_graph.py 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
"""Nearest Neighbors graph functions"""

# Author: Jake Vanderplas <vanderplas@astro.washington.edu>
#         Tom Dupre la Tour
#
# License: BSD 3 clause (C) INRIA, University of Amsterdam
from ._base import KNeighborsMixin, RadiusNeighborsMixin
from ._base import NeighborsBase
from ._base import UnsupervisedMixin
from ._unsupervised import NearestNeighbors
from ..base import TransformerMixin
from ..utils.validation import check_is_fitted, _deprecate_positional_args


def _check_params(X, metric, p, metric_params):
    """Check the validity of the input parameters"""
    params = zip(['metric', 'p', 'metric_params'],
                 [metric, p, metric_params])
    est_params = X.get_params()
    for param_name, func_param in params:
        if func_param != est_params[param_name]:
            raise ValueError(
                "Got %s for %s, while the estimator has %s for "
                "the same parameter." % (
                    func_param, param_name, est_params[param_name]))


def _query_include_self(X, include_self, mode):
    """Return the query based on include_self param"""
    if include_self == 'auto':
        include_self = mode == 'connectivity'

    # it does not include each sample as its own neighbors
    if not include_self:
        X = None

    return X


@_deprecate_positional_args
def kneighbors_graph(X, n_neighbors, *, mode='connectivity',
                     metric='minkowski', p=2, metric_params=None,
                     include_self=False, n_jobs=None):
    """Computes the (weighted) graph of k-Neighbors for points in X

    Read more in the :ref:`User Guide <unsupervised_neighbors>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features) or BallTree
        Sample data, in the form of a numpy array or a precomputed
        :class:`BallTree`.

    n_neighbors : int
        Number of neighbors for each sample.

    mode : {'connectivity', 'distance'}, default='connectivity'
        Type of returned matrix: 'connectivity' will return the connectivity
        matrix with ones and zeros, and 'distance' will return the distances
        between neighbors according to the given metric.

    metric : str, default='minkowski'
        The distance metric used to calculate the k-Neighbors for each sample
        point. The DistanceMetric class gives a list of available metrics.
        The default distance is 'euclidean' ('minkowski' metric with the p
        param equal to 2.)

    p : int, default=2
        Power parameter for the Minkowski metric. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        additional keyword arguments for the metric function.

    include_self : bool or 'auto', default=False
        Whether or not to mark each sample as the first nearest neighbor to
        itself. If 'auto', then True is used for mode='connectivity' and False
        for mode='distance'.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    A : sparse matrix of shape (n_samples, n_samples)
        Graph where A[i, j] is assigned the weight of edge that
        connects i to j. The matrix is of CSR format.

    Examples
    --------
    >>> X = [[0], [3], [1]]
    >>> from sklearn.neighbors import kneighbors_graph
    >>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
    >>> A.toarray()
    array([[1., 0., 1.],
           [0., 1., 1.],
           [1., 0., 1.]])

    See also
    --------
    radius_neighbors_graph
    """
    if not isinstance(X, KNeighborsMixin):
        X = NearestNeighbors(n_neighbors=n_neighbors, metric=metric, p=p,
                             metric_params=metric_params, n_jobs=n_jobs).fit(X)
    else:
        _check_params(X, metric, p, metric_params)

    query = _query_include_self(X._fit_X, include_self, mode)
    return X.kneighbors_graph(X=query, n_neighbors=n_neighbors, mode=mode)


@_deprecate_positional_args
def radius_neighbors_graph(X, radius, *, mode='connectivity',
                           metric='minkowski', p=2, metric_params=None,
                           include_self=False, n_jobs=None):
    """Computes the (weighted) graph of Neighbors for points in X

    Neighborhoods are restricted the points at a distance lower than
    radius.

    Read more in the :ref:`User Guide <unsupervised_neighbors>`.

    Parameters
    ----------
    X : array-like of shape (n_samples, n_features) or BallTree
        Sample data, in the form of a numpy array or a precomputed
        :class:`BallTree`.

    radius : float
        Radius of neighborhoods.

    mode : {'connectivity', 'distance'}, default='connectivity'
        Type of returned matrix: 'connectivity' will return the connectivity
        matrix with ones and zeros, and 'distance' will return the distances
        between neighbors according to the given metric.

    metric : str, default='minkowski'
        The distance metric used to calculate the neighbors within a
        given radius for each sample point. The DistanceMetric class
        gives a list of available metrics. The default distance is
        'euclidean' ('minkowski' metric with the param equal to 2.)

    p : int, default=2
        Power parameter for the Minkowski metric. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        additional keyword arguments for the metric function.

    include_self : bool or 'auto', default=False
        Whether or not to mark each sample as the first nearest neighbor to
        itself. If 'auto', then True is used for mode='connectivity' and False
        for mode='distance'.

    n_jobs : int, default=None
        The number of parallel jobs to run for neighbors search.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Returns
    -------
    A : sparse matrix of shape (n_samples, n_samples)
        Graph where A[i, j] is assigned the weight of edge that connects
        i to j. The matrix is of CSR format.

