test_extmath.py 26.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
# Authors: Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Denis Engemann <denis-alexander.engemann@inria.fr>
#
# License: BSD 3 clause

import numpy as np
from scipy import sparse
from scipy import linalg
from scipy import stats
from scipy.special import expit

import pytest

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_allclose_dense_sparse
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import skip_if_32bit

from sklearn.utils.extmath import density
from sklearn.utils.extmath import randomized_svd
from sklearn.utils.extmath import row_norms
from sklearn.utils.extmath import weighted_mode
from sklearn.utils.extmath import cartesian
from sklearn.utils.extmath import log_logistic
from sklearn.utils.extmath import svd_flip
from sklearn.utils.extmath import _incremental_mean_and_var
from sklearn.utils.extmath import _deterministic_vector_sign_flip
from sklearn.utils.extmath import softmax
from sklearn.utils.extmath import stable_cumsum
from sklearn.utils.extmath import safe_min
from sklearn.utils.extmath import safe_sparse_dot
from sklearn.datasets import make_low_rank_matrix


def test_density():
    rng = np.random.RandomState(0)
    X = rng.randint(10, size=(10, 5))
    X[1, 2] = 0
    X[5, 3] = 0
    X_csr = sparse.csr_matrix(X)
    X_csc = sparse.csc_matrix(X)
    X_coo = sparse.coo_matrix(X)
    X_lil = sparse.lil_matrix(X)

    for X_ in (X_csr, X_csc, X_coo, X_lil):
        assert density(X_) == density(X)


def test_uniform_weights():
    # with uniform weights, results should be identical to stats.mode
    rng = np.random.RandomState(0)
    x = rng.randint(10, size=(10, 5))
    weights = np.ones(x.shape)

    for axis in (None, 0, 1):
        mode, score = stats.mode(x, axis)
        mode2, score2 = weighted_mode(x, weights, axis=axis)

        assert_array_equal(mode, mode2)
        assert_array_equal(score, score2)


def test_random_weights():
    # set this up so that each row should have a weighted mode of 6,
    # with a score that is easily reproduced
    mode_result = 6

    rng = np.random.RandomState(0)
    x = rng.randint(mode_result, size=(100, 10))
    w = rng.random_sample(x.shape)

    x[:, :5] = mode_result
    w[:, :5] += 1

    mode, score = weighted_mode(x, w, axis=1)

    assert_array_equal(mode, mode_result)
    assert_array_almost_equal(score.ravel(), w[:, :5].sum(1))


def check_randomized_svd_low_rank(dtype):
    # Check that extmath.randomized_svd is consistent with linalg.svd
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10
    decimal = 5 if dtype == np.float32 else 7
    dtype = np.dtype(dtype)

    # generate a matrix X of approximate effective rank `rank` and no noise
    # component (very structured signal):
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.0,
                             random_state=0).astype(dtype, copy=False)
    assert X.shape == (n_samples, n_features)

    # compute the singular values of X using the slow exact method
    U, s, V = linalg.svd(X, full_matrices=False)

    # Convert the singular values to the specific dtype
    U = U.astype(dtype, copy=False)
    s = s.astype(dtype, copy=False)
    V = V.astype(dtype, copy=False)

    for normalizer in ['auto', 'LU', 'QR']:  # 'none' would not be stable
        # compute the singular values of X using the fast approximate method
        Ua, sa, Va = randomized_svd(
            X, k, power_iteration_normalizer=normalizer, random_state=0)

        # If the input dtype is float, then the output dtype is float of the
        # same bit size (f32 is not upcast to f64)
        # But if the input dtype is int, the output dtype is float64
        if dtype.kind == 'f':
            assert Ua.dtype == dtype
            assert sa.dtype == dtype
            assert Va.dtype == dtype
        else:
            assert Ua.dtype == np.float64
            assert sa.dtype == np.float64
            assert Va.dtype == np.float64

        assert Ua.shape == (n_samples, k)
        assert sa.shape == (k,)
        assert Va.shape == (k, n_features)

        # ensure that the singular values of both methods are equal up to the
        # real rank of the matrix
        assert_almost_equal(s[:k], sa, decimal=decimal)

        # check the singular vectors too (while not checking the sign)
        assert_almost_equal(np.dot(U[:, :k], V[:k, :]), np.dot(Ua, Va),
                            decimal=decimal)

