multiclass.py 30.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
"""
Multiclass and multilabel classification strategies
===================================================

This module implements multiclass learning algorithms:
    - one-vs-the-rest / one-vs-all
    - one-vs-one
    - error correcting output codes

The estimators provided in this module are meta-estimators: they require a base
estimator to be provided in their constructor. For example, it is possible to
use these estimators to turn a binary classifier or a regressor into a
multiclass classifier. It is also possible to use these estimators with
multiclass estimators in the hope that their accuracy or runtime performance
improves.

All classifiers in scikit-learn implement multiclass classification; you
only need to use this module if you want to experiment with custom multiclass
strategies.

The one-vs-the-rest meta-classifier also implements a `predict_proba` method,
so long as such a method is implemented by the base classifier. This method
returns probabilities of class membership in both the single label and
multilabel case.  Note that in the multilabel case, probabilities are the
marginal probability that a given sample falls in the given class. As such, in
the multilabel case the sum of these probabilities over all possible labels
for a given sample *will not* sum to unity, as they do in the single label
case.
"""

# Author: Mathieu Blondel <mathieu@mblondel.org>
# Author: Hamzeh Alsalhi <93hamsal@gmail.com>
#
# License: BSD 3 clause

import array
import numpy as np
import warnings
import scipy.sparse as sp
import itertools

from .base import BaseEstimator, ClassifierMixin, clone, is_classifier
from .base import MultiOutputMixin
from .base import MetaEstimatorMixin, is_regressor
from .preprocessing import LabelBinarizer
from .metrics.pairwise import euclidean_distances
from .utils import check_random_state
from .utils.validation import _num_samples
from .utils.validation import check_is_fitted
from .utils.validation import check_X_y, check_array
from .utils.validation import _deprecate_positional_args
from .utils.multiclass import (_check_partial_fit_first_call,
                               check_classification_targets,
                               _ovr_decision_function)
from .utils.metaestimators import _safe_split, if_delegate_has_method
from .exceptions import NotFittedError

from joblib import Parallel, delayed

__all__ = [
    "OneVsRestClassifier",
    "OneVsOneClassifier",
    "OutputCodeClassifier",
]


def _fit_binary(estimator, X, y, classes=None):
    """Fit a single binary estimator."""
    unique_y = np.unique(y)
    if len(unique_y) == 1:
        if classes is not None:
            if y[0] == -1:
                c = 0
            else:
                c = y[0]
            warnings.warn("Label %s is present in all training examples." %
                          str(classes[c]))
        estimator = _ConstantPredictor().fit(X, unique_y)
    else:
        estimator = clone(estimator)
        estimator.fit(X, y)
    return estimator


def _partial_fit_binary(estimator, X, y):
    """Partially fit a single binary estimator."""
    estimator.partial_fit(X, y, np.array((0, 1)))
    return estimator


def _predict_binary(estimator, X):
    """Make predictions using a single binary estimator."""
    if is_regressor(estimator):
        return estimator.predict(X)
    try:
        score = np.ravel(estimator.decision_function(X))
    except (AttributeError, NotImplementedError):
        # probabilities of the positive class
        score = estimator.predict_proba(X)[:, 1]
    return score


def _check_estimator(estimator):
    """Make sure that an estimator implements the necessary methods."""
    if (not hasattr(estimator, "decision_function") and
            not hasattr(estimator, "predict_proba")):
        raise ValueError("The base estimator should implement "
                         "decision_function or predict_proba!")


class _ConstantPredictor(BaseEstimator):

    def fit(self, X, y):
        self.y_ = y
        return self

    def predict(self, X):
        check_is_fitted(self)

        return np.repeat(self.y_, X.shape[0])

    def decision_function(self, X):
        check_is_fitted(self)

        return np.repeat(self.y_, X.shape[0])

    def predict_proba(self, X):
        check_is_fitted(self)

        return np.repeat([np.hstack([1 - self.y_, self.y_])],
                         X.shape[0], axis=0)


class OneVsRestClassifier(MultiOutputMixin, ClassifierMixin,
                          MetaEstimatorMixin, BaseEstimator):
    """One-vs-the-rest (OvR) multiclass/multilabel strategy

    Also known as one-vs-all, this strategy consists in fitting one classifier
    per class. For each classifier, the class is fitted against all the other
    classes. In addition to its computational efficiency (only `n_classes`
    classifiers are needed), one advantage of this approach is its
    interpretability. Since each class is represented by one and one classifier
    only, it is possible to gain knowledge about the class by inspecting its
    corresponding classifier. This is the most commonly used strategy for
    multiclass classification and is a fair default choice.