    Examples
    --------
    >>> X = [[0], [3], [1]]
    >>> from sklearn.neighbors import radius_neighbors_graph
    >>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
    ...                            include_self=True)
    >>> A.toarray()
    array([[1., 0., 1.],
           [0., 1., 0.],
           [1., 0., 1.]])

    See also
    --------
    kneighbors_graph
    """
    if not isinstance(X, RadiusNeighborsMixin):
        X = NearestNeighbors(radius=radius, metric=metric, p=p,
                             metric_params=metric_params, n_jobs=n_jobs).fit(X)
    else:
        _check_params(X, metric, p, metric_params)

    query = _query_include_self(X._fit_X, include_self, mode)
    return X.radius_neighbors_graph(query, radius, mode)


class KNeighborsTransformer(KNeighborsMixin, UnsupervisedMixin,
                            TransformerMixin, NeighborsBase):
    """Transform X into a (weighted) graph of k nearest neighbors

    The transformed data is a sparse graph as returned by kneighbors_graph.

    Read more in the :ref:`User Guide <neighbors_transformer>`.

    .. versionadded:: 0.22

    Parameters
    ----------
    mode : {'distance', 'connectivity'}, default='distance'
        Type of returned matrix: 'connectivity' will return the connectivity
        matrix with ones and zeros, and 'distance' will return the distances
        between neighbors according to the given metric.

    n_neighbors : int, default=5
        Number of neighbors for each sample in the transformed sparse graph.
        For compatibility reasons, as each sample is considered as its own
        neighbor, one extra neighbor will be computed when mode == 'distance'.
        In this case, the sparse graph contains (n_neighbors + 1) neighbors.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to BallTree or KDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    metric : str or callable, default='minkowski'
        metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    p : int, default=2
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    n_jobs : int, default=1
        The number of parallel jobs to run for neighbors search.
        If ``-1``, then the number of jobs is set to the number of CPU cores.

    Examples
    --------
    >>> from sklearn.manifold import Isomap
    >>> from sklearn.neighbors import KNeighborsTransformer
    >>> from sklearn.pipeline import make_pipeline
    >>> estimator = make_pipeline(
    ...     KNeighborsTransformer(n_neighbors=5, mode='distance'),
    ...     Isomap(neighbors_algorithm='precomputed'))
    """
    @_deprecate_positional_args
    def __init__(self, *, mode='distance', n_neighbors=5, algorithm='auto',
                 leaf_size=30, metric='minkowski', p=2, metric_params=None,
                 n_jobs=1):
        super(KNeighborsTransformer, self).__init__(
            n_neighbors=n_neighbors, radius=None, algorithm=algorithm,
            leaf_size=leaf_size, metric=metric, p=p,
            metric_params=metric_params, n_jobs=n_jobs)
        self.mode = mode

    def transform(self, X):
        """Computes the (weighted) graph of Neighbors for points in X

        Parameters
        ----------
        X : array-like of shape (n_samples_transform, n_features)
            Sample data.

        Returns
        -------
        Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
            Xt[i, j] is assigned the weight of edge that connects i to j.
            Only the neighbors have an explicit value.
            The diagonal is always explicit.
            The matrix is of CSR format.
        """
        check_is_fitted(self)
        add_one = self.mode == 'distance'
        return self.kneighbors_graph(X, mode=self.mode,
                                     n_neighbors=self.n_neighbors + add_one)

    def fit_transform(self, X, y=None):
        """Fit to data, then transform it.

        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training set.

        y : ignored

        Returns
        -------
        Xt : sparse matrix of shape (n_samples, n_samples)
            Xt[i, j] is assigned the weight of edge that connects i to j.
            Only the neighbors have an explicit value.
            The diagonal is always explicit.
            The matrix is of CSR format.
        """
        return self.fit(X).transform(X)


class RadiusNeighborsTransformer(RadiusNeighborsMixin, UnsupervisedMixin,
                                 TransformerMixin, NeighborsBase):
    """Transform X into a (weighted) graph of neighbors nearer than a radius

    The transformed data is a sparse graph as returned by
    radius_neighbors_graph.

