test_ranking.py 59 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
import re
import pytest
import numpy as np
import warnings
from scipy.sparse import csr_matrix

from sklearn import datasets
from sklearn import svm

from sklearn.utils.extmath import softmax
from sklearn.datasets import make_multilabel_classification
from sklearn.random_projection import _sparse_random_matrix
from sklearn.utils.validation import check_array, check_consistent_length
from sklearn.utils.validation import check_random_state

from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_warns

from sklearn.metrics import auc
from sklearn.metrics import average_precision_score
from sklearn.metrics import coverage_error
from sklearn.metrics import label_ranking_average_precision_score
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import label_ranking_loss
from sklearn.metrics import roc_auc_score
from sklearn.metrics import roc_curve
from sklearn.metrics._ranking import _ndcg_sample_scores, _dcg_sample_scores
from sklearn.metrics import ndcg_score, dcg_score

from sklearn.exceptions import UndefinedMetricWarning


###############################################################################
# Utilities for testing

def make_prediction(dataset=None, binary=False):
    """Make some classification predictions on a toy dataset using a SVC

    If binary is True restrict to a binary classification problem instead of a
    multiclass classification problem
    """

    if dataset is None:
        # import some data to play with
        dataset = datasets.load_iris()

    X = dataset.data
    y = dataset.target

    if binary:
        # restrict to a binary classification task
        X, y = X[y < 2], y[y < 2]

    n_samples, n_features = X.shape
    p = np.arange(n_samples)

    rng = check_random_state(37)
    rng.shuffle(p)
    X, y = X[p], y[p]
    half = int(n_samples / 2)

    # add noisy features to make the problem harder and avoid perfect results
    rng = np.random.RandomState(0)
    X = np.c_[X, rng.randn(n_samples, 200 * n_features)]

    # run classifier, get class probabilities and label predictions
    clf = svm.SVC(kernel='linear', probability=True, random_state=0)
    probas_pred = clf.fit(X[:half], y[:half]).predict_proba(X[half:])

    if binary:
        # only interested in probabilities of the positive case
        # XXX: do we really want a special API for the binary case?
        probas_pred = probas_pred[:, 1]

    y_pred = clf.predict(X[half:])
    y_true = y[half:]
    return y_true, y_pred, probas_pred


###############################################################################
# Tests

def _auc(y_true, y_score):
    """Alternative implementation to check for correctness of
    `roc_auc_score`."""
    pos_label = np.unique(y_true)[1]

    # Count the number of times positive samples are correctly ranked above
    # negative samples.
    pos = y_score[y_true == pos_label]
    neg = y_score[y_true != pos_label]
    diff_matrix = pos.reshape(1, -1) - neg.reshape(-1, 1)
    n_correct = np.sum(diff_matrix > 0)

    return n_correct / float(len(pos) * len(neg))


def _average_precision(y_true, y_score):
    """Alternative implementation to check for correctness of
    `average_precision_score`.

    Note that this implementation fails on some edge cases.
    For example, for constant predictions e.g. [0.5, 0.5, 0.5],
    y_true = [1, 0, 0] returns an average precision of 0.33...
    but y_true = [0, 0, 1] returns 1.0.
    """
    pos_label = np.unique(y_true)[1]
    n_pos = np.sum(y_true == pos_label)
    order = np.argsort(y_score)[::-1]
    y_score = y_score[order]
    y_true = y_true[order]

    score = 0
    for i in range(len(y_score)):
        if y_true[i] == pos_label:
            # Compute precision up to document i
            # i.e, percentage of relevant documents up to document i.
            prec = 0
            for j in range(0, i + 1):
                if y_true[j] == pos_label:
                    prec += 1.0
            prec /= (i + 1.0)
            score += prec

    return score / n_pos


def _average_precision_slow(y_true, y_score):
    """A second alternative implementation of average precision that closely
    follows the Wikipedia article's definition (see References). This should
    give identical results as `average_precision_score` for all inputs.