        # check the sparse matrix representation
        X = sparse.csr_matrix(X)

        # compute the singular values of X using the fast approximate method
        Ua, sa, Va = \
            randomized_svd(X, k, power_iteration_normalizer=normalizer,
                           random_state=0)
        if dtype.kind == 'f':
            assert Ua.dtype == dtype
            assert sa.dtype == dtype
            assert Va.dtype == dtype
        else:
            assert Ua.dtype.kind == 'f'
            assert sa.dtype.kind == 'f'
            assert Va.dtype.kind == 'f'

        assert_almost_equal(s[:rank], sa[:rank], decimal=decimal)


@pytest.mark.parametrize('dtype',
                         (np.int32, np.int64, np.float32, np.float64))
def test_randomized_svd_low_rank_all_dtypes(dtype):
    check_randomized_svd_low_rank(dtype)


@pytest.mark.parametrize('dtype',
                         (np.float32, np.float64))
def test_row_norms(dtype):
    X = np.random.RandomState(42).randn(100, 100)
    if dtype is np.float32:
        precision = 4
    else:
        precision = 5

    X = X.astype(dtype, copy=False)
    sq_norm = (X ** 2).sum(axis=1)

    assert_array_almost_equal(sq_norm, row_norms(X, squared=True),
                              precision)
    assert_array_almost_equal(np.sqrt(sq_norm), row_norms(X), precision)

    for csr_index_dtype in [np.int32, np.int64]:
        Xcsr = sparse.csr_matrix(X, dtype=dtype)
        # csr_matrix will use int32 indices by default,
        # up-casting those to int64 when necessary
        if csr_index_dtype is np.int64:
            Xcsr.indptr = Xcsr.indptr.astype(csr_index_dtype, copy=False)
            Xcsr.indices = Xcsr.indices.astype(csr_index_dtype, copy=False)
        assert Xcsr.indices.dtype == csr_index_dtype
        assert Xcsr.indptr.dtype == csr_index_dtype
        assert_array_almost_equal(sq_norm, row_norms(Xcsr, squared=True),
                                  precision)
        assert_array_almost_equal(np.sqrt(sq_norm), row_norms(Xcsr),
                                  precision)


def test_randomized_svd_low_rank_with_noise():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # generate a matrix X wity structure approximate rank `rank` and an
    # important noisy component
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.1,
                             random_state=0)
    assert X.shape == (n_samples, n_features)

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)

    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate
        # method without the iterated power method
        _, sa, _ = randomized_svd(X, k, n_iter=0,
                                  power_iteration_normalizer=normalizer,
                                  random_state=0)

        # the approximation does not tolerate the noise:
        assert np.abs(s[:k] - sa).max() > 0.01

        # compute the singular values of X using the fast approximate
        # method with iterated power method
        _, sap, _ = randomized_svd(X, k,
                                   power_iteration_normalizer=normalizer,
                                   random_state=0)

        # the iterated power method is helping getting rid of the noise:
        assert_almost_equal(s[:k], sap, decimal=3)


def test_randomized_svd_infinite_rank():
    # Check that extmath.randomized_svd can handle noisy matrices
    n_samples = 100
    n_features = 500
    rank = 5
    k = 10

    # let us try again without 'low_rank component': just regularly but slowly
    # decreasing singular values: the rank of the data matrix is infinite
    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=1.0,
                             random_state=0)
    assert X.shape == (n_samples, n_features)

    # compute the singular values of X using the slow exact method
    _, s, _ = linalg.svd(X, full_matrices=False)
    for normalizer in ['auto', 'none', 'LU', 'QR']:
        # compute the singular values of X using the fast approximate method
        # without the iterated power method
        _, sa, _ = randomized_svd(X, k, n_iter=0,
                                  power_iteration_normalizer=normalizer)

        # the approximation does not tolerate the noise:
        assert np.abs(s[:k] - sa).max() > 0.1

        # compute the singular values of X using the fast approximate method
        # with iterated power method
        _, sap, _ = randomized_svd(X, k, n_iter=5,
                                   power_iteration_normalizer=normalizer)

        # the iterated power method is still managing to get most of the
        # structure at the requested rank
        assert_almost_equal(s[:k], sap, decimal=3)


def test_randomized_svd_transpose_consistency():
    # Check that transposing the design matrix has limited impact
    n_samples = 100
    n_features = 500
    rank = 4
    k = 10

    X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features,
                             effective_rank=rank, tail_strength=0.5,
                             random_state=0)
    assert X.shape == (n_samples, n_features)