    Read more in the :ref:`User Guide <neighbors_transformer>`.

    .. versionadded:: 0.22

    Parameters
    ----------
    mode : {'distance', 'connectivity'}, default='distance'
        Type of returned matrix: 'connectivity' will return the connectivity
        matrix with ones and zeros, and 'distance' will return the distances
        between neighbors according to the given metric.

    radius : float, default=1.
        Radius of neighborhood in the transformed sparse graph.

    algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, default='auto'
        Algorithm used to compute the nearest neighbors:

        - 'ball_tree' will use :class:`BallTree`
        - 'kd_tree' will use :class:`KDTree`
        - 'brute' will use a brute-force search.
        - 'auto' will attempt to decide the most appropriate algorithm
          based on the values passed to :meth:`fit` method.

        Note: fitting on sparse input will override the setting of
        this parameter, using brute force.

    leaf_size : int, default=30
        Leaf size passed to BallTree or KDTree.  This can affect the
        speed of the construction and query, as well as the memory
        required to store the tree.  The optimal value depends on the
        nature of the problem.

    metric : str or callable, default='minkowski'
        metric to use for distance computation. Any metric from scikit-learn
        or scipy.spatial.distance can be used.

        If metric is a callable function, it is called on each
        pair of instances (rows) and the resulting value recorded. The callable
        should take two arrays as input and return one value indicating the
        distance between them. This works for Scipy's metrics, but is less
        efficient than passing the metric name as a string.

        Distance matrices are not supported.

        Valid values for metric are:

        - from scikit-learn: ['cityblock', 'cosine', 'euclidean', 'l1', 'l2',
          'manhattan']

        - from scipy.spatial.distance: ['braycurtis', 'canberra', 'chebyshev',
          'correlation', 'dice', 'hamming', 'jaccard', 'kulsinski',
          'mahalanobis', 'minkowski', 'rogerstanimoto', 'russellrao',
          'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean',
          'yule']

        See the documentation for scipy.spatial.distance for details on these
        metrics.

    p : int, default=2
        Parameter for the Minkowski metric from
        sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
        equivalent to using manhattan_distance (l1), and euclidean_distance
        (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

    metric_params : dict, default=None
        Additional keyword arguments for the metric function.

    n_jobs : int, default=1
        The number of parallel jobs to run for neighbors search.
        If ``-1``, then the number of jobs is set to the number of CPU cores.

    Examples
    --------
    >>> from sklearn.cluster import DBSCAN
    >>> from sklearn.neighbors import RadiusNeighborsTransformer
    >>> from sklearn.pipeline import make_pipeline
    >>> estimator = make_pipeline(
    ...     RadiusNeighborsTransformer(radius=42.0, mode='distance'),
    ...     DBSCAN(min_samples=30, metric='precomputed'))
    """
    @_deprecate_positional_args
    def __init__(self, *, mode='distance', radius=1., algorithm='auto',
                 leaf_size=30, metric='minkowski', p=2, metric_params=None,
                 n_jobs=1):
        super(RadiusNeighborsTransformer, self).__init__(
            n_neighbors=None, radius=radius, algorithm=algorithm,
            leaf_size=leaf_size, metric=metric, p=p,
            metric_params=metric_params, n_jobs=n_jobs)
        self.mode = mode

    def transform(self, X):
        """Computes the (weighted) graph of Neighbors for points in X

        Parameters
        ----------
        X : array-like of shape (n_samples_transform, n_features)
            Sample data

        Returns
        -------
        Xt : sparse matrix of shape (n_samples_transform, n_samples_fit)
            Xt[i, j] is assigned the weight of edge that connects i to j.
            Only the neighbors have an explicit value.
            The diagonal is always explicit.
            The matrix is of CSR format.
        """
        check_is_fitted(self)
        return self.radius_neighbors_graph(X, mode=self.mode,
                                           sort_results=True)

    def fit_transform(self, X, y=None):
        """Fit to data, then transform it.

        Fits transformer to X and y with optional parameters fit_params
        and returns a transformed version of X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training set.

        y : ignored

        Returns
        -------
        Xt : sparse matrix of shape (n_samples, n_samples)
            Xt[i, j] is assigned the weight of edge that connects i to j.
            Only the neighbors have an explicit value.
            The diagonal is always explicit.
            The matrix is of CSR format.
        """
        return self.fit(X).transform(X)