    References
    ----------
    .. [1] `Wikipedia entry for the Average precision
       <https://en.wikipedia.org/wiki/Average_precision>`_
    """
    precision, recall, threshold = precision_recall_curve(y_true, y_score)
    precision = list(reversed(precision))
    recall = list(reversed(recall))
    average_precision = 0
    for i in range(1, len(precision)):
        average_precision += precision[i] * (recall[i] - recall[i - 1])
    return average_precision


def _partial_roc_auc_score(y_true, y_predict, max_fpr):
    """Alternative implementation to check for correctness of `roc_auc_score`
    with `max_fpr` set.
    """

    def _partial_roc(y_true, y_predict, max_fpr):
        fpr, tpr, _ = roc_curve(y_true, y_predict)
        new_fpr = fpr[fpr <= max_fpr]
        new_fpr = np.append(new_fpr, max_fpr)
        new_tpr = tpr[fpr <= max_fpr]
        idx_out = np.argmax(fpr > max_fpr)
        idx_in = idx_out - 1
        x_interp = [fpr[idx_in], fpr[idx_out]]
        y_interp = [tpr[idx_in], tpr[idx_out]]
        new_tpr = np.append(new_tpr, np.interp(max_fpr, x_interp, y_interp))
        return (new_fpr, new_tpr)

    new_fpr, new_tpr = _partial_roc(y_true, y_predict, max_fpr)
    partial_auc = auc(new_fpr, new_tpr)

    # Formula (5) from McClish 1989
    fpr1 = 0
    fpr2 = max_fpr
    min_area = 0.5 * (fpr2 - fpr1) * (fpr2 + fpr1)
    max_area = fpr2 - fpr1
    return 0.5 * (1 + (partial_auc - min_area) / (max_area - min_area))


@pytest.mark.parametrize('drop', [True, False])
def test_roc_curve(drop):
    # Test Area under Receiver Operating Characteristic (ROC) curve
    y_true, _, probas_pred = make_prediction(binary=True)
    expected_auc = _auc(y_true, probas_pred)

    fpr, tpr, thresholds = roc_curve(y_true, probas_pred,
                                     drop_intermediate=drop)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, expected_auc, decimal=2)
    assert_almost_equal(roc_auc, roc_auc_score(y_true, probas_pred))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_end_points():
    # Make sure that roc_curve returns a curve start at 0 and ending and
    # 1 even in corner cases
    rng = np.random.RandomState(0)
    y_true = np.array([0] * 50 + [1] * 50)
    y_pred = rng.randint(3, size=100)
    fpr, tpr, thr = roc_curve(y_true, y_pred, drop_intermediate=True)
    assert fpr[0] == 0
    assert fpr[-1] == 1
    assert fpr.shape == tpr.shape
    assert fpr.shape == thr.shape


def test_roc_returns_consistency():
    # Test whether the returned threshold matches up with tpr
    # make small toy dataset
    y_true, _, probas_pred = make_prediction(binary=True)
    fpr, tpr, thresholds = roc_curve(y_true, probas_pred)

    # use the given thresholds to determine the tpr
    tpr_correct = []
    for t in thresholds:
        tp = np.sum((probas_pred >= t) & y_true)
        p = np.sum(y_true)
        tpr_correct.append(1.0 * tp / p)

    # compare tpr and tpr_correct to see if the thresholds' order was correct
    assert_array_almost_equal(tpr, tpr_correct, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_multi():
    # roc_curve not applicable for multi-class problems
    y_true, _, probas_pred = make_prediction(binary=False)

    with pytest.raises(ValueError):
        roc_curve(y_true, probas_pred)


def test_roc_curve_confidence():
    # roc_curve for confidence scores
    y_true, _, probas_pred = make_prediction(binary=True)

    fpr, tpr, thresholds = roc_curve(y_true, probas_pred - 0.5)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.90, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_hard():
    # roc_curve for hard decisions
    y_true, pred, probas_pred = make_prediction(binary=True)