    U1, s1, V1 = randomized_svd(X, k, n_iter=3, transpose=False,
                                random_state=0)
    U2, s2, V2 = randomized_svd(X, k, n_iter=3, transpose=True,
                                random_state=0)
    U3, s3, V3 = randomized_svd(X, k, n_iter=3, transpose='auto',
                                random_state=0)
    U4, s4, V4 = linalg.svd(X, full_matrices=False)

    assert_almost_equal(s1, s4[:k], decimal=3)
    assert_almost_equal(s2, s4[:k], decimal=3)
    assert_almost_equal(s3, s4[:k], decimal=3)

    assert_almost_equal(np.dot(U1, V1), np.dot(U4[:, :k], V4[:k, :]),
                        decimal=2)
    assert_almost_equal(np.dot(U2, V2), np.dot(U4[:, :k], V4[:k, :]),
                        decimal=2)

    # in this case 'auto' is equivalent to transpose
    assert_almost_equal(s2, s3)


def test_randomized_svd_power_iteration_normalizer():
    # randomized_svd with power_iteration_normalized='none' diverges for
    # large number of power iterations on this dataset
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(100, 500, effective_rank=50, random_state=rng)
    X += 3 * rng.randint(0, 2, size=X.shape)
    n_components = 50

    # Check that it diverges with many (non-normalized) power iterations
    U, s, V = randomized_svd(X, n_components, n_iter=2,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_2 = linalg.norm(A, ord='fro')
    U, s, V = randomized_svd(X, n_components, n_iter=20,
                             power_iteration_normalizer='none')
    A = X - U.dot(np.diag(s).dot(V))
    error_20 = linalg.norm(A, ord='fro')
    assert np.abs(error_2 - error_20) > 100

    for normalizer in ['LU', 'QR', 'auto']:
        U, s, V = randomized_svd(X, n_components, n_iter=2,
                                 power_iteration_normalizer=normalizer,
                                 random_state=0)
        A = X - U.dot(np.diag(s).dot(V))
        error_2 = linalg.norm(A, ord='fro')

        for i in [5, 10, 50]:
            U, s, V = randomized_svd(X, n_components, n_iter=i,
                                     power_iteration_normalizer=normalizer,
                                     random_state=0)
            A = X - U.dot(np.diag(s).dot(V))
            error = linalg.norm(A, ord='fro')
            assert 15 > np.abs(error_2 - error)


def test_randomized_svd_sparse_warnings():
    # randomized_svd throws a warning for lil and dok matrix
    rng = np.random.RandomState(42)
    X = make_low_rank_matrix(50, 20, effective_rank=10, random_state=rng)
    n_components = 5
    for cls in (sparse.lil_matrix, sparse.dok_matrix):
        X = cls(X)
        assert_warns_message(
            sparse.SparseEfficiencyWarning,
            "Calculating SVD of a {} is expensive. "
            "csr_matrix is more efficient.".format(cls.__name__),
            randomized_svd, X, n_components, n_iter=1,
            power_iteration_normalizer='none')


def test_svd_flip():
    # Check that svd_flip works in both situations, and reconstructs input.
    rs = np.random.RandomState(1999)
    n_samples = 20
    n_features = 10
    X = rs.randn(n_samples, n_features)

    # Check matrix reconstruction
    U, S, V = linalg.svd(X, full_matrices=False)
    U1, V1 = svd_flip(U, V, u_based_decision=False)
    assert_almost_equal(np.dot(U1 * S, V1), X, decimal=6)

    # Check transposed matrix reconstruction
    XT = X.T
    U, S, V = linalg.svd(XT, full_matrices=False)
    U2, V2 = svd_flip(U, V, u_based_decision=True)
    assert_almost_equal(np.dot(U2 * S, V2), XT, decimal=6)

    # Check that different flip methods are equivalent under reconstruction
    U_flip1, V_flip1 = svd_flip(U, V, u_based_decision=True)
    assert_almost_equal(np.dot(U_flip1 * S, V_flip1), XT, decimal=6)
    U_flip2, V_flip2 = svd_flip(U, V, u_based_decision=False)
    assert_almost_equal(np.dot(U_flip2 * S, V_flip2), XT, decimal=6)


