_bayesian_mixture.py 32.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
"""Bayesian Gaussian Mixture Model."""
# Author: Wei Xue <xuewei4d@gmail.com>
#         Thierry Guillemot <thierry.guillemot.work@gmail.com>
# License: BSD 3 clause

import math
import numpy as np
from scipy.special import betaln, digamma, gammaln

from ._base import BaseMixture, _check_shape
from ._gaussian_mixture import _check_precision_matrix
from ._gaussian_mixture import _check_precision_positivity
from ._gaussian_mixture import _compute_log_det_cholesky
from ._gaussian_mixture import _compute_precision_cholesky
from ._gaussian_mixture import _estimate_gaussian_parameters
from ._gaussian_mixture import _estimate_log_gaussian_prob
from ..utils import check_array
from ..utils.validation import _deprecate_positional_args


def _log_dirichlet_norm(dirichlet_concentration):
    """Compute the log of the Dirichlet distribution normalization term.

    Parameters
    ----------
    dirichlet_concentration : array-like, shape (n_samples,)
        The parameters values of the Dirichlet distribution.

    Returns
    -------
    log_dirichlet_norm : float
        The log normalization of the Dirichlet distribution.
    """
    return (gammaln(np.sum(dirichlet_concentration)) -
            np.sum(gammaln(dirichlet_concentration)))


def _log_wishart_norm(degrees_of_freedom, log_det_precisions_chol, n_features):
    """Compute the log of the Wishart distribution normalization term.

    Parameters
    ----------
    degrees_of_freedom : array-like, shape (n_components,)
        The number of degrees of freedom on the covariance Wishart
        distributions.

    log_det_precision_chol : array-like, shape (n_components,)
         The determinant of the precision matrix for each component.

    n_features : int
        The number of features.

    Return
    ------
    log_wishart_norm : array-like, shape (n_components,)
        The log normalization of the Wishart distribution.
    """
    # To simplify the computation we have removed the np.log(np.pi) term
    return -(degrees_of_freedom * log_det_precisions_chol +
             degrees_of_freedom * n_features * .5 * math.log(2.) +
             np.sum(gammaln(.5 * (degrees_of_freedom -
                                  np.arange(n_features)[:, np.newaxis])), 0))


class BayesianGaussianMixture(BaseMixture):
    """Variational Bayesian estimation of a Gaussian mixture.

    This class allows to infer an approximate posterior distribution over the
    parameters of a Gaussian mixture distribution. The effective number of
    components can be inferred from the data.

    This class implements two types of prior for the weights distribution: a
    finite mixture model with Dirichlet distribution and an infinite mixture
    model with the Dirichlet Process. In practice Dirichlet Process inference
    algorithm is approximated and uses a truncated distribution with a fixed
    maximum number of components (called the Stick-breaking representation).
    The number of components actually used almost always depends on the data.

    .. versionadded:: 0.18

    Read more in the :ref:`User Guide <bgmm>`.

    Parameters
    ----------
    n_components : int, defaults to 1.
        The number of mixture components. Depending on the data and the value
        of the `weight_concentration_prior` the model can decide to not use
        all the components by setting some component `weights_` to values very
        close to zero. The number of effective components is therefore smaller
        than n_components.

    covariance_type : {'full', 'tied', 'diag', 'spherical'}, defaults to 'full'
        String describing the type of covariance parameters to use.
        Must be one of::

            'full' (each component has its own general covariance matrix),
            'tied' (all components share the same general covariance matrix),
            'diag' (each component has its own diagonal covariance matrix),
            'spherical' (each component has its own single variance).

    tol : float, defaults to 1e-3.
        The convergence threshold. EM iterations will stop when the
        lower bound average gain on the likelihood (of the training data with
        respect to the model) is below this threshold.

    reg_covar : float, defaults to 1e-6.
        Non-negative regularization added to the diagonal of covariance.
        Allows to assure that the covariance matrices are all positive.

    max_iter : int, defaults to 100.
        The number of EM iterations to perform.

    n_init : int, defaults to 1.
        The number of initializations to perform. The result with the highest
        lower bound value on the likelihood is kept.

    init_params : {'kmeans', 'random'}, defaults to 'kmeans'.
        The method used to initialize the weights, the means and the
        covariances.
        Must be one of::

            'kmeans' : responsibilities are initialized using kmeans.
            'random' : responsibilities are initialized randomly.

    weight_concentration_prior_type : str, defaults to 'dirichlet_process'.
        String describing the type of the weight concentration prior.
        Must be one of::