    # always predict one
    trivial_pred = np.ones(y_true.shape)
    fpr, tpr, thresholds = roc_curve(y_true, trivial_pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.50, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # always predict zero
    trivial_pred = np.zeros(y_true.shape)
    fpr, tpr, thresholds = roc_curve(y_true, trivial_pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.50, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # hard decisions
    fpr, tpr, thresholds = roc_curve(y_true, pred)
    roc_auc = auc(fpr, tpr)
    assert_array_almost_equal(roc_auc, 0.78, decimal=2)
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_one_label():
    y_true = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
    y_pred = [0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
    # assert there are warnings
    w = UndefinedMetricWarning
    fpr, tpr, thresholds = assert_warns(w, roc_curve, y_true, y_pred)
    # all true labels, all fpr should be nan
    assert_array_equal(fpr, np.full(len(thresholds), np.nan))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape

    # assert there are warnings
    fpr, tpr, thresholds = assert_warns(w, roc_curve,
                                        [1 - x for x in y_true],
                                        y_pred)
    # all negative labels, all tpr should be nan
    assert_array_equal(tpr, np.full(len(thresholds), np.nan))
    assert fpr.shape == tpr.shape
    assert fpr.shape == thresholds.shape


def test_roc_curve_toydata():
    # Binary classification
    y_true = [0, 1]
    y_score = [0, 1]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 0, 1])
    assert_array_almost_equal(fpr, [0, 1, 1])
    assert_almost_equal(roc_auc, 1.)

    y_true = [0, 1]
    y_score = [1, 0]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1, 1])
    assert_array_almost_equal(fpr, [0, 0, 1])
    assert_almost_equal(roc_auc, 0.)

    y_true = [1, 0]
    y_score = [1, 1]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1])
    assert_array_almost_equal(fpr, [0, 1])
    assert_almost_equal(roc_auc, 0.5)

    y_true = [1, 0]
    y_score = [1, 0]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 0, 1])
    assert_array_almost_equal(fpr, [0, 1, 1])
    assert_almost_equal(roc_auc, 1.)

    y_true = [1, 0]
    y_score = [0.5, 0.5]
    tpr, fpr, _ = roc_curve(y_true, y_score)
    roc_auc = roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0, 1])
    assert_array_almost_equal(fpr, [0, 1])
    assert_almost_equal(roc_auc, .5)

    y_true = [0, 0]
    y_score = [0.25, 0.75]
    # assert UndefinedMetricWarning because of no positive sample in y_true
    tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true,
                               y_score)
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [0., 0.5, 1.])
    assert_array_almost_equal(fpr, [np.nan, np.nan, np.nan])

    y_true = [1, 1]
    y_score = [0.25, 0.75]
    # assert UndefinedMetricWarning because of no negative sample in y_true
    tpr, fpr, _ = assert_warns(UndefinedMetricWarning, roc_curve, y_true,
                               y_score)
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score)
    assert_array_almost_equal(tpr, [np.nan, np.nan, np.nan])
    assert_array_almost_equal(fpr, [0., 0.5, 1.])

    # Multi-label classification task
    y_true = np.array([[0, 1], [0, 1]])
    y_score = np.array([[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="macro")
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="weighted")
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 1.)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 1.)

    y_true = np.array([[0, 1], [0, 1]])
    y_score = np.array([[0, 1], [1, 0]])
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="macro")
    with pytest.raises(ValueError):
        roc_auc_score(y_true, y_score, average="weighted")
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0.5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0.5)

    y_true = np.array([[1, 0], [0, 1]])
    y_score = np.array([[0, 1], [1, 0]])
    assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), 0)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), 0)

    y_true = np.array([[1, 0], [0, 1]])
    y_score = np.array([[0.5, 0.5], [0.5, 0.5]])
    assert_almost_equal(roc_auc_score(y_true, y_score, average="macro"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="weighted"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="samples"), .5)
    assert_almost_equal(roc_auc_score(y_true, y_score, average="micro"), .5)


def test_roc_curve_drop_intermediate():
    # Test that drop_intermediate drops the correct thresholds
    y_true = [0, 0, 0, 0, 1, 1]
    y_score = [0., 0.2, 0.5, 0.6, 0.7, 1.0]
    tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True)
    assert_array_almost_equal(thresholds, [2., 1., 0.7, 0.])

