_base.py
37.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
import numpy as np
import scipy.sparse as sp
import warnings
from abc import ABCMeta, abstractmethod
# mypy error: error: Module 'sklearn.svm' has no attribute '_libsvm'
# (and same for other imports)
from . import _libsvm as libsvm # type: ignore
from .import _liblinear as liblinear # type: ignore
from . import _libsvm_sparse as libsvm_sparse # type: ignore
from ..base import BaseEstimator, ClassifierMixin
from ..preprocessing import LabelEncoder
from ..utils.multiclass import _ovr_decision_function
from ..utils import check_array, check_random_state
from ..utils import column_or_1d
from ..utils import compute_class_weight
from ..utils.extmath import safe_sparse_dot
from ..utils.validation import check_is_fitted, _check_large_sparse
from ..utils.validation import _num_samples
from ..utils.validation import _check_sample_weight, check_consistent_length
from ..utils.multiclass import check_classification_targets
from ..exceptions import ConvergenceWarning
from ..exceptions import NotFittedError
LIBSVM_IMPL = ['c_svc', 'nu_svc', 'one_class', 'epsilon_svr', 'nu_svr']
def _one_vs_one_coef(dual_coef, n_support, support_vectors):
"""Generate primal coefficients from dual coefficients
for the one-vs-one multi class LibSVM in the case
of a linear kernel."""
# get 1vs1 weights for all n*(n-1) classifiers.
# this is somewhat messy.
# shape of dual_coef_ is nSV * (n_classes -1)
# see docs for details
n_class = dual_coef.shape[0] + 1
# XXX we could do preallocation of coef but
# would have to take care in the sparse case
coef = []
sv_locs = np.cumsum(np.hstack([[0], n_support]))
for class1 in range(n_class):
# SVs for class1:
sv1 = support_vectors[sv_locs[class1]:sv_locs[class1 + 1], :]
for class2 in range(class1 + 1, n_class):
# SVs for class1:
sv2 = support_vectors[sv_locs[class2]:sv_locs[class2 + 1], :]
# dual coef for class1 SVs:
alpha1 = dual_coef[class2 - 1, sv_locs[class1]:sv_locs[class1 + 1]]
# dual coef for class2 SVs:
alpha2 = dual_coef[class1, sv_locs[class2]:sv_locs[class2 + 1]]
# build weight for class1 vs class2
coef.append(safe_sparse_dot(alpha1, sv1)
+ safe_sparse_dot(alpha2, sv2))
return coef
class BaseLibSVM(BaseEstimator, metaclass=ABCMeta):
"""Base class for estimators that use libsvm as backing library
This implements support vector machine classification and regression.
Parameter documentation is in the derived `SVC` class.
"""
# The order of these must match the integer values in LibSVM.
# XXX These are actually the same in the dense case. Need to factor
# this out.
_sparse_kernels = ["linear", "poly", "rbf", "sigmoid", "precomputed"]
@abstractmethod
def __init__(self, kernel, degree, gamma, coef0,
tol, C, nu, epsilon, shrinking, probability, cache_size,
class_weight, verbose, max_iter, random_state):
if self._impl not in LIBSVM_IMPL:
raise ValueError("impl should be one of %s, %s was given" % (
LIBSVM_IMPL, self._impl))
if gamma == 0:
msg = ("The gamma value of 0.0 is invalid. Use 'auto' to set"
" gamma to a value of 1 / n_features.")
raise ValueError(msg)
self.kernel = kernel
self.degree = degree
self.gamma = gamma
self.coef0 = coef0
self.tol = tol
self.C = C
self.nu = nu
self.epsilon = epsilon
self.shrinking = shrinking
self.probability = probability
self.cache_size = cache_size
self.class_weight = class_weight
self.verbose = verbose
self.max_iter = max_iter
self.random_state = random_state
@property
def _pairwise(self):
# Used by cross_val_score.
return self.kernel == "precomputed"
def fit(self, X, y, sample_weight=None):
"""Fit the SVM model according to the given training data.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) \
or (n_samples, n_samples)
Training vectors, where n_samples is the number of samples
and n_features is the number of features.