            'dirichlet_process' (using the Stick-breaking representation),
            'dirichlet_distribution' (can favor more uniform weights).

    weight_concentration_prior : float | None, optional.
        The dirichlet concentration of each component on the weight
        distribution (Dirichlet). This is commonly called gamma in the
        literature. The higher concentration puts more mass in
        the center and will lead to more components being active, while a lower
        concentration parameter will lead to more mass at the edge of the
        mixture weights simplex. The value of the parameter must be greater
        than 0. If it is None, it's set to ``1. / n_components``.

    mean_precision_prior : float | None, optional.
        The precision prior on the mean distribution (Gaussian).
        Controls the extent of where means can be placed. Larger
        values concentrate the cluster means around `mean_prior`.
        The value of the parameter must be greater than 0.
        If it is None, it is set to 1.

    mean_prior : array-like, shape (n_features,), optional
        The prior on the mean distribution (Gaussian).
        If it is None, it is set to the mean of X.

    degrees_of_freedom_prior : float | None, optional.
        The prior of the number of degrees of freedom on the covariance
        distributions (Wishart). If it is None, it's set to `n_features`.

    covariance_prior : float or array-like, optional
        The prior on the covariance distribution (Wishart).
        If it is None, the emiprical covariance prior is initialized using the
        covariance of X. The shape depends on `covariance_type`::

                (n_features, n_features) if 'full',
                (n_features, n_features) if 'tied',
                (n_features)             if 'diag',
                float                    if 'spherical'

    random_state : int, RandomState instance or None, optional (default=None)
        Controls the random seed given to the method chosen to initialize the
        parameters (see `init_params`).
        In addition, it controls the generation of random samples from the
        fitted distribution (see the method `sample`).
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    warm_start : bool, default to False.
        If 'warm_start' is True, the solution of the last fitting is used as
        initialization for the next call of fit(). This can speed up
        convergence when fit is called several times on similar problems.
        See :term:`the Glossary <warm_start>`.

    verbose : int, default to 0.
        Enable verbose output. If 1 then it prints the current
        initialization and each iteration step. If greater than 1 then
        it prints also the log probability and the time needed
        for each step.

    verbose_interval : int, default to 10.
        Number of iteration done before the next print.

    Attributes
    ----------
    weights_ : array-like, shape (n_components,)
        The weights of each mixture components.

    means_ : array-like, shape (n_components, n_features)
        The mean of each mixture component.

    covariances_ : array-like
        The covariance of each mixture component.
        The shape depends on `covariance_type`::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    precisions_ : array-like
        The precision matrices for each component in the mixture. A precision
        matrix is the inverse of a covariance matrix. A covariance matrix is
        symmetric positive definite so the mixture of Gaussian can be
        equivalently parameterized by the precision matrices. Storing the
        precision matrices instead of the covariance matrices makes it more
        efficient to compute the log-likelihood of new samples at test time.
        The shape depends on ``covariance_type``::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    precisions_cholesky_ : array-like
        The cholesky decomposition of the precision matrices of each mixture
        component. A precision matrix is the inverse of a covariance matrix.
        A covariance matrix is symmetric positive definite so the mixture of
        Gaussian can be equivalently parameterized by the precision matrices.
        Storing the precision matrices instead of the covariance matrices makes
        it more efficient to compute the log-likelihood of new samples at test
        time. The shape depends on ``covariance_type``::

            (n_components,)                        if 'spherical',
            (n_features, n_features)               if 'tied',
            (n_components, n_features)             if 'diag',
            (n_components, n_features, n_features) if 'full'

    converged_ : bool
        True when convergence was reached in fit(), False otherwise.

    n_iter_ : int
        Number of step used by the best fit of inference to reach the
        convergence.

    lower_bound_ : float
        Lower bound value on the likelihood (of the training data with
        respect to the model) of the best fit of inference.

    weight_concentration_prior_ : tuple or float
        The dirichlet concentration of each component on the weight
        distribution (Dirichlet). The type depends on
        ``weight_concentration_prior_type``::

            (float, float) if 'dirichlet_process' (Beta parameters),
            float          if 'dirichlet_distribution' (Dirichlet parameters).

