test_multiclass.py
28.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
import numpy as np
import scipy.sparse as sp
from re import escape
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import assert_raises_regexp
from sklearn.multiclass import OneVsRestClassifier
from sklearn.multiclass import OneVsOneClassifier
from sklearn.multiclass import OutputCodeClassifier
from sklearn.utils.multiclass import (check_classification_targets,
type_of_target)
from sklearn.utils import shuffle
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.svm import LinearSVC, SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import (LinearRegression, Lasso, ElasticNet, Ridge,
Perceptron, LogisticRegression,
SGDClassifier)
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.pipeline import Pipeline
from sklearn import svm
from sklearn import datasets
iris = datasets.load_iris()
rng = np.random.RandomState(0)
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
n_classes = 3
def test_ovr_exceptions():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ovr.predict, [])
# Fail on multioutput data
assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit,
np.array([[1, 0], [0, 1]]),
np.array([[1, 2], [3, 1]]))
assert_raises(ValueError, OneVsRestClassifier(MultinomialNB()).fit,
np.array([[1, 0], [0, 1]]),
np.array([[1.5, 2.4], [3.1, 0.8]]))
def test_check_classification_targets():
# Test that check_classification_target return correct type. #5782
y = np.array([0.0, 1.1, 2.0, 3.0])
msg = type_of_target(y)
assert_raise_message(ValueError, msg, check_classification_targets, y)
def test_ovr_fit_predict():
# A classifier which implements decision_function.
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes
clf = LinearSVC(random_state=0)
pred2 = clf.fit(iris.data, iris.target).predict(iris.data)
assert np.mean(iris.target == pred) == np.mean(iris.target == pred2)
# A classifier which implements predict_proba.
ovr = OneVsRestClassifier(MultinomialNB())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert np.mean(iris.target == pred) > 0.65
def test_ovr_partial_fit():
# Test if partial_fit is working as intended
X, y = shuffle(iris.data, iris.target, random_state=0)
ovr = OneVsRestClassifier(MultinomialNB())
ovr.partial_fit(X[:100], y[:100], np.unique(y))
ovr.partial_fit(X[100:], y[100:])
pred = ovr.predict(X)
ovr2 = OneVsRestClassifier(MultinomialNB())
pred2 = ovr2.fit(X, y).predict(X)
assert_almost_equal(pred, pred2)
assert len(ovr.estimators_) == len(np.unique(y))
assert np.mean(y == pred) > 0.65
# Test when mini batches doesn't have all classes
# with SGDClassifier
X = np.abs(np.random.randn(14, 2))
y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
ovr = OneVsRestClassifier(SGDClassifier(max_iter=1, tol=None,
shuffle=False, random_state=0))
ovr.partial_fit(X[:7], y[:7], np.unique(y))
ovr.partial_fit(X[7:], y[7:])
pred = ovr.predict(X)
ovr1 = OneVsRestClassifier(SGDClassifier(max_iter=1, tol=None,
shuffle=False, random_state=0))
pred1 = ovr1.fit(X, y).predict(X)
assert np.mean(pred == y) == np.mean(pred1 == y)
# test partial_fit only exists if estimator has it:
ovr = OneVsRestClassifier(SVC())
assert not hasattr(ovr, "partial_fit")
def test_ovr_partial_fit_exceptions():
ovr = OneVsRestClassifier(MultinomialNB())
X = np.abs(np.random.randn(14, 2))
y = [1, 1, 1, 1, 2, 3, 3, 0, 0, 2, 3, 1, 2, 3]
ovr.partial_fit(X[:7], y[:7], np.unique(y))
# A new class value which was not in the first call of partial_fit
# It should raise ValueError
y1 = [5] + y[7:-1]
assert_raises_regexp(ValueError, r"Mini-batch contains \[.+\] while "
r"classes must be subset of \[.+\]",
ovr.partial_fit, X=X[7:], y=y1)
def test_ovr_ovo_regressor():
# test that ovr and ovo work on regressors which don't have a decision_
# function
ovr = OneVsRestClassifier(DecisionTreeRegressor())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes
assert_array_equal(np.unique(pred), [0, 1, 2])
# we are doing something sensible
assert np.mean(pred == iris.target) > .9