For kernel="precomputed", the expected shape of X is
(n_samples, n_samples).
y : array-like of shape (n_samples,)
Target values (class labels in classification, real numbers in
regression)
sample_weight : array-like of shape (n_samples,), default=None
Per-sample weights. Rescale C per sample. Higher weights
force the classifier to put more emphasis on these points.
Returns
-------
self : object
Notes
-----
If X and y are not C-ordered and contiguous arrays of np.float64 and
X is not a scipy.sparse.csr_matrix, X and/or y may be copied.
If X is a dense array, then the other methods will not support sparse
matrices as input.
"""
rnd = check_random_state(self.random_state)
sparse = sp.isspmatrix(X)
if sparse and self.kernel == "precomputed":
raise TypeError("Sparse precomputed kernels are not supported.")
self._sparse = sparse and not callable(self.kernel)
if hasattr(self, 'decision_function_shape'):
if self.decision_function_shape not in ('ovr', 'ovo'):
raise ValueError(
f"decision_function_shape must be either 'ovr' or 'ovo', "
f"got {self.decision_function_shape}."
)
if callable(self.kernel):
check_consistent_length(X, y)
else:
X, y = self._validate_data(X, y, dtype=np.float64,
order='C', accept_sparse='csr',
accept_large_sparse=False)
y = self._validate_targets(y)
sample_weight = np.asarray([]
if sample_weight is None
else sample_weight, dtype=np.float64)
solver_type = LIBSVM_IMPL.index(self._impl)
# input validation
n_samples = _num_samples(X)
if solver_type != 2 and n_samples != y.shape[0]:
raise ValueError("X and y have incompatible shapes.\n" +
"X has %s samples, but y has %s." %
(n_samples, y.shape[0]))
if self.kernel == "precomputed" and n_samples != X.shape[1]:
raise ValueError("Precomputed matrix must be a square matrix."
" Input is a {}x{} matrix."
.format(X.shape[0], X.shape[1]))
if sample_weight.shape[0] > 0 and sample_weight.shape[0] != n_samples:
raise ValueError("sample_weight and X have incompatible shapes: "
"%r vs %r\n"
"Note: Sparse matrices cannot be indexed w/"
"boolean masks (use `indices=True` in CV)."
% (sample_weight.shape, X.shape))
kernel = 'precomputed' if callable(self.kernel) else self.kernel
if kernel == 'precomputed':
# unused but needs to be a float for cython code that ignores
# it anyway
self._gamma = 0.
elif isinstance(self.gamma, str):
if self.gamma == 'scale':
# var = E[X^2] - E[X]^2 if sparse
X_var = ((X.multiply(X)).mean() - (X.mean()) ** 2
if sparse else X.var())
self._gamma = 1.0 / (X.shape[1] * X_var) if X_var != 0 else 1.0
elif self.gamma == 'auto':
self._gamma = 1.0 / X.shape[1]
else:
raise ValueError(
"When 'gamma' is a string, it should be either 'scale' or "
"'auto'. Got '{}' instead.".format(self.gamma)
)
else:
self._gamma = self.gamma
fit = self._sparse_fit if self._sparse else self._dense_fit
if self.verbose:
print('[LibSVM]', end='')
seed = rnd.randint(np.iinfo('i').max)
fit(X, y, sample_weight, solver_type, kernel, random_seed=seed)
# see comment on the other call to np.iinfo in this file
self.shape_fit_ = X.shape if hasattr(X, "shape") else (n_samples, )
# In binary case, we need to flip the sign of coef, intercept and
# decision function. Use self._intercept_ and self._dual_coef_
# internally.
self._intercept_ = self.intercept_.copy()
self._dual_coef_ = self.dual_coef_
if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
self.intercept_ *= -1
self.dual_coef_ = -self.dual_coef_
return self
def _validate_targets(self, y):
"""Validation of y and class_weight.
Default implementation for SVR and one-class; overridden in BaseSVC.
"""
# XXX this is ugly.
# Regression models should not have a class_weight_ attribute.
self.class_weight_ = np.empty(0)
return column_or_1d(y, warn=True).astype(np.float64, copy=False)
def _warn_from_fit_status(self):
assert self.fit_status_ in (0, 1)
if self.fit_status_ == 1:
warnings.warn('Solver terminated early (max_iter=%i).'
' Consider pre-processing your data with'
' StandardScaler or MinMaxScaler.'