def test_randomized_svd_sign_flip():
    a = np.array([[2.0, 0.0], [0.0, 1.0]])
    u1, s1, v1 = randomized_svd(a, 2, flip_sign=True, random_state=41)
    for seed in range(10):
        u2, s2, v2 = randomized_svd(a, 2, flip_sign=True, random_state=seed)
        assert_almost_equal(u1, u2)
        assert_almost_equal(v1, v2)
        assert_almost_equal(np.dot(u2 * s2, v2), a)
        assert_almost_equal(np.dot(u2.T, u2), np.eye(2))
        assert_almost_equal(np.dot(v2.T, v2), np.eye(2))


def test_randomized_svd_sign_flip_with_transpose():
    # Check if the randomized_svd sign flipping is always done based on u
    # irrespective of transpose.
    # See https://github.com/scikit-learn/scikit-learn/issues/5608
    # for more details.
    def max_loading_is_positive(u, v):
        """
        returns bool tuple indicating if the values maximising np.abs
        are positive across all rows for u and across all columns for v.
        """
        u_based = (np.abs(u).max(axis=0) == u.max(axis=0)).all()
        v_based = (np.abs(v).max(axis=1) == v.max(axis=1)).all()
        return u_based, v_based

    mat = np.arange(10 * 8).reshape(10, -1)

    # Without transpose
    u_flipped, _, v_flipped = randomized_svd(mat, 3, flip_sign=True)
    u_based, v_based = max_loading_is_positive(u_flipped, v_flipped)
    assert u_based
    assert not v_based

    # With transpose
    u_flipped_with_transpose, _, v_flipped_with_transpose = randomized_svd(
        mat, 3, flip_sign=True, transpose=True)
    u_based, v_based = max_loading_is_positive(
        u_flipped_with_transpose, v_flipped_with_transpose)
    assert u_based
    assert not v_based


def test_cartesian():
    # Check if cartesian product delivers the right results

    axes = (np.array([1, 2, 3]), np.array([4, 5]), np.array([6, 7]))

    true_out = np.array([[1, 4, 6],
                         [1, 4, 7],
                         [1, 5, 6],
                         [1, 5, 7],
                         [2, 4, 6],
                         [2, 4, 7],
                         [2, 5, 6],
                         [2, 5, 7],
                         [3, 4, 6],
                         [3, 4, 7],
                         [3, 5, 6],
                         [3, 5, 7]])

    out = cartesian(axes)
    assert_array_equal(true_out, out)

    # check single axis
    x = np.arange(3)
    assert_array_equal(x[:, np.newaxis], cartesian((x,)))


def test_logistic_sigmoid():
    # Check correctness and robustness of logistic sigmoid implementation
    def naive_log_logistic(x):
        return np.log(expit(x))

    x = np.linspace(-2, 2, 50)
    assert_array_almost_equal(log_logistic(x), naive_log_logistic(x))

    extreme_x = np.array([-100., 100.])
    assert_array_almost_equal(log_logistic(extreme_x), [-100, 0])


def test_incremental_variance_update_formulas():
    # Test Youngs and Cramer incremental variance formulas.
    # Doggie data from https://www.mathsisfun.com/data/standard-deviation.html
    A = np.array([[600, 470, 170, 430, 300],
                  [600, 470, 170, 430, 300],
                  [600, 470, 170, 430, 300],
                  [600, 470, 170, 430, 300]]).T
    idx = 2
    X1 = A[:idx, :]
    X2 = A[idx:, :]

    old_means = X1.mean(axis=0)
    old_variances = X1.var(axis=0)
    old_sample_count = np.full(X1.shape[1], X1.shape[0], dtype=np.int32)
    final_means, final_variances, final_count = \
        _incremental_mean_and_var(X2, old_means, old_variances,
                                  old_sample_count)
    assert_almost_equal(final_means, A.mean(axis=0), 6)
    assert_almost_equal(final_variances, A.var(axis=0), 6)
    assert_almost_equal(final_count, A.shape[0])


def test_incremental_mean_and_variance_ignore_nan():
    old_means = np.array([535., 535., 535., 535.])
    old_variances = np.array([4225., 4225., 4225., 4225.])
    old_sample_count = np.array([2, 2, 2, 2], dtype=np.int32)

    X = np.array([[170, 170, 170, 170],
                  [430, 430, 430, 430],
                  [300, 300, 300, 300]])

    X_nan = np.array([[170, np.nan, 170, 170],
                      [np.nan, 170, 430, 430],
                      [430, 430, np.nan, 300],
                      [300, 300, 300, np.nan]])

