
        err_msg = ("Specifying the columns using strings is only supported "
                   "for pandas DataFrames")
        with pytest.raises(ValueError, match=err_msg):
            _safe_indexing(array, indices, axis=1)
    else:
        subset = _safe_indexing(array, indices, axis=1)
        expected_output = [3, 6, 9]
        if expected_output_type == 'sparse':
            # sparse matrix are keeping the 2D shape
            expected_output = [[3], [6], [9]]
        expected_array = _convert_container(
            expected_output, expected_output_type
        )
        assert_allclose_dense_sparse(subset, expected_array)


@pytest.mark.parametrize("array_type", ["list", "array", "sparse"])
def test_safe_indexing_None_axis_0(array_type):
    X = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    X_subset = _safe_indexing(X, None, axis=0)
    assert_allclose_dense_sparse(X_subset, X)


def test_safe_indexing_pandas_no_matching_cols_error():
    pd = pytest.importorskip('pandas')
    err_msg = "No valid specification of the columns."
    X = pd.DataFrame(X_toy)
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(X, [1.0], axis=1)


@pytest.mark.parametrize("axis", [None, 3])
def test_safe_indexing_error_axis(axis):
    with pytest.raises(ValueError, match="'axis' should be either 0"):
        _safe_indexing(X_toy, [0, 1], axis=axis)


@pytest.mark.parametrize("X_constructor", ['array', 'series'])
def test_safe_indexing_1d_array_error(X_constructor):
    # check that we are raising an error if the array-like passed is 1D and
    # we try to index on the 2nd dimension
    X = list(range(5))
    if X_constructor == 'array':
        X_constructor = np.asarray(X)
    elif X_constructor == 'series':
        pd = pytest.importorskip("pandas")
        X_constructor = pd.Series(X)

    err_msg = "'X' should be a 2D NumPy array, 2D sparse matrix or pandas"
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(X_constructor, [0, 1], axis=1)


def test_safe_indexing_container_axis_0_unsupported_type():
    indices = ["col_1", "col_2"]
    array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    err_msg = "String indexing is not supported with 'axis=0'"
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(array, indices, axis=0)


@pytest.mark.parametrize(
    "key, err_msg",
    [(10, r"all features must be in \[0, 2\]"),
     ('whatever', 'A given column is not a column of the dataframe')]
)
def test_get_column_indices_error(key, err_msg):
    pd = pytest.importorskip("pandas")
    X_df = pd.DataFrame(X_toy, columns=['col_0', 'col_1', 'col_2'])

    with pytest.raises(ValueError, match=err_msg):
        _get_column_indices(X_df, key)


@pytest.mark.parametrize(
    "key",
    [['col1'], ['col2'], ['col1', 'col2'], ['col1', 'col3'], ['col2', 'col3']]
)
def test_get_column_indices_pandas_nonunique_columns_error(key):
    pd = pytest.importorskip('pandas')
    toy = np.zeros((1, 5), dtype=int)
    columns = ['col1', 'col1', 'col2', 'col3', 'col2']
    X = pd.DataFrame(toy, columns=columns)

    err_msg = "Selected columns, {}, are not unique in dataframe".format(key)
    with pytest.raises(ValueError) as exc_info:
        _get_column_indices(X, key)
    assert str(exc_info.value) == err_msg


def test_shuffle_on_ndim_equals_three():
    def to_tuple(A):    # to make the inner arrays hashable
        return tuple(tuple(tuple(C) for C in B) for B in A)

    A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])  # A.shape = (2,2,2)
    S = set(to_tuple(A))
    shuffle(A)  # shouldn't raise a ValueError for dim = 3
    assert set(to_tuple(A)) == S


def test_shuffle_dont_convert_to_array():
    # Check that shuffle does not try to convert to numpy arrays with float
    # dtypes can let any indexable datastructure pass-through.
    a = ['a', 'b', 'c']
    b = np.array(['a', 'b', 'c'], dtype=object)
    c = [1, 2, 3]
    d = MockDataFrame(np.array([['a', 0],
                                ['b', 1],
                                ['c', 2]],
                      dtype=object))
    e = sp.csc_matrix(np.arange(6).reshape(3, 2))
    a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0)

    assert a_s == ['c', 'b', 'a']
    assert type(a_s) == list

    assert_array_equal(b_s, ['c', 'b', 'a'])
    assert b_s.dtype == object

    assert c_s == [3, 2, 1]
    assert type(c_s) == list

    assert_array_equal(d_s, np.array([['c', 2],
                                      ['b', 1],
                                      ['a', 0]],
                                     dtype=object))
    assert type(d_s) == MockDataFrame

    assert_array_equal(e_s.toarray(), np.array([[4, 5],
                                                [2, 3],
                                                [0, 1]]))


def test_gen_even_slices():
    # check that gen_even_slices contains all samples
    some_range = range(10)
    joined_range = list(chain(*[some_range[slice] for slice in
                                gen_even_slices(10, 3)]))
    assert_array_equal(some_range, joined_range)