% self.max_iter, ConvergenceWarning)
def _dense_fit(self, X, y, sample_weight, solver_type, kernel,
random_seed):
if callable(self.kernel):
# you must store a reference to X to compute the kernel in predict
# TODO: add keyword copy to copy on demand
self.__Xfit = X
X = self._compute_kernel(X)
if X.shape[0] != X.shape[1]:
raise ValueError("X.shape[0] should be equal to X.shape[1]")
libsvm.set_verbosity_wrap(self.verbose)
# we don't pass **self.get_params() to allow subclasses to
# add other parameters to __init__
self.support_, self.support_vectors_, self._n_support, \
self.dual_coef_, self.intercept_, self._probA, \
self._probB, self.fit_status_ = libsvm.fit(
X, y,
svm_type=solver_type, sample_weight=sample_weight,
class_weight=self.class_weight_, kernel=kernel, C=self.C,
nu=self.nu, probability=self.probability, degree=self.degree,
shrinking=self.shrinking, tol=self.tol,
cache_size=self.cache_size, coef0=self.coef0,
gamma=self._gamma, epsilon=self.epsilon,
max_iter=self.max_iter, random_seed=random_seed)
self._warn_from_fit_status()
def _sparse_fit(self, X, y, sample_weight, solver_type, kernel,
random_seed):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
X.sort_indices()
kernel_type = self._sparse_kernels.index(kernel)
libsvm_sparse.set_verbosity_wrap(self.verbose)
self.support_, self.support_vectors_, dual_coef_data, \
self.intercept_, self._n_support, \
self._probA, self._probB, self.fit_status_ = \
libsvm_sparse.libsvm_sparse_train(
X.shape[1], X.data, X.indices, X.indptr, y, solver_type,
kernel_type, self.degree, self._gamma, self.coef0, self.tol,
self.C, self.class_weight_,
sample_weight, self.nu, self.cache_size, self.epsilon,
int(self.shrinking), int(self.probability), self.max_iter,
random_seed)
self._warn_from_fit_status()
if hasattr(self, "classes_"):
n_class = len(self.classes_) - 1
else: # regression
n_class = 1
n_SV = self.support_vectors_.shape[0]
dual_coef_indices = np.tile(np.arange(n_SV), n_class)
if not n_SV:
self.dual_coef_ = sp.csr_matrix([])
else:
dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
dual_coef_indices.size / n_class)
self.dual_coef_ = sp.csr_matrix(
(dual_coef_data, dual_coef_indices, dual_coef_indptr),
(n_class, n_SV))
def predict(self, X):
"""Perform regression on samples in X.
For an one-class model, +1 (inlier) or -1 (outlier) is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
y_pred : ndarray of shape (n_samples,)
"""
X = self._validate_for_predict(X)
predict = self._sparse_predict if self._sparse else self._dense_predict
return predict(X)
def _dense_predict(self, X):
X = self._compute_kernel(X)
if X.ndim == 1:
X = check_array(X, order='C', accept_large_sparse=False)
kernel = self.kernel
if callable(self.kernel):
kernel = 'precomputed'
if X.shape[1] != self.shape_fit_[0]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of samples at training time" %
(X.shape[1], self.shape_fit_[0]))
svm_type = LIBSVM_IMPL.index(self._impl)
return libsvm.predict(
X, self.support_, self.support_vectors_, self._n_support,
self._dual_coef_, self._intercept_,
self._probA, self._probB, svm_type=svm_type, kernel=kernel,
degree=self.degree, coef0=self.coef0, gamma=self._gamma,
cache_size=self.cache_size)
def _sparse_predict(self, X):
# Precondition: X is a csr_matrix of dtype np.float64.
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
C = 0.0 # C is not useful here
return libsvm_sparse.libsvm_sparse_predict(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self._impl), kernel_type,
self.degree, self._gamma, self.coef0, self.tol,
C, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self._n_support,
self._probA, self._probB)
def _compute_kernel(self, X):
"""Return the data transformed by a callable kernel"""
if callable(self.kernel):
# in the case of precomputed kernel given as a function, we
# have to compute explicitly the kernel matrix
kernel = self.kernel(X, self.__Xfit)
if sp.issparse(kernel):
kernel = kernel.toarray()
X = np.asarray(kernel, dtype=np.float64, order='C')
return X
def _decision_function(self, X):
"""Evaluates the decision function for the samples in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Returns
-------
X : array-like of shape (n_samples, n_class * (n_class-1) / 2)
Returns the decision function of the sample for each class
in the model.
