test_multioutput.py 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613

import pytest
import numpy as np
import scipy.sparse as sp
from joblib import cpu_count

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_raises_regex
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn import datasets
from sklearn.base import clone
from sklearn.datasets import make_classification
from sklearn.ensemble import GradientBoostingRegressor, RandomForestClassifier
from sklearn.exceptions import NotFittedError
from sklearn.linear_model import Lasso
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import OrthogonalMatchingPursuit
from sklearn.linear_model import Ridge
from sklearn.linear_model import SGDClassifier
from sklearn.linear_model import SGDRegressor
from sklearn.metrics import jaccard_score, mean_squared_error
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multioutput import ClassifierChain, RegressorChain
from sklearn.multioutput import MultiOutputClassifier
from sklearn.multioutput import MultiOutputRegressor
from sklearn.multioutput import MultiOutputEstimator
from sklearn.svm import LinearSVC
from sklearn.base import ClassifierMixin
from sklearn.utils import shuffle
from sklearn.model_selection import GridSearchCV
from sklearn.dummy import DummyRegressor, DummyClassifier


def test_multi_target_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    for n in range(3):
        rgr = GradientBoostingRegressor(random_state=0)
        rgr.fit(X_train, y_train[:, n])
        references[:, n] = rgr.predict(X_test)

    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X_train, y_train)
    y_pred = rgr.predict(X_test)

    assert_almost_equal(references, y_pred)


def test_multi_target_regression_partial_fit():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test, y_test = X[50:], y[50:]

    references = np.zeros_like(y_test)
    half_index = 25
    for n in range(3):
        sgr = SGDRegressor(random_state=0, max_iter=5)
        sgr.partial_fit(X_train[:half_index], y_train[:half_index, n])
        sgr.partial_fit(X_train[half_index:], y_train[half_index:, n])
        references[:, n] = sgr.predict(X_test)

    sgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))

    sgr.partial_fit(X_train[:half_index], y_train[:half_index])
    sgr.partial_fit(X_train[half_index:], y_train[half_index:])

    y_pred = sgr.predict(X_test)
    assert_almost_equal(references, y_pred)
    assert not hasattr(MultiOutputRegressor(Lasso), 'partial_fit')


def test_multi_target_regression_one_target():
    # Test multi target regression raises
    X, y = datasets.make_regression(n_targets=1)
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    assert_raises(ValueError, rgr.fit, X, y)


def test_multi_target_sparse_regression():
    X, y = datasets.make_regression(n_targets=3)
    X_train, y_train = X[:50], y[:50]
    X_test = X[50:]

    for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix,
                   sp.lil_matrix]:
        rgr = MultiOutputRegressor(Lasso(random_state=0))
        rgr_sparse = MultiOutputRegressor(Lasso(random_state=0))

        rgr.fit(X_train, y_train)
        rgr_sparse.fit(sparse(X_train), y_train)

        assert_almost_equal(rgr.predict(X_test),
                            rgr_sparse.predict(sparse(X_test)))


def test_multi_target_sample_weights_api():
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [0.8, 0.6]

    rgr = MultiOutputRegressor(OrthogonalMatchingPursuit())
    assert_raises_regex(ValueError, "does not support sample weights",
                        rgr.fit, X, y, w)

    # no exception should be raised if the base estimator supports weights
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y, w)


def test_multi_target_sample_weight_partial_fit():
    # weighted regressor
    X = [[1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr_w.partial_fit(X, y, w)

    # weighted with different weights
    w = [2., 2.]
    rgr = MultiOutputRegressor(SGDRegressor(random_state=0, max_iter=5))
    rgr.partial_fit(X, y, w)

    assert rgr.predict(X)[0][0] != rgr_w.predict(X)[0][0]


def test_multi_target_sample_weights():
    # weighted regressor
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3.141, 2.718], [2.718, 3.141]]
    w = [2., 1.]
    rgr_w = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3.141, 2.718], [3.141, 2.718], [2.718, 3.141]]
    rgr = MultiOutputRegressor(GradientBoostingRegressor(random_state=0))
    rgr.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(rgr.predict(X_test), rgr_w.predict(X_test))


