test_base.py
16.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
# Author: Gael Varoquaux
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
import pytest
import sklearn
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_no_warnings
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import ignore_warnings
from sklearn.base import BaseEstimator, clone, is_classifier
from sklearn.svm import SVC
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
from sklearn import datasets
from sklearn.base import TransformerMixin
from sklearn.utils._mocking import MockDataFrame
from sklearn import config_context
import pickle
#############################################################################
# A few test classes
class MyEstimator(BaseEstimator):
def __init__(self, l1=0, empty=None):
self.l1 = l1
self.empty = empty
class K(BaseEstimator):
def __init__(self, c=None, d=None):
self.c = c
self.d = d
class T(BaseEstimator):
def __init__(self, a=None, b=None):
self.a = a
self.b = b
class NaNTag(BaseEstimator):
def _more_tags(self):
return {'allow_nan': True}
class NoNaNTag(BaseEstimator):
def _more_tags(self):
return {'allow_nan': False}
class OverrideTag(NaNTag):
def _more_tags(self):
return {'allow_nan': False}
class DiamondOverwriteTag(NaNTag, NoNaNTag):
def _more_tags(self):
return dict()
class InheritDiamondOverwriteTag(DiamondOverwriteTag):
pass
class ModifyInitParams(BaseEstimator):
"""Deprecated behavior.
Equal parameters but with a type cast.
Doesn't fulfill a is a
"""
def __init__(self, a=np.array([0])):
self.a = a.copy()
class Buggy(BaseEstimator):
" A buggy estimator that does not set its parameters right. "
def __init__(self, a=None):
self.a = 1
class NoEstimator:
def __init__(self):
pass
def fit(self, X=None, y=None):
return self
def predict(self, X=None):
return None
class VargEstimator(BaseEstimator):
"""scikit-learn estimators shouldn't have vargs."""
def __init__(self, *vargs):
pass
#############################################################################
# The tests
def test_clone():
# Tests that clone creates a correct deep copy.
# We create an estimator, make a copy of its original state
# (which, in this case, is the current state of the estimator),
# and check that the obtained copy is a correct deep copy.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
new_selector = clone(selector)
assert selector is not new_selector
assert selector.get_params() == new_selector.get_params()
selector = SelectFpr(f_classif, alpha=np.zeros((10, 2)))
new_selector = clone(selector)
assert selector is not new_selector
def test_clone_2():
# Tests that clone doesn't copy everything.
# We first create an estimator, give it an own attribute, and
# make a copy of its original state. Then we check that the copy doesn't
# have the specific attribute we manually added to the initial estimator.
from sklearn.feature_selection import SelectFpr, f_classif
selector = SelectFpr(f_classif, alpha=0.1)
selector.own_attribute = "test"
new_selector = clone(selector)
assert not hasattr(new_selector, "own_attribute")
def test_clone_buggy():
# Check that clone raises an error on buggy estimators.
buggy = Buggy()
buggy.a = 2
assert_raises(RuntimeError, clone, buggy)
no_estimator = NoEstimator()
assert_raises(TypeError, clone, no_estimator)
varg_est = VargEstimator()
assert_raises(RuntimeError, clone, varg_est)
est = ModifyInitParams()
assert_raises(RuntimeError, clone, est)
def test_clone_empty_array():
# Regression test for cloning estimators with empty arrays
clf = MyEstimator(empty=np.array([]))
clf2 = clone(clf)
assert_array_equal(clf.empty, clf2.empty)
clf = MyEstimator(empty=sp.csr_matrix(np.array([[0]])))
clf2 = clone(clf)
assert_array_equal(clf.empty.data, clf2.empty.data)
def test_clone_nan():
# Regression test for cloning estimators with default parameter as np.nan
clf = MyEstimator(empty=np.nan)
clf2 = clone(clf)
assert clf.empty is clf2.empty
def test_clone_sparse_matrices():
sparse_matrix_classes = [
getattr(sp, name)
for name in dir(sp) if name.endswith('_matrix')]
for cls in sparse_matrix_classes:
sparse_matrix = cls(np.eye(5))
clf = MyEstimator(empty=sparse_matrix)
clf_cloned = clone(clf)
assert clf.empty.__class__ is clf_cloned.empty.__class__
assert_array_equal(clf.empty.toarray(), clf_cloned.empty.toarray())
def test_clone_estimator_types():
# Check that clone works for parameters that are types rather than
# instances
clf = MyEstimator(empty=MyEstimator)
clf2 = clone(clf)
assert clf.empty is clf2.empty
def test_clone_class_rather_than_instance():
# Check that clone raises expected error message when
# cloning class rather than instance
msg = "You should provide an instance of scikit-learn estimator"
with pytest.raises(TypeError, match=msg):
clone(MyEstimator)
def test_repr():