    # Test dropping thresholds with repeating scores
    y_true = [0, 0, 0, 0, 0, 0, 0,
              1, 1, 1, 1, 1, 1]
    y_score = [0., 0.1, 0.6, 0.6, 0.7, 0.8, 0.9,
               0.6, 0.7, 0.8, 0.9, 0.9, 1.0]
    tpr, fpr, thresholds = roc_curve(y_true, y_score, drop_intermediate=True)
    assert_array_almost_equal(thresholds,
                              [2.0, 1.0, 0.9, 0.7, 0.6, 0.])


def test_roc_curve_fpr_tpr_increasing():
    # Ensure that fpr and tpr returned by roc_curve are increasing.
    # Construct an edge case with float y_score and sample_weight
    # when some adjacent values of fpr and tpr are actually the same.
    y_true = [0, 0, 1, 1, 1]
    y_score = [0.1, 0.7, 0.3, 0.4, 0.5]
    sample_weight = np.repeat(0.2, 5)
    fpr, tpr, _ = roc_curve(y_true, y_score, sample_weight=sample_weight)
    assert (np.diff(fpr) < 0).sum() == 0
    assert (np.diff(tpr) < 0).sum() == 0


def test_auc():
    # Test Area Under Curve (AUC) computation
    x = [0, 1]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0]
    y = [0, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [1, 0, 0]
    y = [0, 1, 1]
    assert_array_almost_equal(auc(x, y), 0.5)
    x = [0, 1]
    y = [1, 1]
    assert_array_almost_equal(auc(x, y), 1)
    x = [0, 0.5, 1]
    y = [0, 0.5, 1]
    assert_array_almost_equal(auc(x, y), 0.5)


def test_auc_errors():
    # Incompatible shapes
    with pytest.raises(ValueError):
        auc([0.0, 0.5, 1.0], [0.1, 0.2])

    # Too few x values
    with pytest.raises(ValueError):
        auc([0.0], [0.1])

    # x is not in order
    x = [2, 1, 3, 4]
    y = [5, 6, 7, 8]
    error_message = ("x is neither increasing nor decreasing : "
                     "{}".format(np.array(x)))
    with pytest.raises(ValueError, match=re.escape(error_message)):
        auc(x, y)


@pytest.mark.parametrize(
    "y_true, labels",
    [(np.array([0, 1, 0, 2]), [0, 1, 2]),
     (np.array([0, 1, 0, 2]), None),
     (["a", "b", "a", "c"], ["a", "b", "c"]),
     (["a", "b", "a", "c"], None)]
)
def test_multiclass_ovo_roc_auc_toydata(y_true, labels):
    # Tests the one-vs-one multiclass ROC AUC algorithm
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]])

    # Used to compute the expected output.
    # Consider labels 0 and 1:
    # positive label is 0, negative label is 1
    score_01 = roc_auc_score([1, 0, 1], [0.1, 0.3, 0.35])
    # positive label is 1, negative label is 0
    score_10 = roc_auc_score([0, 1, 0], [0.8, 0.4, 0.5])
    average_score_01 = (score_01 + score_10) / 2

    # Consider labels 0 and 2:
    score_02 = roc_auc_score([1, 1, 0], [0.1, 0.35, 0])
    score_20 = roc_auc_score([0, 0, 1], [0.1, 0.15, 0.8])
    average_score_02 = (score_02 + score_20) / 2

    # Consider labels 1 and 2:
    score_12 = roc_auc_score([1, 0], [0.4, 0.2])
    score_21 = roc_auc_score([0, 1], [0.3, 0.8])
    average_score_12 = (score_12 + score_21) / 2

    # Unweighted, one-vs-one multiclass ROC AUC algorithm
    ovo_unweighted_score = (
        average_score_01 + average_score_02 + average_score_12) / 3
    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class="ovo"),
        ovo_unweighted_score)