        The higher concentration puts more mass in
        the center and will lead to more components being active, while a lower
        concentration parameter will lead to more mass at the edge of the
        simplex.

    weight_concentration_ : array-like, shape (n_components,)
        The dirichlet concentration of each component on the weight
        distribution (Dirichlet).

    mean_precision_prior_ : float
        The precision prior on the mean distribution (Gaussian).
        Controls the extent of where means can be placed.
        Larger values concentrate the cluster means around `mean_prior`.
        If mean_precision_prior is set to None, `mean_precision_prior_` is set
        to 1.

    mean_precision_ : array-like, shape (n_components,)
        The precision of each components on the mean distribution (Gaussian).

    mean_prior_ : array-like, shape (n_features,)
        The prior on the mean distribution (Gaussian).

    degrees_of_freedom_prior_ : float
        The prior of the number of degrees of freedom on the covariance
        distributions (Wishart).

    degrees_of_freedom_ : array-like, shape (n_components,)
        The number of degrees of freedom of each components in the model.

    covariance_prior_ : float or array-like
        The prior on the covariance distribution (Wishart).
        The shape depends on `covariance_type`::

            (n_features, n_features) if 'full',
            (n_features, n_features) if 'tied',
            (n_features)             if 'diag',
            float                    if 'spherical'

    See Also
    --------
    GaussianMixture : Finite Gaussian mixture fit with EM.

    References
    ----------

    .. [1] `Bishop, Christopher M. (2006). "Pattern recognition and machine
       learning". Vol. 4 No. 4. New York: Springer.
       <https://www.springer.com/kr/book/9780387310732>`_

    .. [2] `Hagai Attias. (2000). "A Variational Bayesian Framework for
       Graphical Models". In Advances in Neural Information Processing
       Systems 12.
       <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.36.2841&rep=rep1&type=pdf>`_

    .. [3] `Blei, David M. and Michael I. Jordan. (2006). "Variational
       inference for Dirichlet process mixtures". Bayesian analysis 1.1
       <https://www.cs.princeton.edu/courses/archive/fall11/cos597C/reading/BleiJordan2005.pdf>`_
    """
    @_deprecate_positional_args
    def __init__(self, *, n_components=1, covariance_type='full', tol=1e-3,
                 reg_covar=1e-6, max_iter=100, n_init=1, init_params='kmeans',
                 weight_concentration_prior_type='dirichlet_process',
                 weight_concentration_prior=None,
                 mean_precision_prior=None, mean_prior=None,
                 degrees_of_freedom_prior=None, covariance_prior=None,
                 random_state=None, warm_start=False, verbose=0,
                 verbose_interval=10):
        super().__init__(
            n_components=n_components, tol=tol, reg_covar=reg_covar,
            max_iter=max_iter, n_init=n_init, init_params=init_params,
            random_state=random_state, warm_start=warm_start,
            verbose=verbose, verbose_interval=verbose_interval)

        self.covariance_type = covariance_type
        self.weight_concentration_prior_type = weight_concentration_prior_type
        self.weight_concentration_prior = weight_concentration_prior
        self.mean_precision_prior = mean_precision_prior
        self.mean_prior = mean_prior
        self.degrees_of_freedom_prior = degrees_of_freedom_prior
        self.covariance_prior = covariance_prior

    def _check_parameters(self, X):
        """Check that the parameters are well defined.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        if self.covariance_type not in ['spherical', 'tied', 'diag', 'full']:
            raise ValueError("Invalid value for 'covariance_type': %s "
                             "'covariance_type' should be in "
                             "['spherical', 'tied', 'diag', 'full']"
                             % self.covariance_type)

        if (self.weight_concentration_prior_type not in
                ['dirichlet_process', 'dirichlet_distribution']):
            raise ValueError(
                "Invalid value for 'weight_concentration_prior_type': %s "
                "'weight_concentration_prior_type' should be in "
                "['dirichlet_process', 'dirichlet_distribution']"
                % self.weight_concentration_prior_type)

        self._check_weights_parameters()
        self._check_means_parameters(X)
        self._check_precision_parameters(X)
        self._checkcovariance_prior_parameter(X)

    def _check_weights_parameters(self):
        """Check the parameter of the Dirichlet distribution."""
        if self.weight_concentration_prior is None:
            self.weight_concentration_prior_ = 1. / self.n_components
        elif self.weight_concentration_prior > 0.:
            self.weight_concentration_prior_ = (
                self.weight_concentration_prior)
        else:
            raise ValueError("The parameter 'weight_concentration_prior' "
                             "should be greater than 0., but got %.3f."
                             % self.weight_concentration_prior)