# Import the data
iris = datasets.load_iris()
# create a multiple targets by randomized shuffling and concatenating y.
X = iris.data
y1 = iris.target
y2 = shuffle(y1, random_state=1)
y3 = shuffle(y1, random_state=2)
y = np.column_stack((y1, y2, y3))
n_samples, n_features = X.shape
n_outputs = y.shape[1]
n_classes = len(np.unique(y1))
classes = list(map(np.unique, (y1, y2, y3)))


def test_multi_output_classification_partial_fit_parallelism():
    sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
    mor = MultiOutputClassifier(sgd_linear_clf, n_jobs=4)
    mor.partial_fit(X, y, classes)
    est1 = mor.estimators_[0]
    mor.partial_fit(X, y)
    est2 = mor.estimators_[0]
    if cpu_count() > 1:
        # parallelism requires this to be the case for a sane implementation
        assert est1 is not est2


# check multioutput has predict_proba
def test_hasattr_multi_output_predict_proba():
    # default SGDClassifier has loss='hinge'
    # which does not expose a predict_proba method
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)
    assert not hasattr(multi_target_linear, "predict_proba")

    # case where predict_proba attribute exists
    sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)
    assert hasattr(multi_target_linear, "predict_proba")


# check predict_proba passes
def test_multi_output_predict_proba():
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    param = {'loss': ('hinge', 'log', 'modified_huber')}

    # inner function for custom scoring
    def custom_scorer(estimator, X, y):
        if hasattr(estimator, "predict_proba"):
            return 1.0
        else:
            return 0.0
    grid_clf = GridSearchCV(sgd_linear_clf, param_grid=param,
                            scoring=custom_scorer, cv=3)
    multi_target_linear = MultiOutputClassifier(grid_clf)
    multi_target_linear.fit(X, y)

    multi_target_linear.predict_proba(X)

    # SGDClassifier defaults to loss='hinge' which is not a probabilistic
    # loss function; therefore it does not expose a predict_proba method
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    multi_target_linear.fit(X, y)
    err_msg = "The base estimator should implement predict_proba method"
    with pytest.raises(AttributeError, match=err_msg):
        multi_target_linear.predict_proba(X)


def test_multi_output_classification_partial_fit():
    # test if multi_target initializes correctly with base estimator and fit
    # assert predictions work as expected for predict

    sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)

    # train the multi_target_linear and also get the predictions.
    half_index = X.shape[0] // 2
    multi_target_linear.partial_fit(
        X[:half_index], y[:half_index], classes=classes)

    first_predictions = multi_target_linear.predict(X)
    assert (n_samples, n_outputs) == first_predictions.shape

    multi_target_linear.partial_fit(X[half_index:], y[half_index:])
    second_predictions = multi_target_linear.predict(X)
    assert (n_samples, n_outputs) == second_predictions.shape

    # train the linear classification with each column and assert that
    # predictions are equal after first partial_fit and second partial_fit
    for i in range(3):
        # create a clone with the same state
        sgd_linear_clf = clone(sgd_linear_clf)
        sgd_linear_clf.partial_fit(
            X[:half_index], y[:half_index, i], classes=classes[i])
        assert_array_equal(sgd_linear_clf.predict(X), first_predictions[:, i])
        sgd_linear_clf.partial_fit(X[half_index:], y[half_index:, i])
        assert_array_equal(sgd_linear_clf.predict(X), second_predictions[:, i])


def test_multi_output_classification_partial_fit_no_first_classes_exception():
    sgd_linear_clf = SGDClassifier(loss='log', random_state=1, max_iter=5)
    multi_target_linear = MultiOutputClassifier(sgd_linear_clf)
    assert_raises_regex(ValueError, "classes must be passed on the first call "
                                    "to partial_fit.",
                        multi_target_linear.partial_fit, X, y)


def test_multi_output_classification():
    # test if multi_target initializes correctly with base estimator and fit
    # assert predictions work as expected for predict, prodict_proba and score

    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    multi_target_forest = MultiOutputClassifier(forest)

    # train the multi_target_forest and also get the predictions.
    multi_target_forest.fit(X, y)

    predictions = multi_target_forest.predict(X)
    assert (n_samples, n_outputs) == predictions.shape

    predict_proba = multi_target_forest.predict_proba(X)

    assert len(predict_proba) == n_outputs
    for class_probabilities in predict_proba:
        assert (n_samples, n_classes) == class_probabilities.shape

    assert_array_equal(np.argmax(np.dstack(predict_proba), axis=1),
                       predictions)