    # Weighted, one-vs-one multiclass ROC AUC algorithm
    # Each term is weighted by the prevalence for the positive label.
    pair_scores = [average_score_01, average_score_02, average_score_12]
    prevalence = [0.75, 0.75, 0.50]
    ovo_weighted_score = np.average(pair_scores, weights=prevalence)
    assert_almost_equal(
        roc_auc_score(
            y_true,
            y_scores,
            labels=labels,
            multi_class="ovo",
            average="weighted"), ovo_weighted_score)


@pytest.mark.parametrize("y_true, labels",
                         [(np.array([0, 2, 0, 2]), [0, 1, 2]),
                          (np.array(['a', 'd', 'a', 'd']), ['a', 'b', 'd'])])
def test_multiclass_ovo_roc_auc_toydata_binary(y_true, labels):
    # Tests the one-vs-one multiclass ROC AUC algorithm for binary y_true
    #
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[0.2, 0.0, 0.8], [0.6, 0.0, 0.4], [0.55, 0.0, 0.45], [0.4, 0.0, 0.6]])

    # Used to compute the expected output.
    # Consider labels 0 and 1:
    # positive label is 0, negative label is 1
    score_01 = roc_auc_score([1, 0, 1, 0], [0.2, 0.6, 0.55, 0.4])
    # positive label is 1, negative label is 0
    score_10 = roc_auc_score([0, 1, 0, 1], [0.8, 0.4, 0.45, 0.6])
    ovo_score = (score_01 + score_10) / 2

    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class='ovo'),
        ovo_score)

    # Weighted, one-vs-one multiclass ROC AUC algorithm
    assert_almost_equal(
        roc_auc_score(y_true, y_scores, labels=labels, multi_class='ovo',
                      average="weighted"), ovo_score)


@pytest.mark.parametrize(
    "y_true, labels",
    [(np.array([0, 1, 2, 2]), None),
     (["a", "b", "c", "c"], None),
     ([0, 1, 2, 2], [0, 1, 2]),
     (["a", "b", "c", "c"], ["a", "b", "c"])])
def test_multiclass_ovr_roc_auc_toydata(y_true, labels):
    # Tests the unweighted, one-vs-rest multiclass ROC AUC algorithm
    # on a small example, representative of an expected use case.
    y_scores = np.array(
        [[1.0, 0.0, 0.0], [0.1, 0.5, 0.4], [0.1, 0.1, 0.8], [0.3, 0.3, 0.4]])
    # Compute the expected result by individually computing the 'one-vs-rest'
    # ROC AUC scores for classes 0, 1, and 2.
    out_0 = roc_auc_score([1, 0, 0, 0], y_scores[:, 0])
    out_1 = roc_auc_score([0, 1, 0, 0], y_scores[:, 1])
    out_2 = roc_auc_score([0, 0, 1, 1], y_scores[:, 2])
    result_unweighted = (out_0 + out_1 + out_2) / 3.

    assert_almost_equal(
        roc_auc_score(y_true, y_scores, multi_class="ovr", labels=labels),
        result_unweighted)

    # Tests the weighted, one-vs-rest multiclass ROC AUC algorithm
    # on the same input (Provost & Domingos, 2000)
    result_weighted = out_0 * 0.25 + out_1 * 0.25 + out_2 * 0.5
    assert_almost_equal(
        roc_auc_score(
            y_true,
            y_scores,
            multi_class="ovr",
            labels=labels,
            average="weighted"), result_weighted)