    This strategy can also be used for multilabel learning, where a classifier
    is used to predict multiple labels for instance, by fitting on a 2-d matrix
    in which cell [i, j] is 1 if sample i has label j and 0 otherwise.

    In the multilabel learning literature, OvR is also known as the binary
    relevance method.

    Read more in the :ref:`User Guide <ovr_classification>`.

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and one of
        :term:`decision_function` or :term:`predict_proba`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    Attributes
    ----------
    estimators_ : list of `n_classes` estimators
        Estimators used for predictions.

    classes_ : array, shape = [`n_classes`]
        Class labels.

    n_classes_ : int
        Number of classes.

    label_binarizer_ : LabelBinarizer object
        Object used to transform multiclass labels to binary labels and
        vice-versa.

    multilabel_ : boolean
        Whether a OneVsRestClassifier is a multilabel classifier.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.multiclass import OneVsRestClassifier
    >>> from sklearn.svm import SVC
    >>> X = np.array([
    ...     [10, 10],
    ...     [8, 10],
    ...     [-5, 5.5],
    ...     [-5.4, 5.5],
    ...     [-20, -20],
    ...     [-15, -20]
    ... ])
    >>> y = np.array([0, 0, 1, 1, 2, 2])
    >>> clf = OneVsRestClassifier(SVC()).fit(X, y)
    >>> clf.predict([[-19, -20], [9, 9], [-5, 5]])
    array([2, 0, 1])

    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        self.estimator = estimator
        self.n_jobs = n_jobs

    def fit(self, X, y):
        """Fit underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.

        Returns
        -------
        self
        """
        # A sparse LabelBinarizer, with sparse_output=True, has been shown to
        # outperform or match a dense label binarizer in all cases and has also
        # resulted in less or equal memory consumption in the fit_ovr function
        # overall.
        self.label_binarizer_ = LabelBinarizer(sparse_output=True)
        Y = self.label_binarizer_.fit_transform(y)
        Y = Y.tocsc()
        self.classes_ = self.label_binarizer_.classes_
        columns = (col.toarray().ravel() for col in Y.T)
        # In cases where individual estimators are very fast to train setting
        # n_jobs > 1 in can results in slower performance due to the overhead
        # of spawning threads.  See joblib issue #112.
        self.estimators_ = Parallel(n_jobs=self.n_jobs)(delayed(_fit_binary)(
            self.estimator, X, column, classes=[
                "not %s" % self.label_binarizer_.classes_[i],
                self.label_binarizer_.classes_[i]])
            for i, column in enumerate(columns))

        return self

    @if_delegate_has_method('estimator')
    def partial_fit(self, X, y, classes=None):
        """Partially fit underlying estimators

        Should be used when memory is inefficient to train all data.
        Chunks of data can be passed in several iteration.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Multi-class targets. An indicator matrix turns on multilabel
            classification.

        classes : array, shape (n_classes, )
            Classes across all calls to partial_fit.
            Can be obtained via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is only required in the first call of partial_fit
            and can be omitted in the subsequent calls.