    X_means, X_variances, X_count = _incremental_mean_and_var(
        X, old_means, old_variances, old_sample_count)
    X_nan_means, X_nan_variances, X_nan_count = _incremental_mean_and_var(
        X_nan, old_means, old_variances, old_sample_count)

    assert_allclose(X_nan_means, X_means)
    assert_allclose(X_nan_variances, X_variances)
    assert_allclose(X_nan_count, X_count)


@skip_if_32bit
def test_incremental_variance_numerical_stability():
    # Test Youngs and Cramer incremental variance formulas.

    def np_var(A):
        return A.var(axis=0)

    # Naive one pass variance computation - not numerically stable
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    def one_pass_var(X):
        n = X.shape[0]
        exp_x2 = (X ** 2).sum(axis=0) / n
        expx_2 = (X.sum(axis=0) / n) ** 2
        return exp_x2 - expx_2

    # Two-pass algorithm, stable.
    # We use it as a benchmark. It is not an online algorithm
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Two-pass_algorithm
    def two_pass_var(X):
        mean = X.mean(axis=0)
        Y = X.copy()
        return np.mean((Y - mean)**2, axis=0)

    # Naive online implementation
    # https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Online_algorithm
    # This works only for chunks for size 1
    def naive_mean_variance_update(x, last_mean, last_variance,
                                   last_sample_count):
        updated_sample_count = (last_sample_count + 1)
        samples_ratio = last_sample_count / float(updated_sample_count)
        updated_mean = x / updated_sample_count + last_mean * samples_ratio
        updated_variance = last_variance * samples_ratio + \
            (x - last_mean) * (x - updated_mean) / updated_sample_count
        return updated_mean, updated_variance, updated_sample_count

    # We want to show a case when one_pass_var has error > 1e-3 while
    # _batch_mean_variance_update has less.
    tol = 200
    n_features = 2
    n_samples = 10000
    x1 = np.array(1e8, dtype=np.float64)
    x2 = np.log(1e-5, dtype=np.float64)
    A0 = np.full((n_samples // 2, n_features), x1, dtype=np.float64)
    A1 = np.full((n_samples // 2, n_features), x2, dtype=np.float64)
    A = np.vstack((A0, A1))

    # Naive one pass var: >tol (=1063)
    assert np.abs(np_var(A) - one_pass_var(A)).max() > tol

    # Starting point for online algorithms: after A0

    # Naive implementation: >tol (436)
    mean, var, n = A0[0, :], np.zeros(n_features), n_samples // 2
    for i in range(A1.shape[0]):
        mean, var, n = \
            naive_mean_variance_update(A1[i, :], mean, var, n)
    assert n == A.shape[0]
    # the mean is also slightly unstable
    assert np.abs(A.mean(axis=0) - mean).max() > 1e-6
    assert np.abs(np_var(A) - var).max() > tol

    # Robust implementation: <tol (177)
    mean, var = A0[0, :], np.zeros(n_features)
    n = np.full(n_features, n_samples // 2, dtype=np.int32)
    for i in range(A1.shape[0]):
        mean, var, n = \
            _incremental_mean_and_var(A1[i, :].reshape((1, A1.shape[1])),
                                      mean, var, n)
    assert_array_equal(n, A.shape[0])
    assert_array_almost_equal(A.mean(axis=0), mean)
    assert tol > np.abs(np_var(A) - var).max()


def test_incremental_variance_ddof():
    # Test that degrees of freedom parameter for calculations are correct.
    rng = np.random.RandomState(1999)
    X = rng.randn(50, 10)
    n_samples, n_features = X.shape
    for batch_size in [11, 20, 37]:
        steps = np.arange(0, X.shape[0], batch_size)
        if steps[-1] != X.shape[0]:
            steps = np.hstack([steps, n_samples])

        for i, j in zip(steps[:-1], steps[1:]):
            batch = X[i:j, :]
            if i == 0:
                incremental_means = batch.mean(axis=0)
                incremental_variances = batch.var(axis=0)
                # Assign this twice so that the test logic is consistent
                incremental_count = batch.shape[0]
                sample_count = np.full(batch.shape[1], batch.shape[0],
                                       dtype=np.int32)
            else:
                result = _incremental_mean_and_var(
                    batch, incremental_means, incremental_variances,
                    sample_count)
                (incremental_means, incremental_variances,
                 incremental_count) = result
                sample_count += batch.shape[0]

            calculated_means = np.mean(X[:j], axis=0)
            calculated_variances = np.var(X[:j], axis=0)
            assert_almost_equal(incremental_means, calculated_means, 6)
            assert_almost_equal(incremental_variances,
                                calculated_variances, 6)
            assert_array_equal(incremental_count, sample_count)