@pytest.mark.parametrize(
    "msg, y_true, labels",
    [("Parameter 'labels' must be unique", np.array([0, 1, 2, 2]), [0, 2, 0]),
     ("Parameter 'labels' must be unique", np.array(["a", "b", "c", "c"]),
      ["a", "a", "b"]),
     ("Number of classes in y_true not equal to the number of columns "
      "in 'y_score'", np.array([0, 2, 0, 2]), None),
     ("Parameter 'labels' must be ordered", np.array(["a", "b", "c", "c"]),
      ["a", "c", "b"]),
     ("Number of given labels, 2, not equal to the number of columns in "
      "'y_score', 3",
      np.array([0, 1, 2, 2]), [0, 1]),
     ("Number of given labels, 2, not equal to the number of columns in "
      "'y_score', 3",
      np.array(["a", "b", "c", "c"]), ["a", "b"]),
     ("Number of given labels, 4, not equal to the number of columns in "
      "'y_score', 3",
      np.array([0, 1, 2, 2]), [0, 1, 2, 3]),
     ("Number of given labels, 4, not equal to the number of columns in "
      "'y_score', 3",
      np.array(["a", "b", "c", "c"]), ["a", "b", "c", "d"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array(["a", "b", "c", "e"]), ["a", "b", "c"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array(["a", "b", "c", "d"]), ["a", "b", "c"]),
     ("'y_true' contains labels not in parameter 'labels'",
      np.array([0, 1, 2, 3]), [0, 1, 2])])
@pytest.mark.parametrize("multi_class", ["ovo", "ovr"])
def test_roc_auc_score_multiclass_labels_error(
        msg, y_true, labels, multi_class):
    y_scores = np.array(
        [[0.1, 0.8, 0.1], [0.3, 0.4, 0.3], [0.35, 0.5, 0.15], [0, 0.2, 0.8]])

    with pytest.raises(ValueError, match=msg):
        roc_auc_score(y_true, y_scores, labels=labels, multi_class=multi_class)


@pytest.mark.parametrize("msg, kwargs", [
    ((r"average must be one of \('macro', 'weighted'\) for "
      r"multiclass problems"), {"average": "samples", "multi_class": "ovo"}),
    ((r"average must be one of \('macro', 'weighted'\) for "
      r"multiclass problems"), {"average": "micro", "multi_class": "ovr"}),
    ((r"sample_weight is not supported for multiclass one-vs-one "
      r"ROC AUC, 'sample_weight' must be None in this case"),
     {"multi_class": "ovo", "sample_weight": []}),
    ((r"Partial AUC computation not available in multiclass setting, "
      r"'max_fpr' must be set to `None`, received `max_fpr=0.5` "
      r"instead"), {"multi_class": "ovo", "max_fpr": 0.5}),
    ((r"multi_class='ovp' is not supported for multiclass ROC AUC, "
      r"multi_class must be in \('ovo', 'ovr'\)"),
     {"multi_class": "ovp"}),
    (r"multi_class must be in \('ovo', 'ovr'\)", {})
])
def test_roc_auc_score_multiclass_error(msg, kwargs):
    # Test that roc_auc_score function returns an error when trying
    # to compute multiclass AUC for parameters where an output
    # is not defined.
    rng = check_random_state(404)
    y_score = rng.rand(20, 3)
    y_prob = softmax(y_score)
    y_true = rng.randint(0, 3, size=20)
    with pytest.raises(ValueError, match=msg):
        roc_auc_score(y_true, y_prob, **kwargs)


def test_auc_score_non_binary_class():
    # Test that roc_auc_score function returns an error when trying
    # to compute AUC for non-binary class values.
    rng = check_random_state(404)
    y_pred = rng.rand(10)
    # y_true contains only one class value
    y_true = np.zeros(10, dtype="int")
    err_msg = "ROC AUC score is not defined"
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)
    y_true = np.ones(10, dtype="int")
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)
    y_true = np.full(10, -1, dtype="int")
    with pytest.raises(ValueError, match=err_msg):
        roc_auc_score(y_true, y_pred)

    with warnings.catch_warnings(record=True):
        rng = check_random_state(404)
        y_pred = rng.rand(10)
        # y_true contains only one class value
        y_true = np.zeros(10, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)
        y_true = np.ones(10, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)
        y_true = np.full(10, -1, dtype="int")
        with pytest.raises(ValueError, match=err_msg):
            roc_auc_score(y_true, y_pred)


def test_binary_clf_curve_multiclass_error():
    rng = check_random_state(404)
    y_true = rng.randint(0, 3, size=10)
    y_pred = rng.rand(10)
    msg = "multiclass format is not supported"

    with pytest.raises(ValueError, match=msg):
        precision_recall_curve(y_true, y_pred)

    with pytest.raises(ValueError, match=msg):
        roc_curve(y_true, y_pred)