"""
# NOTE: _validate_for_predict contains check for is_fitted
# hence must be placed before any other attributes are used.
X = self._validate_for_predict(X)
X = self._compute_kernel(X)
if self._sparse:
dec_func = self._sparse_decision_function(X)
else:
dec_func = self._dense_decision_function(X)
# In binary case, we need to flip the sign of coef, intercept and
# decision function.
if self._impl in ['c_svc', 'nu_svc'] and len(self.classes_) == 2:
return -dec_func.ravel()
return dec_func
def _dense_decision_function(self, X):
X = check_array(X, dtype=np.float64, order="C",
accept_large_sparse=False)
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
return libsvm.decision_function(
X, self.support_, self.support_vectors_, self._n_support,
self._dual_coef_, self._intercept_,
self._probA, self._probB,
svm_type=LIBSVM_IMPL.index(self._impl),
kernel=kernel, degree=self.degree, cache_size=self.cache_size,
coef0=self.coef0, gamma=self._gamma)
def _sparse_decision_function(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
kernel = self.kernel
if hasattr(kernel, '__call__'):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_decision_function(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self._impl), kernel_type,
self.degree, self._gamma, self.coef0, self.tol,
self.C, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self._n_support,
self._probA, self._probB)
def _validate_for_predict(self, X):
check_is_fitted(self)
if not callable(self.kernel):
X = check_array(X, accept_sparse='csr', dtype=np.float64,
order="C", accept_large_sparse=False)
if self._sparse and not sp.isspmatrix(X):
X = sp.csr_matrix(X)
if self._sparse:
X.sort_indices()
if sp.issparse(X) and not self._sparse and not callable(self.kernel):
raise ValueError(
"cannot use sparse input in %r trained on dense data"
% type(self).__name__)
if self.kernel == "precomputed":
if X.shape[1] != self.shape_fit_[0]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of samples at training time" %
(X.shape[1], self.shape_fit_[0]))
elif not callable(self.kernel) and X.shape[1] != self.shape_fit_[1]:
raise ValueError("X.shape[1] = %d should be equal to %d, "
"the number of features at training time" %
(X.shape[1], self.shape_fit_[1]))
return X
@property
def coef_(self):
if self.kernel != 'linear':
raise AttributeError('coef_ is only available when using a '
'linear kernel')
coef = self._get_coef()
# coef_ being a read-only property, it's better to mark the value as
# immutable to avoid hiding potential bugs for the unsuspecting user.
if sp.issparse(coef):
# sparse matrix do not have global flags
coef.data.flags.writeable = False
else:
# regular dense array
coef.flags.writeable = False
return coef
def _get_coef(self):
return safe_sparse_dot(self._dual_coef_, self.support_vectors_)
@property
def n_support_(self):
try:
check_is_fitted(self)
except NotFittedError:
raise AttributeError
svm_type = LIBSVM_IMPL.index(self._impl)
if svm_type in (0, 1):
return self._n_support
else:
# SVR and OneClass
# _n_support has size 2, we make it size 1
return np.array([self._n_support[0]])
class BaseSVC(ClassifierMixin, BaseLibSVM, metaclass=ABCMeta):
"""ABC for LibSVM-based classifiers."""
@abstractmethod
def __init__(self, kernel, degree, gamma, coef0, tol, C, nu,
shrinking, probability, cache_size, class_weight, verbose,
max_iter, decision_function_shape, random_state,
break_ties):
self.decision_function_shape = decision_function_shape
self.break_ties = break_ties
super().__init__(
kernel=kernel, degree=degree, gamma=gamma,
coef0=coef0, tol=tol, C=C, nu=nu, epsilon=0., shrinking=shrinking,
probability=probability, cache_size=cache_size,
class_weight=class_weight, verbose=verbose, max_iter=max_iter,
random_state=random_state)
def _validate_targets(self, y):
y_ = column_or_1d(y, warn=True)
check_classification_targets(y)
cls, y = np.unique(y_, return_inverse=True)
self.class_weight_ = compute_class_weight(self.class_weight,
classes=cls, y=y_)
if len(cls) < 2:
raise ValueError(
"The number of classes has to be greater than one; got %d"
" class" % len(cls))
self.classes_ = cls
return np.asarray(y, dtype=np.float64, order='C')
def decision_function(self, X):
"""Evaluates the decision function for the samples in X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Returns
-------
X : ndarray of shape (n_samples, n_classes * (n_classes-1) / 2)
Returns the decision function of the sample for each class
in the model.