ovr = OneVsOneClassifier(DecisionTreeRegressor())
pred = ovr.fit(iris.data, iris.target).predict(iris.data)
assert len(ovr.estimators_) == n_classes * (n_classes - 1) / 2
assert_array_equal(np.unique(pred), [0, 1, 2])
# we are doing something sensible
assert np.mean(pred == iris.target) > .9
def test_ovr_fit_predict_sparse():
for sparse in [sp.csr_matrix, sp.csc_matrix, sp.coo_matrix, sp.dok_matrix,
sp.lil_matrix]:
base_clf = MultinomialNB(alpha=1)
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=True,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
clf_sprs = OneVsRestClassifier(base_clf).fit(X_train, sparse(Y_train))
Y_pred_sprs = clf_sprs.predict(X_test)
assert clf.multilabel_
assert sp.issparse(Y_pred_sprs)
assert_array_equal(Y_pred_sprs.toarray(), Y_pred)
# Test predict_proba
Y_proba = clf_sprs.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = Y_proba > .5
assert_array_equal(pred, Y_pred_sprs.toarray())
# Test decision_function
clf = svm.SVC()
clf_sprs = OneVsRestClassifier(clf).fit(X_train, sparse(Y_train))
dec_pred = (clf_sprs.decision_function(X_test) > 0).astype(int)
assert_array_equal(dec_pred, clf_sprs.predict(X_test).toarray())
def test_ovr_always_present():
# Test that ovr works with classes that are always present or absent.
# Note: tests is the case where _ConstantPredictor is utilised
X = np.ones((10, 2))
X[:5, :] = 0
# Build an indicator matrix where two features are always on.
# As list of lists, it would be: [[int(i >= 5), 2, 3] for i in range(10)]
y = np.zeros((10, 3))
y[5:, 0] = 1
y[:, 1] = 1
y[:, 2] = 1
ovr = OneVsRestClassifier(LogisticRegression())
assert_warns(UserWarning, ovr.fit, X, y)
y_pred = ovr.predict(X)
assert_array_equal(np.array(y_pred), np.array(y))
y_pred = ovr.decision_function(X)
assert np.unique(y_pred[:, -2:]) == 1
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.ones(X.shape[0]))
# y has a constantly absent label
y = np.zeros((10, 2))
y[5:, 0] = 1 # variable label
ovr = OneVsRestClassifier(LogisticRegression())
assert_warns(UserWarning, ovr.fit, X, y)
y_pred = ovr.predict_proba(X)
assert_array_equal(y_pred[:, -1], np.zeros(X.shape[0]))
def test_ovr_multiclass():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
y = ["eggs", "spam", "ham", "eggs", "ham"]
Y = np.array([[0, 0, 1],
[0, 1, 0],
[1, 0, 0],
[0, 0, 1],
[1, 0, 0]])
classes = set("ham eggs spam".split())
for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
LinearRegression(), Ridge(),
ElasticNet()):
clf = OneVsRestClassifier(base_clf).fit(X, y)
assert set(clf.classes_) == classes
y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
assert_array_equal(y_pred, ["eggs"])
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[0, 0, 4]])[0]
assert_array_equal(y_pred, [0, 0, 1])
def test_ovr_binary():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 0, 5], [0, 5, 0], [3, 0, 0], [0, 0, 6], [6, 0, 0]])
y = ["eggs", "spam", "spam", "eggs", "spam"]
Y = np.array([[0, 1, 1, 0, 1]]).T
classes = set("eggs spam".split())
def conduct_test(base_clf, test_predict_proba=False):
clf = OneVsRestClassifier(base_clf).fit(X, y)
assert set(clf.classes_) == classes
y_pred = clf.predict(np.array([[0, 0, 4]]))[0]
assert_array_equal(y_pred, ["eggs"])
if hasattr(base_clf, 'decision_function'):
dec = clf.decision_function(X)
assert dec.shape == (5,)
if test_predict_proba:
X_test = np.array([[0, 0, 4]])
probabilities = clf.predict_proba(X_test)
assert 2 == len(probabilities[0])
assert (clf.classes_[np.argmax(probabilities, axis=1)] ==
clf.predict(X_test))
# test input as label indicator matrix
clf = OneVsRestClassifier(base_clf).fit(X, Y)
y_pred = clf.predict([[3, 0, 0]])[0]
assert y_pred == 1
for base_clf in (LinearSVC(random_state=0), LinearRegression(),
Ridge(), ElasticNet()):
conduct_test(base_clf)
for base_clf in (MultinomialNB(), SVC(probability=True),
LogisticRegression()):
conduct_test(base_clf, test_predict_proba=True)
def test_ovr_multilabel():