    # check that passing negative n_chunks raises an error
    slices = gen_even_slices(10, -1)
    with pytest.raises(ValueError, match="gen_even_slices got n_packs=-1,"
                                         " must be >=1"):
        next(slices)


@pytest.mark.parametrize(
    ('row_bytes', 'max_n_rows', 'working_memory', 'expected', 'warning'),
    [(1024, None, 1, 1024, None),
     (1024, None, 0.99999999, 1023, None),
     (1023, None, 1, 1025, None),
     (1025, None, 1, 1023, None),
     (1024, None, 2, 2048, None),
     (1024, 7, 1, 7, None),
     (1024 * 1024, None, 1, 1, None),
     (1024 * 1024 + 1, None, 1, 1,
      'Could not adhere to working_memory config. '
      'Currently 1MiB, 2MiB required.'),
     ])
def test_get_chunk_n_rows(row_bytes, max_n_rows, working_memory,
                          expected, warning):
    if warning is not None:
        def check_warning(*args, **kw):
            return assert_warns_message(UserWarning, warning, *args, **kw)
    else:
        check_warning = assert_no_warnings

    actual = check_warning(get_chunk_n_rows,
                           row_bytes=row_bytes,
                           max_n_rows=max_n_rows,
                           working_memory=working_memory)

    assert actual == expected
    assert type(actual) is type(expected)
    with config_context(working_memory=working_memory):
        actual = check_warning(get_chunk_n_rows,
                               row_bytes=row_bytes,
                               max_n_rows=max_n_rows)
        assert actual == expected
        assert type(actual) is type(expected)


@pytest.mark.parametrize(
    ['source', 'message', 'is_long'],
    [
        ('ABC', string.ascii_lowercase, False),
        ('ABCDEF', string.ascii_lowercase, False),
        ('ABC', string.ascii_lowercase * 3, True),
        ('ABC' * 10, string.ascii_lowercase, True),
        ('ABC', string.ascii_lowercase + u'\u1048', False),
    ])
@pytest.mark.parametrize(
    ['time', 'time_str'],
    [
        (0.2, '   0.2s'),
        (20, '  20.0s'),
        (2000, '33.3min'),
        (20000, '333.3min'),
    ])
def test_message_with_time(source, message, is_long, time, time_str):
    out = _message_with_time(source, message, time)
    if is_long:
        assert len(out) > 70
    else:
        assert len(out) == 70

    assert out.startswith('[' + source + '] ')
    out = out[len(source) + 3:]

    assert out.endswith(time_str)
    out = out[:-len(time_str)]
    assert out.endswith(', total=')
    out = out[:-len(', total=')]
    assert out.endswith(message)
    out = out[:-len(message)]
    assert out.endswith(' ')
    out = out[:-1]

    if is_long:
        assert not out
    else:
        assert list(set(out)) == ['.']


@pytest.mark.parametrize(
    ['message', 'expected'],
    [
        ('hello', _message_with_time('ABC', 'hello', 0.1) + '\n'),
        ('', _message_with_time('ABC', '', 0.1) + '\n'),
        (None, ''),
    ])
def test_print_elapsed_time(message, expected, capsys, monkeypatch):
    monkeypatch.setattr(timeit, 'default_timer', lambda: 0)
    with _print_elapsed_time('ABC', message):
        monkeypatch.setattr(timeit, 'default_timer', lambda: 0.1)
    assert capsys.readouterr().out == expected


@pytest.mark.parametrize("value, result", [(float("nan"), True),
                                           (np.nan, True),
                                           (np.float("nan"), True),
                                           (np.float32("nan"), True),
                                           (np.float64("nan"), True),
                                           (0, False),
                                           (0., False),
                                           (None, False),
                                           ("", False),
                                           ("nan", False),
                                           ([np.nan], False)])
def test_is_scalar_nan(value, result):
    assert is_scalar_nan(value) is result


def dummy_func():
    pass


def test_deprecation_joblib_api(tmpdir):

    # Only parallel_backend and register_parallel_backend are not deprecated in
    # sklearn.utils
    from sklearn.utils import parallel_backend, register_parallel_backend
    assert_no_warnings(parallel_backend, 'loky', None)
    assert_no_warnings(register_parallel_backend, 'failing', None)

    from sklearn.utils._joblib import joblib
    del joblib.parallel.BACKENDS['failing']


@pytest.mark.parametrize(
    "sequence",
    [[np.array(1), np.array(2)], [[1, 2], [3, 4]]]
)
def test_to_object_array(sequence):
    out = _to_object_array(sequence)
    assert isinstance(out, np.ndarray)
    assert out.dtype.kind == 'O'
    assert out.ndim == 1