If decision_function_shape='ovr', the shape is (n_samples,
n_classes).
Notes
-----
If decision_function_shape='ovo', the function values are proportional
to the distance of the samples X to the separating hyperplane. If the
exact distances are required, divide the function values by the norm of
the weight vector (``coef_``). See also `this question
<https://stats.stackexchange.com/questions/14876/
interpreting-distance-from-hyperplane-in-svm>`_ for further details.
If decision_function_shape='ovr', the decision function is a monotonic
transformation of ovo decision function.
"""
dec = self._decision_function(X)
if self.decision_function_shape == 'ovr' and len(self.classes_) > 2:
return _ovr_decision_function(dec < 0, -dec, len(self.classes_))
return dec
def predict(self, X):
"""Perform classification on samples in X.
For an one-class model, +1 or -1 is returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features) or \
(n_samples_test, n_samples_train)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
y_pred : ndarray of shape (n_samples,)
Class labels for samples in X.
"""
check_is_fitted(self)
if self.break_ties and self.decision_function_shape == 'ovo':
raise ValueError("break_ties must be False when "
"decision_function_shape is 'ovo'")
if (self.break_ties
and self.decision_function_shape == 'ovr'
and len(self.classes_) > 2):
y = np.argmax(self.decision_function(X), axis=1)
else:
y = super().predict(X)
return self.classes_.take(np.asarray(y, dtype=np.intp))
# Hacky way of getting predict_proba to raise an AttributeError when
# probability=False using properties. Do not use this in new code; when
# probabilities are not available depending on a setting, introduce two
# estimators.
def _check_proba(self):
if not self.probability:
raise AttributeError("predict_proba is not available when "
" probability=False")
if self._impl not in ('c_svc', 'nu_svc'):
raise AttributeError("predict_proba only implemented for SVC"
" and NuSVC")
@property
def predict_proba(self):
"""Compute probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like of shape (n_samples, n_features)
For kernel="precomputed", the expected shape of X is
[n_samples_test, n_samples_train]
Returns
-------
T : ndarray of shape (n_samples, n_classes)
Returns the probability of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
self._check_proba()
return self._predict_proba
def _predict_proba(self, X):
X = self._validate_for_predict(X)
if self.probA_.size == 0 or self.probB_.size == 0:
raise NotFittedError("predict_proba is not available when fitted "
"with probability=False")
pred_proba = (self._sparse_predict_proba
if self._sparse else self._dense_predict_proba)
return pred_proba(X)
@property
def predict_log_proba(self):
"""Compute log probabilities of possible outcomes for samples in X.
The model need to have probability information computed at training
time: fit with attribute `probability` set to True.
Parameters
----------
X : array-like of shape (n_samples, n_features) or \
(n_samples_test, n_samples_train)
For kernel="precomputed", the expected shape of X is
(n_samples_test, n_samples_train).
Returns
-------
T : ndarray of shape (n_samples, n_classes)
Returns the log-probabilities of the sample for each class in
the model. The columns correspond to the classes in sorted
order, as they appear in the attribute :term:`classes_`.
Notes
-----
The probability model is created using cross validation, so
the results can be slightly different than those obtained by
predict. Also, it will produce meaningless results on very small
datasets.