        Returns
        -------
        self
        """
        if _check_partial_fit_first_call(self, classes):
            if not hasattr(self.estimator, "partial_fit"):
                raise ValueError(("Base estimator {0}, doesn't have "
                                 "partial_fit method").format(self.estimator))
            self.estimators_ = [clone(self.estimator) for _ in range
                                (self.n_classes_)]

            # A sparse LabelBinarizer, with sparse_output=True, has been
            # shown to outperform or match a dense label binarizer in all
            # cases and has also resulted in less or equal memory consumption
            # in the fit_ovr function overall.
            self.label_binarizer_ = LabelBinarizer(sparse_output=True)
            self.label_binarizer_.fit(self.classes_)

        if len(np.setdiff1d(y, self.classes_)):
            raise ValueError(("Mini-batch contains {0} while classes " +
                             "must be subset of {1}").format(np.unique(y),
                                                             self.classes_))

        Y = self.label_binarizer_.transform(y)
        Y = Y.tocsc()
        columns = (col.toarray().ravel() for col in Y.T)

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_partial_fit_binary)(estimator, X, column)
            for estimator, column in zip(self.estimators_, columns))

        return self

    def predict(self, X):
        """Predict multi-class targets using underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        Returns
        -------
        y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)
            Predicted multi-class targets.
        """
        check_is_fitted(self)

        n_samples = _num_samples(X)
        if self.label_binarizer_.y_type_ == "multiclass":
            maxima = np.empty(n_samples, dtype=float)
            maxima.fill(-np.inf)
            argmaxima = np.zeros(n_samples, dtype=int)
            for i, e in enumerate(self.estimators_):
                pred = _predict_binary(e, X)
                np.maximum(maxima, pred, out=maxima)
                argmaxima[maxima == pred] = i
            return self.classes_[argmaxima]
        else:
            if (hasattr(self.estimators_[0], "decision_function") and
                    is_classifier(self.estimators_[0])):
                thresh = 0
            else:
                thresh = .5
            indices = array.array('i')
            indptr = array.array('i', [0])
            for e in self.estimators_:
                indices.extend(np.where(_predict_binary(e, X) > thresh)[0])
                indptr.append(len(indices))
            data = np.ones(len(indices), dtype=int)
            indicator = sp.csc_matrix((data, indices, indptr),
                                      shape=(n_samples, len(self.estimators_)))
            return self.label_binarizer_.inverse_transform(indicator)

    @if_delegate_has_method(['_first_estimator', 'estimator'])
    def predict_proba(self, X):
        """Probability estimates.

        The returned estimates for all classes are ordered by label of classes.

        Note that in the multilabel case, each sample can have any number of
        labels. This returns the marginal probability that the given sample has
        the label in question. For example, it is entirely consistent that two
        labels both have a 90% probability of applying to a given sample.

        In the single label multiclass case, the rows of the returned matrix
        sum to 1.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        T : (sparse) array-like of shape (n_samples, n_classes)
            Returns the probability of the sample for each class in the model,
            where classes are ordered as they are in `self.classes_`.
        """
        check_is_fitted(self)
        # Y[i, j] gives the probability that sample i has the label j.
        # In the multi-label case, these are not disjoint.
        Y = np.array([e.predict_proba(X)[:, 1] for e in self.estimators_]).T

        if len(self.estimators_) == 1:
            # Only one estimator, but we still want to return probabilities
            # for two classes.
            Y = np.concatenate(((1 - Y), Y), axis=1)

        if not self.multilabel_:
            # Then, probabilities should be normalized to 1.
            Y /= np.sum(Y, axis=1)[:, np.newaxis]
        return Y

    @if_delegate_has_method(['_first_estimator', 'estimator'])
    def decision_function(self, X):
        """Returns the distance of each sample from the decision boundary for
        each class. This can only be used with estimators which implement the
        decision_function method.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        T : array-like of shape (n_samples, n_classes)

            .. versionchanged:: 0.19
                output shape changed to ``(n_samples,)`` to conform to
                scikit-learn conventions for binary classification.
        """
        check_is_fitted(self)
        if len(self.estimators_) == 1:
            return self.estimators_[0].decision_function(X)
        return np.array([est.decision_function(X).ravel()
                         for est in self.estimators_]).T

    @property
    def multilabel_(self):
        """Whether this is a multilabel classifier"""
        return self.label_binarizer_.y_type_.startswith('multilabel')

    @property
    def n_classes_(self):
        return len(self.classes_)

    @property
    def coef_(self):
        check_is_fitted(self)
        if not hasattr(self.estimators_[0], "coef_"):
            raise AttributeError(
                "Base estimator doesn't have a coef_ attribute.")
        coefs = [e.coef_ for e in self.estimators_]
        if sp.issparse(coefs[0]):
            return sp.vstack(coefs)
        return np.vstack(coefs)