    # train the forest with each column and assert that predictions are equal
    for i in range(3):
        forest_ = clone(forest)  # create a clone with the same state
        forest_.fit(X, y[:, i])
        assert list(forest_.predict(X)) == list(predictions[:, i])
        assert_array_equal(list(forest_.predict_proba(X)),
                           list(predict_proba[i]))


def test_multiclass_multioutput_estimator():
    # test to check meta of meta estimators
    svc = LinearSVC(random_state=0)
    multi_class_svc = OneVsRestClassifier(svc)
    multi_target_svc = MultiOutputClassifier(multi_class_svc)

    multi_target_svc.fit(X, y)

    predictions = multi_target_svc.predict(X)
    assert (n_samples, n_outputs) == predictions.shape

    # train the forest with each column and assert that predictions are equal
    for i in range(3):
        multi_class_svc_ = clone(multi_class_svc)  # create a clone
        multi_class_svc_.fit(X, y[:, i])
        assert (list(multi_class_svc_.predict(X)) ==
                     list(predictions[:, i]))


def test_multiclass_multioutput_estimator_predict_proba():
    seed = 542

    # make test deterministic
    rng = np.random.RandomState(seed)

    # random features
    X = rng.normal(size=(5, 5))

    # random labels
    y1 = np.array(['b', 'a', 'a', 'b', 'a']).reshape(5, 1)  # 2 classes
    y2 = np.array(['d', 'e', 'f', 'e', 'd']).reshape(5, 1)  # 3 classes

    Y = np.concatenate([y1, y2], axis=1)

    clf = MultiOutputClassifier(LogisticRegression(
        solver='liblinear', random_state=seed))

    clf.fit(X, Y)

    y_result = clf.predict_proba(X)
    y_actual = [np.array([[0.23481764, 0.76518236],
                          [0.67196072, 0.32803928],
                          [0.54681448, 0.45318552],
                          [0.34883923, 0.65116077],
                          [0.73687069, 0.26312931]]),
                np.array([[0.5171785, 0.23878628, 0.24403522],
                          [0.22141451, 0.64102704, 0.13755846],
                          [0.16751315, 0.18256843, 0.64991843],
                          [0.27357372, 0.55201592, 0.17441036],
                          [0.65745193, 0.26062899, 0.08191907]])]

    for i in range(len(y_actual)):
        assert_almost_equal(y_result[i], y_actual[i])


def test_multi_output_classification_sample_weights():
    # weighted classifier
    Xw = [[1, 2, 3], [4, 5, 6]]
    yw = [[3, 2], [2, 3]]
    w = np.asarray([2., 1.])
    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    clf_w = MultiOutputClassifier(forest)
    clf_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6]]
    y = [[3, 2], [3, 2], [2, 3]]
    forest = RandomForestClassifier(n_estimators=10, random_state=1)
    clf = MultiOutputClassifier(forest)
    clf.fit(X, y)

    X_test = [[1.5, 2.5, 3.5], [3.5, 4.5, 5.5]]
    assert_almost_equal(clf.predict(X_test), clf_w.predict(X_test))


def test_multi_output_classification_partial_fit_sample_weights():
    # weighted classifier
    Xw = [[1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    yw = [[3, 2], [2, 3], [3, 2]]
    w = np.asarray([2., 1., 1.])
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
    clf_w = MultiOutputClassifier(sgd_linear_clf)
    clf_w.fit(Xw, yw, w)

    # unweighted, but with repeated samples
    X = [[1, 2, 3], [1, 2, 3], [4, 5, 6], [1.5, 2.5, 3.5]]
    y = [[3, 2], [3, 2], [2, 3], [3, 2]]
    sgd_linear_clf = SGDClassifier(random_state=1, max_iter=20)
    clf = MultiOutputClassifier(sgd_linear_clf)
    clf.fit(X, y)
    X_test = [[1.5, 2.5, 3.5]]
    assert_array_almost_equal(clf.predict(X_test), clf_w.predict(X_test))