# Toy dataset where features correspond directly to labels.
X = np.array([[0, 4, 5], [0, 5, 0], [3, 3, 3], [4, 0, 6], [6, 0, 0]])
y = np.array([[0, 1, 1],
[0, 1, 0],
[1, 1, 1],
[1, 0, 1],
[1, 0, 0]])
for base_clf in (MultinomialNB(), LinearSVC(random_state=0),
LinearRegression(), Ridge(),
ElasticNet(), Lasso(alpha=0.5)):
clf = OneVsRestClassifier(base_clf).fit(X, y)
y_pred = clf.predict([[0, 4, 4]])[0]
assert_array_equal(y_pred, [0, 1, 1])
assert clf.multilabel_
def test_ovr_fit_predict_svc():
ovr = OneVsRestClassifier(svm.SVC())
ovr.fit(iris.data, iris.target)
assert len(ovr.estimators_) == 3
assert ovr.score(iris.data, iris.target) > .9
def test_ovr_multilabel_dataset():
base_clf = MultinomialNB(alpha=1)
for au, prec, recall in zip((True, False), (0.51, 0.66), (0.51, 0.80)):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=2,
length=50,
allow_unlabeled=au,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test, Y_test = X[80:], Y[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
Y_pred = clf.predict(X_test)
assert clf.multilabel_
assert_almost_equal(precision_score(Y_test, Y_pred, average="micro"),
prec,
decimal=2)
assert_almost_equal(recall_score(Y_test, Y_pred, average="micro"),
recall,
decimal=2)
def test_ovr_multilabel_predict_proba():
base_clf = MultinomialNB(alpha=1)
for au in (False, True):
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=au,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# Decision function only estimator.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert not hasattr(decision_only, 'predict_proba')
# Estimator with predict_proba disabled, depending on parameters.
decision_only = OneVsRestClassifier(svm.SVC(probability=False))
assert not hasattr(decision_only, 'predict_proba')
decision_only.fit(X_train, Y_train)
assert not hasattr(decision_only, 'predict_proba')
assert hasattr(decision_only, 'decision_function')
# Estimator which can get predict_proba enabled after fitting
gs = GridSearchCV(svm.SVC(probability=False),
param_grid={'probability': [True]})
proba_after_fit = OneVsRestClassifier(gs)
assert not hasattr(proba_after_fit, 'predict_proba')
proba_after_fit.fit(X_train, Y_train)
assert hasattr(proba_after_fit, 'predict_proba')
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = Y_proba > .5
assert_array_equal(pred, Y_pred)
def test_ovr_single_label_predict_proba():
base_clf = MultinomialNB(alpha=1)
X, Y = iris.data, iris.target
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(base_clf).fit(X_train, Y_train)
# Decision function only estimator.
decision_only = OneVsRestClassifier(svm.SVR()).fit(X_train, Y_train)
assert not hasattr(decision_only, 'predict_proba')
Y_pred = clf.predict(X_test)
Y_proba = clf.predict_proba(X_test)
assert_almost_equal(Y_proba.sum(axis=1), 1.0)