# Smoke test the repr of the base estimator.
my_estimator = MyEstimator()
repr(my_estimator)
test = T(K(), K())
assert (
repr(test) ==
"T(a=K(), b=K())")
some_est = T(a=["long_params"] * 1000)
assert len(repr(some_est)) == 485
def test_str():
# Smoke test the str of the base estimator
my_estimator = MyEstimator()
str(my_estimator)
def test_get_params():
test = T(K(), K())
assert 'a__d' in test.get_params(deep=True)
assert 'a__d' not in test.get_params(deep=False)
test.set_params(a__d=2)
assert test.a.d == 2
assert_raises(ValueError, test.set_params, a__a=2)
def test_is_classifier():
svc = SVC()
assert is_classifier(svc)
assert is_classifier(GridSearchCV(svc, {'C': [0.1, 1]}))
assert is_classifier(Pipeline([('svc', svc)]))
assert is_classifier(Pipeline(
[('svc_cv', GridSearchCV(svc, {'C': [0.1, 1]}))]))
def test_set_params():
# test nested estimator parameter setting
clf = Pipeline([("svc", SVC())])
# non-existing parameter in svc
assert_raises(ValueError, clf.set_params, svc__stupid_param=True)
# non-existing parameter of pipeline
assert_raises(ValueError, clf.set_params, svm__stupid_param=True)
# we don't currently catch if the things in pipeline are estimators
# bad_pipeline = Pipeline([("bad", NoEstimator())])
# assert_raises(AttributeError, bad_pipeline.set_params,
# bad__stupid_param=True)
def test_set_params_passes_all_parameters():
# Make sure all parameters are passed together to set_params
# of nested estimator. Regression test for #9944
class TestDecisionTree(DecisionTreeClassifier):
def set_params(self, **kwargs):
super().set_params(**kwargs)
# expected_kwargs is in test scope
assert kwargs == expected_kwargs
return self
expected_kwargs = {'max_depth': 5, 'min_samples_leaf': 2}
for est in [Pipeline([('estimator', TestDecisionTree())]),
GridSearchCV(TestDecisionTree(), {})]:
est.set_params(estimator__max_depth=5,
estimator__min_samples_leaf=2)
def test_set_params_updates_valid_params():
# Check that set_params tries to set SVC().C, not
# DecisionTreeClassifier().C
gscv = GridSearchCV(DecisionTreeClassifier(), {})
gscv.set_params(estimator=SVC(), estimator__C=42.0)
assert gscv.estimator.C == 42.0
def test_score_sample_weight():
rng = np.random.RandomState(0)
# test both ClassifierMixin and RegressorMixin
estimators = [DecisionTreeClassifier(max_depth=2),
DecisionTreeRegressor(max_depth=2)]
sets = [datasets.load_iris(),
datasets.load_boston()]
for est, ds in zip(estimators, sets):
est.fit(ds.data, ds.target)
# generate random sample weights
sample_weight = rng.randint(1, 10, size=len(ds.target))
# check that the score with and without sample weights are different
assert (est.score(ds.data, ds.target) !=
est.score(ds.data, ds.target,
sample_weight=sample_weight)), (
"Unweighted and weighted scores "
"are unexpectedly equal")
def test_clone_pandas_dataframe():
class DummyEstimator(TransformerMixin, BaseEstimator):
"""This is a dummy class for generating numerical features
This feature extractor extracts numerical features from pandas data
frame.
Parameters
----------
df: pandas data frame
The pandas data frame parameter.
Notes
-----
"""
def __init__(self, df=None, scalar_param=1):
self.df = df
self.scalar_param = scalar_param
def fit(self, X, y=None):
pass
def transform(self, X):
pass
# build and clone estimator
d = np.arange(10)
df = MockDataFrame(d)
e = DummyEstimator(df, scalar_param=1)
cloned_e = clone(e)
# the test
assert (e.df == cloned_e.df).values.all()
assert e.scalar_param == cloned_e.scalar_param
def test_pickle_version_warning_is_not_raised_with_matching_version():
iris = datasets.load_iris()
tree = DecisionTreeClassifier().fit(iris.data, iris.target)
tree_pickle = pickle.dumps(tree)
assert b"version" in tree_pickle
tree_restored = assert_no_warnings(pickle.loads, tree_pickle)
# test that we can predict with the restored decision tree classifier
score_of_original = tree.score(iris.data, iris.target)
score_of_restored = tree_restored.score(iris.data, iris.target)
assert score_of_original == score_of_restored
class TreeBadVersion(DecisionTreeClassifier):
def __getstate__(self):
return dict(self.__dict__.items(), _sklearn_version="something")
pickle_error_message = (
"Trying to unpickle estimator {estimator} from "
"version {old_version} when using version "
"{current_version}. This might "
"lead to breaking code or invalid results. "
"Use at your own risk.")