def test_multi_output_exceptions():
    # NotFittedError when fit is not done but score, predict and
    # and predict_proba are called
    moc = MultiOutputClassifier(LinearSVC(random_state=0))
    assert_raises(NotFittedError, moc.predict, y)
    with pytest.raises(NotFittedError):
        moc.predict_proba
    assert_raises(NotFittedError, moc.score, X, y)
    # ValueError when number of outputs is different
    # for fit and score
    y_new = np.column_stack((y1, y2))
    moc.fit(X, y)
    assert_raises(ValueError, moc.score, X, y_new)
    # ValueError when y is continuous
    assert_raise_message(ValueError, "Unknown label type", moc.fit, X, X[:, 1])


def generate_multilabel_dataset_with_correlations():
    # Generate a multilabel data set from a multiclass dataset as a way of
    # by representing the integer number of the original class using a binary
    # encoding.
    X, y = make_classification(n_samples=1000,
                               n_features=100,
                               n_classes=16,
                               n_informative=10,
                               random_state=0)

    Y_multi = np.array([[int(yyy) for yyy in format(yy, '#06b')[2:]]
                        for yy in y])
    return X, Y_multi


def test_classifier_chain_fit_and_predict_with_linear_svc():
    # Fit classifier chain and verify predict performance using LinearSVC
    X, Y = generate_multilabel_dataset_with_correlations()
    classifier_chain = ClassifierChain(LinearSVC())
    classifier_chain.fit(X, Y)

    Y_pred = classifier_chain.predict(X)
    assert Y_pred.shape == Y.shape

    Y_decision = classifier_chain.decision_function(X)

    Y_binary = (Y_decision >= 0)
    assert_array_equal(Y_binary, Y_pred)
    assert not hasattr(classifier_chain, 'predict_proba')


def test_classifier_chain_fit_and_predict_with_sparse_data():
    # Fit classifier chain with sparse data
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = sp.csr_matrix(X)

    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X_sparse, Y)
    Y_pred_sparse = classifier_chain.predict(X_sparse)

    classifier_chain = ClassifierChain(LogisticRegression())
    classifier_chain.fit(X, Y)
    Y_pred_dense = classifier_chain.predict(X)

    assert_array_equal(Y_pred_sparse, Y_pred_dense)


def test_classifier_chain_vs_independent_models():
    # Verify that an ensemble of classifier chains (each of length
    # N) can achieve a higher Jaccard similarity score than N independent
    # models
    X, Y = generate_multilabel_dataset_with_correlations()
    X_train = X[:600, :]
    X_test = X[600:, :]
    Y_train = Y[:600, :]
    Y_test = Y[600:, :]

    ovr = OneVsRestClassifier(LogisticRegression())
    ovr.fit(X_train, Y_train)
    Y_pred_ovr = ovr.predict(X_test)

    chain = ClassifierChain(LogisticRegression())
    chain.fit(X_train, Y_train)
    Y_pred_chain = chain.predict(X_test)

    assert (jaccard_score(Y_test, Y_pred_chain, average='samples') >
                   jaccard_score(Y_test, Y_pred_ovr, average='samples'))


def test_base_chain_fit_and_predict():
    # Fit base chain and verify predict performance
    X, Y = generate_multilabel_dataset_with_correlations()
    chains = [RegressorChain(Ridge()),
              ClassifierChain(LogisticRegression())]
    for chain in chains:
        chain.fit(X, Y)
        Y_pred = chain.predict(X)
        assert Y_pred.shape == Y.shape
        assert ([c.coef_.size for c in chain.estimators_] ==
                     list(range(X.shape[1], X.shape[1] + Y.shape[1])))

    Y_prob = chains[1].predict_proba(X)
    Y_binary = (Y_prob >= .5)
    assert_array_equal(Y_binary, Y_pred)

    assert isinstance(chains[1], ClassifierMixin)


def test_base_chain_fit_and_predict_with_sparse_data_and_cv():
    # Fit base chain with sparse data cross_val_predict
    X, Y = generate_multilabel_dataset_with_correlations()
    X_sparse = sp.csr_matrix(X)
    base_chains = [ClassifierChain(LogisticRegression(), cv=3),
                   RegressorChain(Ridge(), cv=3)]
    for chain in base_chains:
        chain.fit(X_sparse, Y)
        Y_pred = chain.predict(X_sparse)
        assert Y_pred.shape == Y.shape