    @property
    def intercept_(self):
        check_is_fitted(self)
        if not hasattr(self.estimators_[0], "intercept_"):
            raise AttributeError(
                "Base estimator doesn't have an intercept_ attribute.")
        return np.array([e.intercept_.ravel() for e in self.estimators_])

    @property
    def _pairwise(self):
        """Indicate if wrapped estimator is using a precomputed Gram matrix"""
        return getattr(self.estimator, "_pairwise", False)

    @property
    def _first_estimator(self):
        return self.estimators_[0]

    @property
    def n_features_in_(self):
        # For consistency with other estimators we raise a AttributeError so
        # that hasattr() fails if the OVR estimator isn't fitted.
        try:
            check_is_fitted(self)
        except NotFittedError as nfe:
            raise AttributeError(
                "{} object has no n_features_in_ attribute."
                .format(self.__class__.__name__)
            ) from nfe
        return self.estimators_[0].n_features_in_


def _fit_ovo_binary(estimator, X, y, i, j):
    """Fit a single binary estimator (one-vs-one)."""
    cond = np.logical_or(y == i, y == j)
    y = y[cond]
    y_binary = np.empty(y.shape, np.int)
    y_binary[y == i] = 0
    y_binary[y == j] = 1
    indcond = np.arange(X.shape[0])[cond]
    return _fit_binary(estimator,
                       _safe_split(estimator, X, None, indices=indcond)[0],
                       y_binary, classes=[i, j]), indcond


def _partial_fit_ovo_binary(estimator, X, y, i, j):
    """Partially fit a single binary estimator(one-vs-one)."""

    cond = np.logical_or(y == i, y == j)
    y = y[cond]
    if len(y) != 0:
        y_binary = np.zeros_like(y)
        y_binary[y == j] = 1
        return _partial_fit_binary(estimator, X[cond], y_binary)
    return estimator


class OneVsOneClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
    """One-vs-one multiclass strategy

    This strategy consists in fitting one classifier per class pair.
    At prediction time, the class which received the most votes is selected.
    Since it requires to fit `n_classes * (n_classes - 1) / 2` classifiers,
    this method is usually slower than one-vs-the-rest, due to its
    O(n_classes^2) complexity. However, this method may be advantageous for
    algorithms such as kernel algorithms which don't scale well with
    `n_samples`. This is because each individual learning problem only involves
    a small subset of the data whereas, with one-vs-the-rest, the complete
    dataset is used `n_classes` times.

    Read more in the :ref:`User Guide <ovo_classification>`.

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and one of
        :term:`decision_function` or :term:`predict_proba`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    estimators_ : list of ``n_classes * (n_classes - 1) / 2`` estimators
        Estimators used for predictions.

    classes_ : numpy array of shape [n_classes]
        Array containing labels.

    n_classes_ : int
        Number of classes

    pairwise_indices_ : list, length = ``len(estimators_)``, or ``None``
        Indices of samples used when training the estimators.
        ``None`` when ``estimator`` does not have ``_pairwise`` attribute.

    Examples
    --------
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.multiclass import OneVsOneClassifier
    >>> from sklearn.svm import LinearSVC
    >>> X, y = load_iris(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, test_size=0.33, shuffle=True, random_state=0)
    >>> clf = OneVsOneClassifier(
    ...     LinearSVC(random_state=0)).fit(X_train, y_train)
    >>> clf.predict(X_test[:10])
    array([2, 1, 0, 2, 0, 2, 0, 1, 1, 1])
    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, n_jobs=None):
        self.estimator = estimator
        self.n_jobs = n_jobs

    def fit(self, X, y):
        """Fit underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : array-like of shape (n_samples,)
            Multi-class targets.

