sparsefuncs.py
15.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
# Authors: Manoj Kumar
# Thomas Unterthiner
# Giorgio Patrini
#
# License: BSD 3 clause
import scipy.sparse as sp
import numpy as np
from .validation import _deprecate_positional_args
from .sparsefuncs_fast import (
csr_mean_variance_axis0 as _csr_mean_var_axis0,
csc_mean_variance_axis0 as _csc_mean_var_axis0,
incr_mean_variance_axis0 as _incr_mean_var_axis0)
def _raise_typeerror(X):
"""Raises a TypeError if X is not a CSR or CSC matrix"""
input_type = X.format if sp.issparse(X) else type(X)
err = "Expected a CSR or CSC sparse matrix, got %s." % input_type
raise TypeError(err)
def _raise_error_wrong_axis(axis):
if axis not in (0, 1):
raise ValueError(
"Unknown axis value: %d. Use 0 for rows, or 1 for columns" % axis)
def inplace_csr_column_scale(X, scale):
"""Inplace column scaling of a CSR matrix.
Scale each feature of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.
Parameters
----------
X : CSR matrix with shape (n_samples, n_features)
Matrix to normalize using the variance of the features.
scale : float array with shape (n_features,)
Array of precomputed feature-wise values to use for scaling.
"""
assert scale.shape[0] == X.shape[1]
X.data *= scale.take(X.indices, mode='clip')
def inplace_csr_row_scale(X, scale):
""" Inplace row scaling of a CSR matrix.
Scale each sample of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.
Parameters
----------
X : CSR sparse matrix, shape (n_samples, n_features)
Matrix to be scaled.
scale : float array with shape (n_samples,)
Array of precomputed sample-wise values to use for scaling.
"""
assert scale.shape[0] == X.shape[0]
X.data *= np.repeat(scale, np.diff(X.indptr))
def mean_variance_axis(X, axis):
"""Compute mean and variance along an axix on a CSR or CSC matrix
Parameters
----------
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
Input data.
axis : int (either 0 or 1)
Axis along which the axis should be computed.
Returns
-------
means : float array with shape (n_features,)
Feature-wise means
variances : float array with shape (n_features,)
Feature-wise variances
"""
_raise_error_wrong_axis(axis)
if isinstance(X, sp.csr_matrix):
if axis == 0:
return _csr_mean_var_axis0(X)
else:
return _csc_mean_var_axis0(X.T)
elif isinstance(X, sp.csc_matrix):
if axis == 0:
return _csc_mean_var_axis0(X)
else:
return _csr_mean_var_axis0(X.T)
else:
_raise_typeerror(X)
@_deprecate_positional_args
def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n):
"""Compute incremental mean and variance along an axix on a CSR or
CSC matrix.
last_mean, last_var are the statistics computed at the last step by this
function. Both must be initialized to 0-arrays of the proper size, i.e.
the number of features in X. last_n is the number of samples encountered
until now.
Parameters
----------
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
Input data.
axis : int (either 0 or 1)
Axis along which the axis should be computed.
last_mean : float array with shape (n_features,)
Array of feature-wise means to update with the new data X.
last_var : float array with shape (n_features,)
Array of feature-wise var to update with the new data X.
last_n : int with shape (n_features,)
Number of samples seen so far, excluded X.
Returns
-------
means : float array with shape (n_features,)
Updated feature-wise means.
variances : float array with shape (n_features,)
Updated feature-wise variances.
n : int with shape (n_features,)
Updated number of seen samples.
Notes
-----
NaNs are ignored in the algorithm.
"""
_raise_error_wrong_axis(axis)
if isinstance(X, sp.csr_matrix):
if axis == 0:
return _incr_mean_var_axis0(X, last_mean=last_mean,
last_var=last_var, last_n=last_n)
else:
return _incr_mean_var_axis0(X.T, last_mean=last_mean,
last_var=last_var, last_n=last_n)
elif isinstance(X, sp.csc_matrix):
if axis == 0:
return _incr_mean_var_axis0(X, last_mean=last_mean,
last_var=last_var, last_n=last_n)
else:
return _incr_mean_var_axis0(X.T, last_mean=last_mean,
last_var=last_var, last_n=last_n)
else:
_raise_typeerror(X)
def inplace_column_scale(X, scale):
"""Inplace column scaling of a CSC/CSR matrix.
Scale each feature of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.
Parameters
----------
X : CSC or CSR matrix with shape (n_samples, n_features)
Matrix to normalize using the variance of the features.
scale : float array with shape (n_features,)
Array of precomputed feature-wise values to use for scaling.
"""
if isinstance(X, sp.csc_matrix):
inplace_csr_row_scale(X.T, scale)
elif isinstance(X, sp.csr_matrix):
inplace_csr_column_scale(X, scale)
else:
_raise_typeerror(X)
def inplace_row_scale(X, scale):
""" Inplace row scaling of a CSR or CSC matrix.
Scale each row of the data matrix by multiplying with specific scale
provided by the caller assuming a (n_samples, n_features) shape.