# predict assigns a label if the probability that the
# sample has the label is greater than 0.5.
pred = np.array([l.argmax() for l in Y_proba])
assert not (pred - Y_pred).any()
def test_ovr_multilabel_decision_function():
X, Y = datasets.make_multilabel_classification(n_samples=100,
n_features=20,
n_classes=5,
n_labels=3,
length=50,
allow_unlabeled=True,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal((clf.decision_function(X_test) > 0).astype(int),
clf.predict(X_test))
def test_ovr_single_label_decision_function():
X, Y = datasets.make_classification(n_samples=100,
n_features=20,
random_state=0)
X_train, Y_train = X[:80], Y[:80]
X_test = X[80:]
clf = OneVsRestClassifier(svm.SVC()).fit(X_train, Y_train)
assert_array_equal(clf.decision_function(X_test).ravel() > 0,
clf.predict(X_test))
def test_ovr_gridsearch():
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovr, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ovr_pipeline():
# Test with pipeline of length one
# This test is needed because the multiclass estimators may fail to detect
# the presence of predict_proba or decision_function.
clf = Pipeline([("tree", DecisionTreeClassifier())])
ovr_pipe = OneVsRestClassifier(clf)
ovr_pipe.fit(iris.data, iris.target)
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_array_equal(ovr.predict(iris.data), ovr_pipe.predict(iris.data))
def test_ovr_coef_():
for base_classifier in [SVC(kernel='linear', random_state=0),
LinearSVC(random_state=0)]:
# SVC has sparse coef with sparse input data
ovr = OneVsRestClassifier(base_classifier)
for X in [iris.data, sp.csr_matrix(iris.data)]:
# test with dense and sparse coef
ovr.fit(X, iris.target)
shape = ovr.coef_.shape
assert shape[0] == n_classes
assert shape[1] == iris.data.shape[1]
# don't densify sparse coefficients
assert (sp.issparse(ovr.estimators_[0].coef_) ==
sp.issparse(ovr.coef_))
def test_ovr_coef_exceptions():
# Not fitted exception!
ovr = OneVsRestClassifier(LinearSVC(random_state=0))
# lambda is needed because we don't want coef_ to be evaluated right away
assert_raises(ValueError, lambda x: ovr.coef_, None)
# Doesn't have coef_ exception!
ovr = OneVsRestClassifier(DecisionTreeClassifier())
ovr.fit(iris.data, iris.target)
assert_raises(AttributeError, lambda x: ovr.coef_, None)
def test_ovo_exceptions():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ovo.predict, [])
def test_ovo_fit_on_list():
# Test that OneVsOne fitting works with a list of targets and yields the
# same output as predict from an array
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
prediction_from_array = ovo.fit(iris.data, iris.target).predict(iris.data)
iris_data_list = [list(a) for a in iris.data]
prediction_from_list = ovo.fit(iris_data_list,
list(iris.target)).predict(iris_data_list)
assert_array_equal(prediction_from_array, prediction_from_list)
def test_ovo_fit_predict():
# A classifier which implements decision_function.
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
ovo.fit(iris.data, iris.target).predict(iris.data)
assert len(ovo.estimators_) == n_classes * (n_classes - 1) / 2
# A classifier which implements predict_proba.
ovo = OneVsOneClassifier(MultinomialNB())
ovo.fit(iris.data, iris.target).predict(iris.data)
assert len(ovo.estimators_) == n_classes * (n_classes - 1) / 2
def test_ovo_partial_fit_predict():
temp = datasets.load_iris()
X, y = temp.data, temp.target
ovo1 = OneVsOneClassifier(MultinomialNB())
ovo1.partial_fit(X[:100], y[:100], np.unique(y))
ovo1.partial_fit(X[100:], y[100:])