    def _check_means_parameters(self, X):
        """Check the parameters of the Gaussian distribution.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        _, n_features = X.shape

        if self.mean_precision_prior is None:
            self.mean_precision_prior_ = 1.
        elif self.mean_precision_prior > 0.:
            self.mean_precision_prior_ = self.mean_precision_prior
        else:
            raise ValueError("The parameter 'mean_precision_prior' should be "
                             "greater than 0., but got %.3f."
                             % self.mean_precision_prior)

        if self.mean_prior is None:
            self.mean_prior_ = X.mean(axis=0)
        else:
            self.mean_prior_ = check_array(self.mean_prior,
                                           dtype=[np.float64, np.float32],
                                           ensure_2d=False)
            _check_shape(self.mean_prior_, (n_features, ), 'means')

    def _check_precision_parameters(self, X):
        """Check the prior parameters of the precision distribution.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        _, n_features = X.shape

        if self.degrees_of_freedom_prior is None:
            self.degrees_of_freedom_prior_ = n_features
        elif self.degrees_of_freedom_prior > n_features - 1.:
            self.degrees_of_freedom_prior_ = self.degrees_of_freedom_prior
        else:
            raise ValueError("The parameter 'degrees_of_freedom_prior' "
                             "should be greater than %d, but got %.3f."
                             % (n_features - 1, self.degrees_of_freedom_prior))

    def _checkcovariance_prior_parameter(self, X):
        """Check the `covariance_prior_`.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
        """
        _, n_features = X.shape

        if self.covariance_prior is None:
            self.covariance_prior_ = {
                'full': np.atleast_2d(np.cov(X.T)),
                'tied': np.atleast_2d(np.cov(X.T)),
                'diag': np.var(X, axis=0, ddof=1),
                'spherical': np.var(X, axis=0, ddof=1).mean()
            }[self.covariance_type]

        elif self.covariance_type in ['full', 'tied']:
            self.covariance_prior_ = check_array(
                self.covariance_prior, dtype=[np.float64, np.float32],
                ensure_2d=False)
            _check_shape(self.covariance_prior_, (n_features, n_features),
                         '%s covariance_prior' % self.covariance_type)
            _check_precision_matrix(self.covariance_prior_,
                                    self.covariance_type)
        elif self.covariance_type == 'diag':
            self.covariance_prior_ = check_array(
                self.covariance_prior, dtype=[np.float64, np.float32],
                ensure_2d=False)
            _check_shape(self.covariance_prior_, (n_features,),
                         '%s covariance_prior' % self.covariance_type)
            _check_precision_positivity(self.covariance_prior_,
                                        self.covariance_type)
        # spherical case
        elif self.covariance_prior > 0.:
            self.covariance_prior_ = self.covariance_prior
        else:
            raise ValueError("The parameter 'spherical covariance_prior' "
                             "should be greater than 0., but got %.3f."
                             % self.covariance_prior)

    def _initialize(self, X, resp):
        """Initialization of the mixture parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        resp : array-like, shape (n_samples, n_components)
        """
        nk, xk, sk = _estimate_gaussian_parameters(X, resp, self.reg_covar,
                                                   self.covariance_type)

        self._estimate_weights(nk)
        self._estimate_means(nk, xk)
        self._estimate_precisions(nk, xk, sk)

    def _estimate_weights(self, nk):
        """Estimate the parameters of the Dirichlet distribution.

        Parameters
        ----------
        nk : array-like, shape (n_components,)
        """
        if self.weight_concentration_prior_type == 'dirichlet_process':
            # For dirichlet process weight_concentration will be a tuple
            # containing the two parameters of the beta distribution
            self.weight_concentration_ = (
                1. + nk,
                (self.weight_concentration_prior_ +
                 np.hstack((np.cumsum(nk[::-1])[-2::-1], 0))))
        else:
            # case Variationnal Gaussian mixture with dirichlet distribution
            self.weight_concentration_ = self.weight_concentration_prior_ + nk

    def _estimate_means(self, nk, xk):
        """Estimate the parameters of the Gaussian distribution.

        Parameters
        ----------
        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)
        """
        self.mean_precision_ = self.mean_precision_prior_ + nk
        self.means_ = ((self.mean_precision_prior_ * self.mean_prior_ +
                        nk[:, np.newaxis] * xk) /
                       self.mean_precision_[:, np.newaxis])

    def _estimate_precisions(self, nk, xk, sk):
        """Estimate the precisions parameters of the precision distribution.