Parameters
----------
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
Matrix to be scaled.
scale : float array with shape (n_features,)
Array of precomputed sample-wise values to use for scaling.
"""
if isinstance(X, sp.csc_matrix):
inplace_csr_column_scale(X.T, scale)
elif isinstance(X, sp.csr_matrix):
inplace_csr_row_scale(X, scale)
else:
_raise_typeerror(X)
def inplace_swap_row_csc(X, m, n):
"""
Swaps two rows of a CSC matrix in-place.
Parameters
----------
X : scipy.sparse.csc_matrix, shape=(n_samples, n_features)
Matrix whose two rows are to be swapped.
m : int
Index of the row of X to be swapped.
n : int
Index of the row of X to be swapped.
"""
for t in [m, n]:
if isinstance(t, np.ndarray):
raise TypeError("m and n should be valid integers")
if m < 0:
m += X.shape[0]
if n < 0:
n += X.shape[0]
m_mask = X.indices == m
X.indices[X.indices == n] = m
X.indices[m_mask] = n
def inplace_swap_row_csr(X, m, n):
"""
Swaps two rows of a CSR matrix in-place.
Parameters
----------
X : scipy.sparse.csr_matrix, shape=(n_samples, n_features)
Matrix whose two rows are to be swapped.
m : int
Index of the row of X to be swapped.
n : int
Index of the row of X to be swapped.
"""
for t in [m, n]:
if isinstance(t, np.ndarray):
raise TypeError("m and n should be valid integers")
if m < 0:
m += X.shape[0]
if n < 0:
n += X.shape[0]
# The following swapping makes life easier since m is assumed to be the
# smaller integer below.
if m > n:
m, n = n, m
indptr = X.indptr
m_start = indptr[m]
m_stop = indptr[m + 1]
n_start = indptr[n]
n_stop = indptr[n + 1]
nz_m = m_stop - m_start
nz_n = n_stop - n_start
if nz_m != nz_n:
# Modify indptr first
X.indptr[m + 2:n] += nz_n - nz_m
X.indptr[m + 1] = m_start + nz_n
X.indptr[n] = n_stop - nz_m
X.indices = np.concatenate([X.indices[:m_start],
X.indices[n_start:n_stop],
X.indices[m_stop:n_start],
X.indices[m_start:m_stop],
X.indices[n_stop:]])
X.data = np.concatenate([X.data[:m_start],
X.data[n_start:n_stop],
X.data[m_stop:n_start],
X.data[m_start:m_stop],
X.data[n_stop:]])
def inplace_swap_row(X, m, n):
"""
Swaps two rows of a CSC/CSR matrix in-place.
Parameters
----------
X : CSR or CSC sparse matrix, shape=(n_samples, n_features)
Matrix whose two rows are to be swapped.
m : int
Index of the row of X to be swapped.
n : int
Index of the row of X to be swapped.
"""
if isinstance(X, sp.csc_matrix):
inplace_swap_row_csc(X, m, n)
elif isinstance(X, sp.csr_matrix):
inplace_swap_row_csr(X, m, n)
else:
_raise_typeerror(X)
def inplace_swap_column(X, m, n):
"""
Swaps two columns of a CSC/CSR matrix in-place.
Parameters
----------
X : CSR or CSC sparse matrix, shape=(n_samples, n_features)
Matrix whose two columns are to be swapped.
m : int
Index of the column of X to be swapped.
n : int
Index of the column of X to be swapped.
"""
if m < 0:
m += X.shape[1]
if n < 0:
n += X.shape[1]
if isinstance(X, sp.csc_matrix):
inplace_swap_row_csr(X, m, n)
elif isinstance(X, sp.csr_matrix):
inplace_swap_row_csc(X, m, n)
else:
_raise_typeerror(X)
def _minor_reduce(X, ufunc):
major_index = np.flatnonzero(np.diff(X.indptr))