pred1 = ovo1.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
ovo2.fit(X, y)
pred2 = ovo2.predict(X)
assert len(ovo1.estimators_) == n_classes * (n_classes - 1) / 2
assert np.mean(y == pred1) > 0.65
assert_almost_equal(pred1, pred2)
# Test when mini-batches have binary target classes
ovo1 = OneVsOneClassifier(MultinomialNB())
ovo1.partial_fit(X[:60], y[:60], np.unique(y))
ovo1.partial_fit(X[60:], y[60:])
pred1 = ovo1.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
pred2 = ovo2.fit(X, y).predict(X)
assert_almost_equal(pred1, pred2)
assert len(ovo1.estimators_) == len(np.unique(y))
assert np.mean(y == pred1) > 0.65
ovo = OneVsOneClassifier(MultinomialNB())
X = np.random.rand(14, 2)
y = [1, 1, 2, 3, 3, 0, 0, 4, 4, 4, 4, 4, 2, 2]
ovo.partial_fit(X[:7], y[:7], [0, 1, 2, 3, 4])
ovo.partial_fit(X[7:], y[7:])
pred = ovo.predict(X)
ovo2 = OneVsOneClassifier(MultinomialNB())
pred2 = ovo2.fit(X, y).predict(X)
assert_almost_equal(pred, pred2)
# raises error when mini-batch does not have classes from all_classes
ovo = OneVsOneClassifier(MultinomialNB())
error_y = [0, 1, 2, 3, 4, 5, 2]
message_re = escape("Mini-batch contains {0} while "
"it must be subset of {1}".format(np.unique(error_y),
np.unique(y)))
assert_raises_regexp(ValueError, message_re, ovo.partial_fit, X[:7],
error_y, np.unique(y))
# test partial_fit only exists if estimator has it:
ovr = OneVsOneClassifier(SVC())
assert not hasattr(ovr, "partial_fit")
def test_ovo_decision_function():
n_samples = iris.data.shape[0]
ovo_clf = OneVsOneClassifier(LinearSVC(random_state=0))
# first binary
ovo_clf.fit(iris.data, iris.target == 0)
decisions = ovo_clf.decision_function(iris.data)
assert decisions.shape == (n_samples,)
# then multi-class
ovo_clf.fit(iris.data, iris.target)
decisions = ovo_clf.decision_function(iris.data)
assert decisions.shape == (n_samples, n_classes)
assert_array_equal(decisions.argmax(axis=1), ovo_clf.predict(iris.data))
# Compute the votes
votes = np.zeros((n_samples, n_classes))
k = 0
for i in range(n_classes):
for j in range(i + 1, n_classes):
pred = ovo_clf.estimators_[k].predict(iris.data)
votes[pred == 0, i] += 1
votes[pred == 1, j] += 1
k += 1
# Extract votes and verify
assert_array_equal(votes, np.round(decisions))
for class_idx in range(n_classes):
# For each sample and each class, there only 3 possible vote levels
# because they are only 3 distinct class pairs thus 3 distinct
# binary classifiers.
# Therefore, sorting predictions based on votes would yield
# mostly tied predictions:
assert set(votes[:, class_idx]).issubset(set([0., 1., 2.]))
# The OVO decision function on the other hand is able to resolve
# most of the ties on this data as it combines both the vote counts
# and the aggregated confidence levels of the binary classifiers
# to compute the aggregate decision function. The iris dataset
# has 150 samples with a couple of duplicates. The OvO decisions
# can resolve most of the ties:
assert len(np.unique(decisions[:, class_idx])) > 146
def test_ovo_gridsearch():
ovo = OneVsOneClassifier(LinearSVC(random_state=0))
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ovo, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ovo_ties():
# Test that ties are broken using the decision function,
# not defaulting to the smallest label
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y = np.array([2, 0, 1, 2])
multi_clf = OneVsOneClassifier(Perceptron(shuffle=False, max_iter=4,
tol=None))
ovo_prediction = multi_clf.fit(X, y).predict(X)
ovo_decision = multi_clf.decision_function(X)