def test_base_chain_random_order():
    # Fit base chain with random order
    X, Y = generate_multilabel_dataset_with_correlations()
    for chain in [ClassifierChain(LogisticRegression()),
                  RegressorChain(Ridge())]:
        chain_random = clone(chain).set_params(order='random', random_state=42)
        chain_random.fit(X, Y)
        chain_fixed = clone(chain).set_params(order=chain_random.order_)
        chain_fixed.fit(X, Y)
        assert_array_equal(chain_fixed.order_, chain_random.order_)
        assert list(chain_random.order) != list(range(4))
        assert len(chain_random.order_) == 4
        assert len(set(chain_random.order_)) == 4
        # Randomly ordered chain should behave identically to a fixed order
        # chain with the same order.
        for est1, est2 in zip(chain_random.estimators_,
                              chain_fixed.estimators_):
            assert_array_almost_equal(est1.coef_, est2.coef_)


def test_base_chain_crossval_fit_and_predict():
    # Fit chain with cross_val_predict and verify predict
    # performance
    X, Y = generate_multilabel_dataset_with_correlations()

    for chain in [ClassifierChain(LogisticRegression()),
                  RegressorChain(Ridge())]:
        chain.fit(X, Y)
        chain_cv = clone(chain).set_params(cv=3)
        chain_cv.fit(X, Y)
        Y_pred_cv = chain_cv.predict(X)
        Y_pred = chain.predict(X)

        assert Y_pred_cv.shape == Y_pred.shape
        assert not np.all(Y_pred == Y_pred_cv)
        if isinstance(chain, ClassifierChain):
            assert jaccard_score(Y, Y_pred_cv, average='samples') > .4
        else:
            assert mean_squared_error(Y, Y_pred_cv) < .25


@pytest.mark.parametrize(
    'estimator',
    [RandomForestClassifier(n_estimators=2),
     MultiOutputClassifier(RandomForestClassifier(n_estimators=2)),
     ClassifierChain(RandomForestClassifier(n_estimators=2))]
)
def test_multi_output_classes_(estimator):
    # Tests classes_ attribute of multioutput classifiers
    # RandomForestClassifier supports multioutput out-of-the-box
    estimator.fit(X, y)
    assert isinstance(estimator.classes_, list)
    assert len(estimator.classes_) == n_outputs
    for estimator_classes, expected_classes in zip(classes,
                                                   estimator.classes_):
        assert_array_equal(estimator_classes, expected_classes)


# TODO: remove in 0.24
def test_deprecation():
    class A(MultiOutputEstimator, MultiOutputRegressor):
        pass

    with pytest.warns(FutureWarning, match="is deprecated in version 0.22"):
        A(SGDRegressor(random_state=0, max_iter=5))


class DummyRegressorWithFitParams(DummyRegressor):
    def fit(self, X, y, sample_weight=None, **fit_params):
        self._fit_params = fit_params
        return super().fit(X, y, sample_weight)


class DummyClassifierWithFitParams(DummyClassifier):
    def fit(self, X, y, sample_weight=None, **fit_params):
        self._fit_params = fit_params
        return super().fit(X, y, sample_weight)


@pytest.mark.parametrize(
    "estimator, dataset",
    [(MultiOutputClassifier(DummyClassifierWithFitParams(strategy="prior")),
      datasets.make_multilabel_classification()),
     (MultiOutputRegressor(DummyRegressorWithFitParams()),
      datasets.make_regression(n_targets=3))])
def test_multioutput_estimator_with_fit_params(estimator, dataset):
    X, y = dataset
    some_param = np.zeros_like(X)
    estimator.fit(X, y, some_param=some_param)
    for dummy_estimator in estimator.estimators_:
        assert 'some_param' in dummy_estimator._fit_params


def test_regressor_chain_w_fit_params():
    # Make sure fit_params are properly propagated to the sub-estimators
    rng = np.random.RandomState(0)
    X, y = datasets.make_regression(n_targets=3)
    weight = rng.rand(y.shape[0])

    class MySGD(SGDRegressor):

        def fit(self, X, y, **fit_params):
            self.sample_weight_ = fit_params['sample_weight']
            super().fit(X, y, **fit_params)

    model = RegressorChain(MySGD())

    # Fitting with params
    fit_param = {'sample_weight': weight}
    model.fit(X, y, **fit_param)

    for est in model.estimators_:
        assert est.sample_weight_ is weight