def test_vector_sign_flip():
    # Testing that sign flip is working & largest value has positive sign
    data = np.random.RandomState(36).randn(5, 5)
    max_abs_rows = np.argmax(np.abs(data), axis=1)
    data_flipped = _deterministic_vector_sign_flip(data)
    max_rows = np.argmax(data_flipped, axis=1)
    assert_array_equal(max_abs_rows, max_rows)
    signs = np.sign(data[range(data.shape[0]), max_abs_rows])
    assert_array_equal(data, data_flipped * signs[:, np.newaxis])


def test_softmax():
    rng = np.random.RandomState(0)
    X = rng.randn(3, 5)
    exp_X = np.exp(X)
    sum_exp_X = np.sum(exp_X, axis=1).reshape((-1, 1))
    assert_array_almost_equal(softmax(X), exp_X / sum_exp_X)


def test_stable_cumsum():
    assert_array_equal(stable_cumsum([1, 2, 3]), np.cumsum([1, 2, 3]))
    r = np.random.RandomState(0).rand(100000)
    assert_warns(RuntimeWarning, stable_cumsum, r, rtol=0, atol=0)

    # test axis parameter
    A = np.random.RandomState(36).randint(1000, size=(5, 5, 5))
    assert_array_equal(stable_cumsum(A, axis=0), np.cumsum(A, axis=0))
    assert_array_equal(stable_cumsum(A, axis=1), np.cumsum(A, axis=1))
    assert_array_equal(stable_cumsum(A, axis=2), np.cumsum(A, axis=2))


def test_safe_min():
    msg = ("safe_min is deprecated in version 0.22 and will be removed "
           "in version 0.24.")
    with pytest.warns(FutureWarning, match=msg):
        safe_min(np.ones(10))


@pytest.mark.parametrize("A_array_constr", [np.array, sparse.csr_matrix],
                         ids=["dense", "sparse"])
@pytest.mark.parametrize("B_array_constr", [np.array, sparse.csr_matrix],
                         ids=["dense", "sparse"])
def test_safe_sparse_dot_2d(A_array_constr, B_array_constr):
    rng = np.random.RandomState(0)

    A = rng.random_sample((30, 10))
    B = rng.random_sample((10, 20))
    expected = np.dot(A, B)

    A = A_array_constr(A)
    B = B_array_constr(B)
    actual = safe_sparse_dot(A, B, dense_output=True)

    assert_allclose(actual, expected)


def test_safe_sparse_dot_nd():
    rng = np.random.RandomState(0)

    # dense ND / sparse
    A = rng.random_sample((2, 3, 4, 5, 6))
    B = rng.random_sample((6, 7))
    expected = np.dot(A, B)
    B = sparse.csr_matrix(B)
    actual = safe_sparse_dot(A, B)
    assert_allclose(actual, expected)

    # sparse / dense ND
    A = rng.random_sample((2, 3))
    B = rng.random_sample((4, 5, 3, 6))
    expected = np.dot(A, B)
    A = sparse.csr_matrix(A)
    actual = safe_sparse_dot(A, B)
    assert_allclose(actual, expected)


@pytest.mark.parametrize("A_array_constr", [np.array, sparse.csr_matrix],
                         ids=["dense", "sparse"])
def test_safe_sparse_dot_2d_1d(A_array_constr):
    rng = np.random.RandomState(0)

    B = rng.random_sample((10))

    # 2D @ 1D
    A = rng.random_sample((30, 10))
    expected = np.dot(A, B)
    A = A_array_constr(A)
    actual = safe_sparse_dot(A, B)
    assert_allclose(actual, expected)

    # 1D @ 2D
    A = rng.random_sample((10, 30))
    expected = np.dot(B, A)
    A = A_array_constr(A)
    actual = safe_sparse_dot(B, A)
    assert_allclose(actual, expected)


@pytest.mark.parametrize("dense_output", [True, False])
def test_safe_sparse_dot_dense_output(dense_output):
    rng = np.random.RandomState(0)

    A = sparse.random(30, 10, density=0.1, random_state=rng)
    B = sparse.random(10, 20, density=0.1, random_state=rng)

    expected = A.dot(B)
    actual = safe_sparse_dot(A, B, dense_output=dense_output)

    assert sparse.issparse(actual) == (not dense_output)

    if dense_output:
        expected = expected.toarray()
    assert_allclose_dense_sparse(actual, expected)