# Classifiers are in order 0-1, 0-2, 1-2
# Use decision_function to compute the votes and the normalized
# sum_of_confidences, which is used to disambiguate when there is a tie in
# votes.
votes = np.round(ovo_decision)
normalized_confidences = ovo_decision - votes
# For the first point, there is one vote per class
assert_array_equal(votes[0, :], 1)
# For the rest, there is no tie and the prediction is the argmax
assert_array_equal(np.argmax(votes[1:], axis=1), ovo_prediction[1:])
# For the tie, the prediction is the class with the highest score
assert ovo_prediction[0] == normalized_confidences[0].argmax()
def test_ovo_ties2():
# test that ties can not only be won by the first two labels
X = np.array([[1, 2], [2, 1], [-2, 1], [-2, -1]])
y_ref = np.array([2, 0, 1, 2])
# cycle through labels so that each label wins once
for i in range(3):
y = (y_ref + i) % 3
multi_clf = OneVsOneClassifier(Perceptron(shuffle=False, max_iter=4,
tol=None))
ovo_prediction = multi_clf.fit(X, y).predict(X)
assert ovo_prediction[0] == i % 3
def test_ovo_string_y():
# Test that the OvO doesn't mess up the encoding of string labels
X = np.eye(4)
y = np.array(['a', 'b', 'c', 'd'])
ovo = OneVsOneClassifier(LinearSVC())
ovo.fit(X, y)
assert_array_equal(y, ovo.predict(X))
def test_ovo_one_class():
# Test error for OvO with one class
X = np.eye(4)
y = np.array(['a'] * 4)
ovo = OneVsOneClassifier(LinearSVC())
assert_raise_message(ValueError, "when only one class", ovo.fit, X, y)
def test_ovo_float_y():
# Test that the OvO errors on float targets
X = iris.data
y = iris.data[:, 0]
ovo = OneVsOneClassifier(LinearSVC())
assert_raise_message(ValueError, "Unknown label type", ovo.fit, X, y)
def test_ecoc_exceptions():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0))
assert_raises(ValueError, ecoc.predict, [])
def test_ecoc_fit_predict():
# A classifier which implements decision_function.
ecoc = OutputCodeClassifier(LinearSVC(random_state=0),
code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert len(ecoc.estimators_) == n_classes * 2
# A classifier which implements predict_proba.
ecoc = OutputCodeClassifier(MultinomialNB(), code_size=2, random_state=0)
ecoc.fit(iris.data, iris.target).predict(iris.data)
assert len(ecoc.estimators_) == n_classes * 2
def test_ecoc_gridsearch():
ecoc = OutputCodeClassifier(LinearSVC(random_state=0),
random_state=0)
Cs = [0.1, 0.5, 0.8]
cv = GridSearchCV(ecoc, {'estimator__C': Cs})
cv.fit(iris.data, iris.target)
best_C = cv.best_estimator_.estimators_[0].C
assert best_C in Cs
def test_ecoc_float_y():
# Test that the OCC errors on float targets
X = iris.data
y = iris.data[:, 0]
ovo = OutputCodeClassifier(LinearSVC())
assert_raise_message(ValueError, "Unknown label type", ovo.fit, X, y)
ovo = OutputCodeClassifier(LinearSVC(), code_size=-1)
assert_raise_message(ValueError, "code_size should be greater than 0,"
" got -1", ovo.fit, X, y)
def test_pairwise_indices():
clf_precomputed = svm.SVC(kernel='precomputed')
X, y = iris.data, iris.target
ovr_false = OneVsOneClassifier(clf_precomputed)
linear_kernel = np.dot(X, X.T)
ovr_false.fit(linear_kernel, y)
n_estimators = len(ovr_false.estimators_)
precomputed_indices = ovr_false.pairwise_indices_
for idx in precomputed_indices:
assert (idx.shape[0] * n_estimators / (n_estimators - 1) ==
linear_kernel.shape[0])
def test_pairwise_attribute():
clf_precomputed = svm.SVC(kernel='precomputed')
clf_notprecomputed = svm.SVC()
for MultiClassClassifier in [OneVsRestClassifier, OneVsOneClassifier]:
ovr_false = MultiClassClassifier(clf_notprecomputed)
assert not ovr_false._pairwise
ovr_true = MultiClassClassifier(clf_precomputed)
assert ovr_true._pairwise
def test_pairwise_cross_val_score():
clf_precomputed = svm.SVC(kernel='precomputed')
clf_notprecomputed = svm.SVC(kernel='linear')
X, y = iris.data, iris.target
for MultiClassClassifier in [OneVsRestClassifier, OneVsOneClassifier]:
ovr_false = MultiClassClassifier(clf_notprecomputed)
ovr_true = MultiClassClassifier(clf_precomputed)
linear_kernel = np.dot(X, X.T)
score_precomputed = cross_val_score(ovr_true, linear_kernel, y)
score_linear = cross_val_score(ovr_false, X, y)
assert_array_equal(score_precomputed, score_linear)