"""
self._check_proba()
return self._predict_log_proba
def _predict_log_proba(self, X):
return np.log(self.predict_proba(X))
def _dense_predict_proba(self, X):
X = self._compute_kernel(X)
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
svm_type = LIBSVM_IMPL.index(self._impl)
pprob = libsvm.predict_proba(
X, self.support_, self.support_vectors_, self._n_support,
self._dual_coef_, self._intercept_,
self._probA, self._probB,
svm_type=svm_type, kernel=kernel, degree=self.degree,
cache_size=self.cache_size, coef0=self.coef0, gamma=self._gamma)
return pprob
def _sparse_predict_proba(self, X):
X.data = np.asarray(X.data, dtype=np.float64, order='C')
kernel = self.kernel
if callable(kernel):
kernel = 'precomputed'
kernel_type = self._sparse_kernels.index(kernel)
return libsvm_sparse.libsvm_sparse_predict_proba(
X.data, X.indices, X.indptr,
self.support_vectors_.data,
self.support_vectors_.indices,
self.support_vectors_.indptr,
self._dual_coef_.data, self._intercept_,
LIBSVM_IMPL.index(self._impl), kernel_type,
self.degree, self._gamma, self.coef0, self.tol,
self.C, self.class_weight_,
self.nu, self.epsilon, self.shrinking,
self.probability, self._n_support,
self._probA, self._probB)
def _get_coef(self):
if self.dual_coef_.shape[0] == 1:
# binary classifier
coef = safe_sparse_dot(self.dual_coef_, self.support_vectors_)
else:
# 1vs1 classifier
coef = _one_vs_one_coef(self.dual_coef_, self._n_support,
self.support_vectors_)
if sp.issparse(coef[0]):
coef = sp.vstack(coef).tocsr()
else:
coef = np.vstack(coef)
return coef
@property
def probA_(self):
return self._probA
@property
def probB_(self):
return self._probB
def _get_liblinear_solver_type(multi_class, penalty, loss, dual):
"""Find the liblinear magic number for the solver.
This number depends on the values of the following attributes:
- multi_class
- penalty
- loss
- dual
The same number is also internally used by LibLinear to determine
which solver to use.
"""
# nested dicts containing level 1: available loss functions,
# level2: available penalties for the given loss function,
# level3: whether the dual solver is available for the specified
# combination of loss function and penalty
_solver_type_dict = {
'logistic_regression': {
'l1': {False: 6},
'l2': {False: 0, True: 7}},
'hinge': {
'l2': {True: 3}},
'squared_hinge': {
'l1': {False: 5},
'l2': {False: 2, True: 1}},
'epsilon_insensitive': {
'l2': {True: 13}},
'squared_epsilon_insensitive': {
'l2': {False: 11, True: 12}},
'crammer_singer': 4
}
if multi_class == 'crammer_singer':
return _solver_type_dict[multi_class]
elif multi_class != 'ovr':
raise ValueError("`multi_class` must be one of `ovr`, "
"`crammer_singer`, got %r" % multi_class)
_solver_pen = _solver_type_dict.get(loss, None)
if _solver_pen is None:
error_string = ("loss='%s' is not supported" % loss)
else:
_solver_dual = _solver_pen.get(penalty, None)
if _solver_dual is None:
error_string = ("The combination of penalty='%s' "
"and loss='%s' is not supported"
% (penalty, loss))
else:
solver_num = _solver_dual.get(dual, None)
if solver_num is None:
error_string = ("The combination of penalty='%s' and "
"loss='%s' are not supported when dual=%s"
% (penalty, loss, dual))
else:
return solver_num
raise ValueError('Unsupported set of arguments: %s, '
'Parameters: penalty=%r, loss=%r, dual=%r'
% (error_string, penalty, loss, dual))
def _fit_liblinear(X, y, C, fit_intercept, intercept_scaling, class_weight,
penalty, dual, verbose, max_iter, tol,
random_state=None, multi_class='ovr',
loss='logistic_regression', epsilon=0.1,
sample_weight=None):
"""Used by Logistic Regression (and CV) and LinearSVC/LinearSVR.
Preprocessing is done in this function before supplying it to liblinear.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples,)
Target vector relative to X
C : float
Inverse of cross-validation parameter. Lower the C, the more
the penalization.
fit_intercept : bool
Whether or not to fit the intercept, that is to add a intercept
term to the decision function.
intercept_scaling : float
LibLinear internally penalizes the intercept and this term is subject
to regularization just like the other terms of the feature vector.
In order to avoid this, one should increase the intercept_scaling.
such that the feature vector becomes [x, intercept_scaling].
class_weight : dict or 'balanced', default=None
Weights associated with classes in the form ``{class_label: weight}``.