        Parameters
        ----------
        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)

        sk : array-like
            The shape depends of `covariance_type`:
            'full' : (n_components, n_features, n_features)
            'tied' : (n_features, n_features)
            'diag' : (n_components, n_features)
            'spherical' : (n_components,)
        """
        {"full": self._estimate_wishart_full,
         "tied": self._estimate_wishart_tied,
         "diag": self._estimate_wishart_diag,
         "spherical": self._estimate_wishart_spherical
         }[self.covariance_type](nk, xk, sk)

        self.precisions_cholesky_ = _compute_precision_cholesky(
            self.covariances_, self.covariance_type)

    def _estimate_wishart_full(self, nk, xk, sk):
        """Estimate the full Wishart distribution parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)

        sk : array-like, shape (n_components, n_features, n_features)
        """
        _, n_features = xk.shape

        # Warning : in some Bishop book, there is a typo on the formula 10.63
        # `degrees_of_freedom_k = degrees_of_freedom_0 + Nk` is
        # the correct formula
        self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk

        self.covariances_ = np.empty((self.n_components, n_features,
                                      n_features))

        for k in range(self.n_components):
            diff = xk[k] - self.mean_prior_
            self.covariances_[k] = (self.covariance_prior_ + nk[k] * sk[k] +
                                    nk[k] * self.mean_precision_prior_ /
                                    self.mean_precision_[k] * np.outer(diff,
                                                                       diff))

        # Contrary to the original bishop book, we normalize the covariances
        self.covariances_ /= (
            self.degrees_of_freedom_[:, np.newaxis, np.newaxis])

    def _estimate_wishart_tied(self, nk, xk, sk):
        """Estimate the tied Wishart distribution parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)

        sk : array-like, shape (n_features, n_features)
        """
        _, n_features = xk.shape

        # Warning : in some Bishop book, there is a typo on the formula 10.63
        # `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
        # is the correct formula
        self.degrees_of_freedom_ = (
            self.degrees_of_freedom_prior_ + nk.sum() / self.n_components)

        diff = xk - self.mean_prior_
        self.covariances_ = (
            self.covariance_prior_ + sk * nk.sum() / self.n_components +
            self.mean_precision_prior_ / self.n_components * np.dot(
                (nk / self.mean_precision_) * diff.T, diff))

        # Contrary to the original bishop book, we normalize the covariances
        self.covariances_ /= self.degrees_of_freedom_

    def _estimate_wishart_diag(self, nk, xk, sk):
        """Estimate the diag Wishart distribution parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)

        sk : array-like, shape (n_components, n_features)
        """
        _, n_features = xk.shape

        # Warning : in some Bishop book, there is a typo on the formula 10.63
        # `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
        # is the correct formula
        self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk

        diff = xk - self.mean_prior_
        self.covariances_ = (
            self.covariance_prior_ + nk[:, np.newaxis] * (
                sk + (self.mean_precision_prior_ /
                      self.mean_precision_)[:, np.newaxis] * np.square(diff)))

        # Contrary to the original bishop book, we normalize the covariances
        self.covariances_ /= self.degrees_of_freedom_[:, np.newaxis]

    def _estimate_wishart_spherical(self, nk, xk, sk):
        """Estimate the spherical Wishart distribution parameters.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        nk : array-like, shape (n_components,)

        xk : array-like, shape (n_components, n_features)

        sk : array-like, shape (n_components,)
        """
        _, n_features = xk.shape

        # Warning : in some Bishop book, there is a typo on the formula 10.63
        # `degrees_of_freedom_k = degrees_of_freedom_0 + Nk`
        # is the correct formula
        self.degrees_of_freedom_ = self.degrees_of_freedom_prior_ + nk

        diff = xk - self.mean_prior_
        self.covariances_ = (
            self.covariance_prior_ + nk * (
                sk + self.mean_precision_prior_ / self.mean_precision_ *
                np.mean(np.square(diff), 1)))