        Returns
        -------
        self
        """
        X, y = self._validate_data(X, y, accept_sparse=['csr', 'csc'])
        check_classification_targets(y)

        self.classes_ = np.unique(y)
        if len(self.classes_) == 1:
            raise ValueError("OneVsOneClassifier can not be fit when only one"
                             " class is present.")
        n_classes = self.classes_.shape[0]
        estimators_indices = list(zip(*(Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_ovo_binary)
            (self.estimator, X, y, self.classes_[i], self.classes_[j])
            for i in range(n_classes) for j in range(i + 1, n_classes)))))

        self.estimators_ = estimators_indices[0]
        self.pairwise_indices_ = (
            estimators_indices[1] if self._pairwise else None)

        return self

    @if_delegate_has_method(delegate='estimator')
    def partial_fit(self, X, y, classes=None):
        """Partially fit underlying estimators

        Should be used when memory is inefficient to train all data. Chunks
        of data can be passed in several iteration, where the first call
        should have an array of all target variables.


        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : array-like of shape (n_samples,)
            Multi-class targets.

        classes : array, shape (n_classes, )
            Classes across all calls to partial_fit.
            Can be obtained via `np.unique(y_all)`, where y_all is the
            target vector of the entire dataset.
            This argument is only required in the first call of partial_fit
            and can be omitted in the subsequent calls.

        Returns
        -------
        self
        """
        if _check_partial_fit_first_call(self, classes):
            self.estimators_ = [clone(self.estimator) for _ in
                                range(self.n_classes_ *
                                      (self.n_classes_ - 1) // 2)]

        if len(np.setdiff1d(y, self.classes_)):
            raise ValueError("Mini-batch contains {0} while it "
                             "must be subset of {1}".format(np.unique(y),
                                                            self.classes_))

        X, y = check_X_y(X, y, accept_sparse=['csr', 'csc'])
        check_classification_targets(y)
        combinations = itertools.combinations(range(self.n_classes_), 2)
        self.estimators_ = Parallel(
            n_jobs=self.n_jobs)(
                delayed(_partial_fit_ovo_binary)(
                    estimator, X, y, self.classes_[i], self.classes_[j])
                for estimator, (i, j) in zip(self.estimators_,
                                             (combinations)))

        self.pairwise_indices_ = None

        return self

    def predict(self, X):
        """Estimate the best class label for each sample in X.

        This is implemented as ``argmax(decision_function(X), axis=1)`` which
        will return the label of the class with most votes by estimators
        predicting the outcome of a decision for each possible class pair.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        Returns
        -------
        y : numpy array of shape [n_samples]
            Predicted multi-class targets.
        """
        Y = self.decision_function(X)
        if self.n_classes_ == 2:
            return self.classes_[(Y > 0).astype(np.int)]
        return self.classes_[Y.argmax(axis=1)]

    def decision_function(self, X):
        """Decision function for the OneVsOneClassifier.

        The decision values for the samples are computed by adding the
        normalized sum of pair-wise classification confidence levels to the
        votes in order to disambiguate between the decision values when the
        votes for all the classes are equal leading to a tie.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)

        Returns
        -------
        Y : array-like of shape (n_samples, n_classes)

            .. versionchanged:: 0.19
                output shape changed to ``(n_samples,)`` to conform to
                scikit-learn conventions for binary classification.
        """
        check_is_fitted(self)

        indices = self.pairwise_indices_
        if indices is None:
            Xs = [X] * len(self.estimators_)
        else:
            Xs = [X[:, idx] for idx in indices]

        predictions = np.vstack([est.predict(Xi)
                                 for est, Xi in zip(self.estimators_, Xs)]).T
        confidences = np.vstack([_predict_binary(est, Xi)
                                 for est, Xi in zip(self.estimators_, Xs)]).T
        Y = _ovr_decision_function(predictions,
                                   confidences, len(self.classes_))
        if self.n_classes_ == 2:
            return Y[:, 1]
        return Y

    @property
    def n_classes_(self):
        return len(self.classes_)

    @property
    def _pairwise(self):
        """Indicate if wrapped estimator is using a precomputed Gram matrix"""
        return getattr(self.estimator, "_pairwise", False)


class OutputCodeClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
    """(Error-Correcting) Output-Code multiclass strategy

    Output-code based strategies consist in representing each class with a
    binary code (an array of 0s and 1s). At fitting time, one binary
    classifier per bit in the code book is fitted.  At prediction time, the
    classifiers are used to project new points in the class space and the class
    closest to the points is chosen. The main advantage of these strategies is
    that the number of classifiers used can be controlled by the user, either
    for compressing the model (0 < code_size < 1) or for making the model more
    robust to errors (code_size > 1). See the documentation for more details.