def test_pickle_version_warning_is_issued_upon_different_version():
iris = datasets.load_iris()
tree = TreeBadVersion().fit(iris.data, iris.target)
tree_pickle_other = pickle.dumps(tree)
message = pickle_error_message.format(estimator="TreeBadVersion",
old_version="something",
current_version=sklearn.__version__)
assert_warns_message(UserWarning, message, pickle.loads, tree_pickle_other)
class TreeNoVersion(DecisionTreeClassifier):
def __getstate__(self):
return self.__dict__
def test_pickle_version_warning_is_issued_when_no_version_info_in_pickle():
iris = datasets.load_iris()
# TreeNoVersion has no getstate, like pre-0.18
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
assert b"version" not in tree_pickle_noversion
message = pickle_error_message.format(estimator="TreeNoVersion",
old_version="pre-0.18",
current_version=sklearn.__version__)
# check we got the warning about using pre-0.18 pickle
assert_warns_message(UserWarning, message, pickle.loads,
tree_pickle_noversion)
def test_pickle_version_no_warning_is_issued_with_non_sklearn_estimator():
iris = datasets.load_iris()
tree = TreeNoVersion().fit(iris.data, iris.target)
tree_pickle_noversion = pickle.dumps(tree)
try:
module_backup = TreeNoVersion.__module__
TreeNoVersion.__module__ = "notsklearn"
assert_no_warnings(pickle.loads, tree_pickle_noversion)
finally:
TreeNoVersion.__module__ = module_backup
class DontPickleAttributeMixin:
def __getstate__(self):
data = self.__dict__.copy()
data["_attribute_not_pickled"] = None
return data
def __setstate__(self, state):
state["_restored"] = True
self.__dict__.update(state)
class MultiInheritanceEstimator(DontPickleAttributeMixin, BaseEstimator):
def __init__(self, attribute_pickled=5):
self.attribute_pickled = attribute_pickled
self._attribute_not_pickled = None
def test_pickling_when_getstate_is_overwritten_by_mixin():
estimator = MultiInheritanceEstimator()
estimator._attribute_not_pickled = "this attribute should not be pickled"
serialized = pickle.dumps(estimator)
estimator_restored = pickle.loads(serialized)
assert estimator_restored.attribute_pickled == 5
assert estimator_restored._attribute_not_pickled is None
assert estimator_restored._restored
def test_pickling_when_getstate_is_overwritten_by_mixin_outside_of_sklearn():
try:
estimator = MultiInheritanceEstimator()
text = "this attribute should not be pickled"
estimator._attribute_not_pickled = text
old_mod = type(estimator).__module__
type(estimator).__module__ = "notsklearn"
serialized = estimator.__getstate__()
assert serialized == {'_attribute_not_pickled': None,
'attribute_pickled': 5}
serialized['attribute_pickled'] = 4
estimator.__setstate__(serialized)
assert estimator.attribute_pickled == 4
assert estimator._restored
finally:
type(estimator).__module__ = old_mod
class SingleInheritanceEstimator(BaseEstimator):
def __init__(self, attribute_pickled=5):
self.attribute_pickled = attribute_pickled
self._attribute_not_pickled = None
def __getstate__(self):
data = self.__dict__.copy()
data["_attribute_not_pickled"] = None
return data
@ignore_warnings(category=(UserWarning))
def test_pickling_works_when_getstate_is_overwritten_in_the_child_class():
estimator = SingleInheritanceEstimator()
estimator._attribute_not_pickled = "this attribute should not be pickled"
serialized = pickle.dumps(estimator)
estimator_restored = pickle.loads(serialized)
assert estimator_restored.attribute_pickled == 5
assert estimator_restored._attribute_not_pickled is None
def test_tag_inheritance():
# test that changing tags by inheritance is not allowed
nan_tag_est = NaNTag()
no_nan_tag_est = NoNaNTag()
assert nan_tag_est._get_tags()['allow_nan']
assert not no_nan_tag_est._get_tags()['allow_nan']
redefine_tags_est = OverrideTag()
assert not redefine_tags_est._get_tags()['allow_nan']
diamond_tag_est = DiamondOverwriteTag()
assert diamond_tag_est._get_tags()['allow_nan']
inherit_diamond_tag_est = InheritDiamondOverwriteTag()
assert inherit_diamond_tag_est._get_tags()['allow_nan']
def test_warns_on_get_params_non_attribute():
class MyEstimator(BaseEstimator):
def __init__(self, param=5):
pass
def fit(self, X, y=None):
return self
est = MyEstimator()
with pytest.warns(FutureWarning, match='AttributeError'):
params = est.get_params()
assert params['param'] is None
def test_repr_mimebundle_():
# Checks the display configuration flag controls the json output
tree = DecisionTreeClassifier()
output = tree._repr_mimebundle_()
assert "text/plain" in output
assert "text/html" not in output
with config_context(display='diagram'):
output = tree._repr_mimebundle_()
assert "text/plain" in output
assert "text/html" in output
def test_repr_html_wraps():
# Checks the display configuration flag controls the html output
tree = DecisionTreeClassifier()
msg = "_repr_html_ is only defined when"
with pytest.raises(AttributeError, match=msg):
output = tree._repr_html_()
with config_context(display='diagram'):
output = tree._repr_html_()
assert "<style>" in output