If not given, all classes are supposed to have weight one. For
multi-output problems, a list of dicts can be provided in the same
order as the columns of y.
The "balanced" mode uses the values of y to automatically adjust
weights inversely proportional to class frequencies in the input data
as ``n_samples / (n_classes * np.bincount(y))``
penalty : {'l1', 'l2'}
The norm of the penalty used in regularization.
dual : bool
Dual or primal formulation,
verbose : int
Set verbose to any positive number for verbosity.
max_iter : int
Number of iterations.
tol : float
Stopping condition.
random_state : int or RandomState instance, default=None
Controls the pseudo random number generation for shuffling the data.
Pass an int for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
multi_class : {'ovr', 'crammer_singer'}, default='ovr'
`ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer`
optimizes a joint objective over all classes.
While `crammer_singer` is interesting from an theoretical perspective
as it is consistent it is seldom used in practice and rarely leads to
better accuracy and is more expensive to compute.
If `crammer_singer` is chosen, the options loss, penalty and dual will
be ignored.
loss : {'logistic_regression', 'hinge', 'squared_hinge', \
'epsilon_insensitive', 'squared_epsilon_insensitive}, \
default='logistic_regression'
The loss function used to fit the model.
epsilon : float, default=0.1
Epsilon parameter in the epsilon-insensitive loss function. Note
that the value of this parameter depends on the scale of the target
variable y. If unsure, set epsilon=0.
sample_weight : array-like of shape (n_samples,), default=None
Weights assigned to each sample.
Returns
-------
coef_ : ndarray of shape (n_features, n_features + 1)
The coefficient vector got by minimizing the objective function.
intercept_ : float
The intercept term added to the vector.
n_iter_ : int
Maximum number of iterations run across all classes.
"""
if loss not in ['epsilon_insensitive', 'squared_epsilon_insensitive']:
enc = LabelEncoder()
y_ind = enc.fit_transform(y)
classes_ = enc.classes_
if len(classes_) < 2:
raise ValueError("This solver needs samples of at least 2 classes"
" in the data, but the data contains only one"
" class: %r" % classes_[0])
class_weight_ = compute_class_weight(class_weight, classes=classes_,
y=y)
else:
class_weight_ = np.empty(0, dtype=np.float64)
y_ind = y
liblinear.set_verbosity_wrap(verbose)
rnd = check_random_state(random_state)
if verbose:
print('[LibLinear]', end='')
# LinearSVC breaks when intercept_scaling is <= 0
bias = -1.0
if fit_intercept:
if intercept_scaling <= 0:
raise ValueError("Intercept scaling is %r but needs to be greater "
"than 0. To disable fitting an intercept,"
" set fit_intercept=False." % intercept_scaling)
else:
bias = intercept_scaling
libsvm.set_verbosity_wrap(verbose)
libsvm_sparse.set_verbosity_wrap(verbose)
liblinear.set_verbosity_wrap(verbose)
# Liblinear doesn't support 64bit sparse matrix indices yet
if sp.issparse(X):
_check_large_sparse(X)
# LibLinear wants targets as doubles, even for classification
y_ind = np.asarray(y_ind, dtype=np.float64).ravel()
y_ind = np.require(y_ind, requirements="W")
sample_weight = _check_sample_weight(sample_weight, X,
dtype=np.float64)
solver_type = _get_liblinear_solver_type(multi_class, penalty, loss, dual)
raw_coef_, n_iter_ = liblinear.train_wrap(
X, y_ind, sp.isspmatrix(X), solver_type, tol, bias, C,
class_weight_, max_iter, rnd.randint(np.iinfo('i').max),
epsilon, sample_weight)
# Regarding rnd.randint(..) in the above signature:
# seed for srand in range [0..INT_MAX); due to limitations in Numpy
# on 32-bit platforms, we can't get to the UINT_MAX limit that
# srand supports
n_iter_ = max(n_iter_)
if n_iter_ >= max_iter:
warnings.warn("Liblinear failed to converge, increase "
"the number of iterations.", ConvergenceWarning)
if fit_intercept:
coef_ = raw_coef_[:, :-1]
intercept_ = intercept_scaling * raw_coef_[:, -1]
else:
coef_ = raw_coef_
intercept_ = 0.
return coef_, intercept_, n_iter_