    Read more in the :ref:`User Guide <ecoc>`.

    Parameters
    ----------
    estimator : estimator object
        An estimator object implementing :term:`fit` and one of
        :term:`decision_function` or :term:`predict_proba`.

    code_size : float
        Percentage of the number of classes to be used to create the code book.
        A number between 0 and 1 will require fewer classifiers than
        one-vs-the-rest. A number greater than 1 will require more classifiers
        than one-vs-the-rest.

    random_state : int, RandomState instance or None, optional, default: None
        The generator used to initialize the codebook.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    n_jobs : int or None, optional (default=None)
        The number of jobs to use for the computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    estimators_ : list of `int(n_classes * code_size)` estimators
        Estimators used for predictions.

    classes_ : numpy array of shape [n_classes]
        Array containing labels.

    code_book_ : numpy array of shape [n_classes, code_size]
        Binary array containing the code of each class.

    Examples
    --------
    >>> from sklearn.multiclass import OutputCodeClassifier
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=100, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = OutputCodeClassifier(
    ...     estimator=RandomForestClassifier(random_state=0),
    ...     random_state=0).fit(X, y)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])

    References
    ----------

    .. [1] "Solving multiclass learning problems via error-correcting output
       codes",
       Dietterich T., Bakiri G.,
       Journal of Artificial Intelligence Research 2,
       1995.

    .. [2] "The error coding method and PICTs",
       James G., Hastie T.,
       Journal of Computational and Graphical statistics 7,
       1998.

    .. [3] "The Elements of Statistical Learning",
       Hastie T., Tibshirani R., Friedman J., page 606 (second-edition)
       2008.
    """
    @_deprecate_positional_args
    def __init__(self, estimator, *, code_size=1.5, random_state=None,
                 n_jobs=None):
        self.estimator = estimator
        self.code_size = code_size
        self.random_state = random_state
        self.n_jobs = n_jobs

    def fit(self, X, y):
        """Fit underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        y : numpy array of shape [n_samples]
            Multi-class targets.

        Returns
        -------
        self
        """
        X, y = self._validate_data(X, y)
        if self.code_size <= 0:
            raise ValueError("code_size should be greater than 0, got {0}"
                             "".format(self.code_size))

        _check_estimator(self.estimator)
        random_state = check_random_state(self.random_state)
        check_classification_targets(y)

        self.classes_ = np.unique(y)
        n_classes = self.classes_.shape[0]
        code_size_ = int(n_classes * self.code_size)

        # FIXME: there are more elaborate methods than generating the codebook
        # randomly.
        self.code_book_ = random_state.random_sample((n_classes, code_size_))
        self.code_book_[self.code_book_ > 0.5] = 1

        if hasattr(self.estimator, "decision_function"):
            self.code_book_[self.code_book_ != 1] = -1
        else:
            self.code_book_[self.code_book_ != 1] = 0

        classes_index = {c: i for i, c in enumerate(self.classes_)}

        Y = np.array([self.code_book_[classes_index[y[i]]]
                      for i in range(X.shape[0])], dtype=np.int)

        self.estimators_ = Parallel(n_jobs=self.n_jobs)(
            delayed(_fit_binary)(self.estimator, X, Y[:, i])
            for i in range(Y.shape[1]))

        return self

    def predict(self, X):
        """Predict multi-class targets using underlying estimators.

        Parameters
        ----------
        X : (sparse) array-like of shape (n_samples, n_features)
            Data.

        Returns
        -------
        y : numpy array of shape [n_samples]
            Predicted multi-class targets.
        """
        check_is_fitted(self)
        X = check_array(X)
        Y = np.array([_predict_binary(e, X) for e in self.estimators_]).T
        pred = euclidean_distances(Y, self.code_book_).argmin(axis=1)
        return self.classes_[pred]