        # Contrary to the original bishop book, we normalize the covariances
        self.covariances_ /= self.degrees_of_freedom_

    def _m_step(self, X, log_resp):
        """M step.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        log_resp : array-like, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.
        """
        n_samples, _ = X.shape

        nk, xk, sk = _estimate_gaussian_parameters(
            X, np.exp(log_resp), self.reg_covar, self.covariance_type)
        self._estimate_weights(nk)
        self._estimate_means(nk, xk)
        self._estimate_precisions(nk, xk, sk)

    def _estimate_log_weights(self):
        if self.weight_concentration_prior_type == 'dirichlet_process':
            digamma_sum = digamma(self.weight_concentration_[0] +
                                  self.weight_concentration_[1])
            digamma_a = digamma(self.weight_concentration_[0])
            digamma_b = digamma(self.weight_concentration_[1])
            return (digamma_a - digamma_sum +
                    np.hstack((0, np.cumsum(digamma_b - digamma_sum)[:-1])))
        else:
            # case Variationnal Gaussian mixture with dirichlet distribution
            return (digamma(self.weight_concentration_) -
                    digamma(np.sum(self.weight_concentration_)))

    def _estimate_log_prob(self, X):
        _, n_features = X.shape
        # We remove `n_features * np.log(self.degrees_of_freedom_)` because
        # the precision matrix is normalized
        log_gauss = (_estimate_log_gaussian_prob(
            X, self.means_, self.precisions_cholesky_, self.covariance_type) -
            .5 * n_features * np.log(self.degrees_of_freedom_))

        log_lambda = n_features * np.log(2.) + np.sum(digamma(
            .5 * (self.degrees_of_freedom_ -
                  np.arange(0, n_features)[:, np.newaxis])), 0)

        return log_gauss + .5 * (log_lambda -
                                 n_features / self.mean_precision_)

    def _compute_lower_bound(self, log_resp, log_prob_norm):
        """Estimate the lower bound of the model.

        The lower bound on the likelihood (of the training data with respect to
        the model) is used to detect the convergence and has to decrease at
        each iteration.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)

        log_resp : array, shape (n_samples, n_components)
            Logarithm of the posterior probabilities (or responsibilities) of
            the point of each sample in X.

        log_prob_norm : float
            Logarithm of the probability of each sample in X.

        Returns
        -------
        lower_bound : float
        """
        # Contrary to the original formula, we have done some simplification
        # and removed all the constant terms.
        n_features, = self.mean_prior_.shape

        # We removed `.5 * n_features * np.log(self.degrees_of_freedom_)`
        # because the precision matrix is normalized.
        log_det_precisions_chol = (_compute_log_det_cholesky(
            self.precisions_cholesky_, self.covariance_type, n_features) -
            .5 * n_features * np.log(self.degrees_of_freedom_))

        if self.covariance_type == 'tied':
            log_wishart = self.n_components * np.float64(_log_wishart_norm(
                self.degrees_of_freedom_, log_det_precisions_chol, n_features))
        else:
            log_wishart = np.sum(_log_wishart_norm(
                self.degrees_of_freedom_, log_det_precisions_chol, n_features))

        if self.weight_concentration_prior_type == 'dirichlet_process':
            log_norm_weight = -np.sum(betaln(self.weight_concentration_[0],
                                             self.weight_concentration_[1]))
        else:
            log_norm_weight = _log_dirichlet_norm(self.weight_concentration_)

        return (-np.sum(np.exp(log_resp) * log_resp) -
                log_wishart - log_norm_weight -
                0.5 * n_features * np.sum(np.log(self.mean_precision_)))

    def _get_parameters(self):
        return (self.weight_concentration_,
                self.mean_precision_, self.means_,
                self.degrees_of_freedom_, self.covariances_,
                self.precisions_cholesky_)

    def _set_parameters(self, params):
        (self.weight_concentration_, self.mean_precision_, self.means_,
         self.degrees_of_freedom_, self.covariances_,
         self.precisions_cholesky_) = params

        # Weights computation
        if self.weight_concentration_prior_type == "dirichlet_process":
            weight_dirichlet_sum = (self.weight_concentration_[0] +
                                    self.weight_concentration_[1])
            tmp = self.weight_concentration_[1] / weight_dirichlet_sum
            self.weights_ = (
                self.weight_concentration_[0] / weight_dirichlet_sum *
                np.hstack((1, np.cumprod(tmp[:-1]))))
            self.weights_ /= np.sum(self.weights_)
        else:
            self. weights_ = (self.weight_concentration_ /
                              np.sum(self.weight_concentration_))

        # Precisions matrices computation
        if self.covariance_type == 'full':
            self.precisions_ = np.array([
                np.dot(prec_chol, prec_chol.T)
                for prec_chol in self.precisions_cholesky_])

        elif self.covariance_type == 'tied':
            self.precisions_ = np.dot(self.precisions_cholesky_,
                                      self.precisions_cholesky_.T)
        else:
            self.precisions_ = self.precisions_cholesky_ ** 2