# reduceat tries casts X.indptr to intp, which errors
# if it is int64 on a 32 bit system.
# Reinitializing prevents this where possible, see #13737
X = type(X)((X.data, X.indices, X.indptr), shape=X.shape)
value = ufunc.reduceat(X.data, X.indptr[major_index])
return major_index, value
def _min_or_max_axis(X, axis, min_or_max):
N = X.shape[axis]
if N == 0:
raise ValueError("zero-size array to reduction operation")
M = X.shape[1 - axis]
mat = X.tocsc() if axis == 0 else X.tocsr()
mat.sum_duplicates()
major_index, value = _minor_reduce(mat, min_or_max)
not_full = np.diff(mat.indptr)[major_index] < N
value[not_full] = min_or_max(value[not_full], 0)
mask = value != 0
major_index = np.compress(mask, major_index)
value = np.compress(mask, value)
if axis == 0:
res = sp.coo_matrix((value, (np.zeros(len(value)), major_index)),
dtype=X.dtype, shape=(1, M))
else:
res = sp.coo_matrix((value, (major_index, np.zeros(len(value)))),
dtype=X.dtype, shape=(M, 1))
return res.A.ravel()
def _sparse_min_or_max(X, axis, min_or_max):
if axis is None:
if 0 in X.shape:
raise ValueError("zero-size array to reduction operation")
zero = X.dtype.type(0)
if X.nnz == 0:
return zero
m = min_or_max.reduce(X.data.ravel())
if X.nnz != np.product(X.shape):
m = min_or_max(zero, m)
return m
if axis < 0:
axis += 2
if (axis == 0) or (axis == 1):
return _min_or_max_axis(X, axis, min_or_max)
else:
raise ValueError("invalid axis, use 0 for rows, or 1 for columns")
def _sparse_min_max(X, axis):
return (_sparse_min_or_max(X, axis, np.minimum),
_sparse_min_or_max(X, axis, np.maximum))
def _sparse_nan_min_max(X, axis):
return(_sparse_min_or_max(X, axis, np.fmin),
_sparse_min_or_max(X, axis, np.fmax))
def min_max_axis(X, axis, ignore_nan=False):
"""Compute minimum and maximum along an axis on a CSR or CSC matrix and
optionally ignore NaN values.
Parameters
----------
X : CSR or CSC sparse matrix, shape (n_samples, n_features)
Input data.
axis : int (either 0 or 1)
Axis along which the axis should be computed.
ignore_nan : bool, default is False
Ignore or passing through NaN values.
.. versionadded:: 0.20
Returns
-------
mins : float array with shape (n_features,)
Feature-wise minima
maxs : float array with shape (n_features,)
Feature-wise maxima
"""
if isinstance(X, sp.csr_matrix) or isinstance(X, sp.csc_matrix):
if ignore_nan:
return _sparse_nan_min_max(X, axis=axis)
else:
return _sparse_min_max(X, axis=axis)
else:
_raise_typeerror(X)
def count_nonzero(X, axis=None, sample_weight=None):
"""A variant of X.getnnz() with extension to weighting on axis 0
Useful in efficiently calculating multilabel metrics.
Parameters
----------
X : CSR sparse matrix of shape (n_samples, n_labels)
Input data.
axis : None, 0 or 1
The axis on which the data is aggregated.
sample_weight : array-like of shape (n_samples,), default=None
Weight for each row of X.
"""
if axis == -1:
axis = 1
elif axis == -2:
axis = 0
elif X.format != 'csr':
raise TypeError('Expected CSR sparse format, got {0}'.format(X.format))
# We rely here on the fact that np.diff(Y.indptr) for a CSR
# will return the number of nonzero entries in each row.
# A bincount over Y.indices will return the number of nonzeros
# in each column. See ``csr_matrix.getnnz`` in scipy >= 0.14.
if axis is None:
if sample_weight is None:
return X.nnz
else:
return np.dot(np.diff(X.indptr), sample_weight)
elif axis == 1:
out = np.diff(X.indptr)
if sample_weight is None:
# astype here is for consistency with axis=0 dtype
return out.astype('intp')
return out * sample_weight
elif axis == 0:
if sample_weight is None:
return np.bincount(X.indices, minlength=X.shape[1])
else:
weights = np.repeat(sample_weight, np.diff(X.indptr))
return np.bincount(X.indices, minlength=X.shape[1],
weights=weights)
else:
raise ValueError('Unsupported axis: {0}'.format(axis))
def _get_median(data, n_zeros):
"""Compute the median of data with n_zeros additional zeros.
This function is used to support sparse matrices; it modifies data in-place
"""
n_elems = len(data) + n_zeros
if not n_elems:
return np.nan
n_negative = np.count_nonzero(data < 0)
middle, is_odd = divmod(n_elems, 2)
data.sort()
if is_odd:
return _get_elem_at_rank(middle, data, n_negative, n_zeros)
return (_get_elem_at_rank(middle - 1, data, n_negative, n_zeros) +
_get_elem_at_rank(middle, data, n_negative, n_zeros)) / 2.
def _get_elem_at_rank(rank, data, n_negative, n_zeros):
"""Find the value in data augmented with n_zeros for the given rank"""
if rank < n_negative:
return data[rank]
if rank - n_negative < n_zeros:
return 0
return data[rank - n_zeros]
def csc_median_axis_0(X):
"""Find the median across axis 0 of a CSC matrix.
It is equivalent to doing np.median(X, axis=0).
Parameters
----------
X : CSC sparse matrix, shape (n_samples, n_features)
Input data.
Returns
-------
median : ndarray, shape (n_features,)
Median.
"""
if not isinstance(X, sp.csc_matrix):
raise TypeError("Expected matrix of CSC format, got %s" % X.format)
indptr = X.indptr
n_samples, n_features = X.shape
median = np.zeros(n_features)
for f_ind, (start, end) in enumerate(zip(indptr[:-1], indptr[1:])):
# Prevent modifying X in place
data = np.copy(X.data[start: end])
nz = n_samples - data.size
median[f_ind] = _get_median(data, nz)
return median