@pytest.mark.parametrize("curve_func", [
    precision_recall_curve,
    roc_curve,
])
def test_binary_clf_curve_implicit_pos_label(curve_func):
    # Check that using string class labels raises an informative
    # error for any supported string dtype:
    msg = ("y_true takes value in {'a', 'b'} and pos_label is "
           "not specified: either make y_true take "
           "value in {0, 1} or {-1, 1} or pass pos_label "
           "explicitly.")
    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array(["a", "b"], dtype='<U1'), [0., 1.])

    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array(["a", "b"], dtype=object), [0., 1.])

    # The error message is slightly different for bytes-encoded
    # class labels, but otherwise the behavior is the same:
    msg = ("y_true takes value in {b'a', b'b'} and pos_label is "
           "not specified: either make y_true take "
           "value in {0, 1} or {-1, 1} or pass pos_label "
           "explicitly.")
    with pytest.raises(ValueError, match=msg):
        roc_curve(np.array([b"a", b"b"], dtype='<S1'), [0., 1.])

    # Check that it is possible to use floating point class labels
    # that are interpreted similarly to integer class labels:
    y_pred = [0., 1., 0.2, 0.42]
    int_curve = roc_curve([0, 1, 1, 0], y_pred)
    float_curve = roc_curve([0., 1., 1., 0.], y_pred)
    for int_curve_part, float_curve_part in zip(int_curve, float_curve):
        np.testing.assert_allclose(int_curve_part, float_curve_part)


def test_precision_recall_curve():
    y_true, _, probas_pred = make_prediction(binary=True)
    _test_precision_recall_curve(y_true, probas_pred)

    # Use {-1, 1} for labels; make sure original labels aren't modified
    y_true[np.where(y_true == 0)] = -1
    y_true_copy = y_true.copy()
    _test_precision_recall_curve(y_true, probas_pred)
    assert_array_equal(y_true_copy, y_true)

    labels = [1, 0, 0, 1]
    predict_probas = [1, 2, 3, 4]
    p, r, t = precision_recall_curve(labels, predict_probas)
    assert_array_almost_equal(p, np.array([0.5, 0.33333333, 0.5, 1., 1.]))
    assert_array_almost_equal(r, np.array([1., 0.5, 0.5, 0.5, 0.]))
    assert_array_almost_equal(t, np.array([1, 2, 3, 4]))
    assert p.size == r.size
    assert p.size == t.size + 1


def _test_precision_recall_curve(y_true, probas_pred):
    # Test Precision-Recall and aread under PR curve
    p, r, thresholds = precision_recall_curve(y_true, probas_pred)
    precision_recall_auc = _average_precision_slow(y_true, probas_pred)
    assert_array_almost_equal(precision_recall_auc, 0.859, 3)
    assert_array_almost_equal(precision_recall_auc,
                              average_precision_score(y_true, probas_pred))
    # `_average_precision` is not very precise in case of 0.5 ties: be tolerant
    assert_almost_equal(_average_precision(y_true, probas_pred),
                        precision_recall_auc, decimal=2)
    assert p.size == r.size
    assert p.size == thresholds.size + 1
    # Smoke test in the case of proba having only one value
    p, r, thresholds = precision_recall_curve(y_true,
                                              np.zeros_like(probas_pred))
    assert p.size == r.size
    assert p.size == thresholds.size + 1


def test_precision_recall_curve_errors():
    # Contains non-binary labels
    with pytest.raises(ValueError):
        precision_recall_curve([0, 1, 2], [[0.0], [1.0], [1.0]])


def test_precision_recall_curve_toydata():
    with np.errstate(all="raise"):
        # Binary classification
        y_true = [0, 1]
        y_score = [0, 1]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [1, 1])
        assert_array_almost_equal(r, [1, 0])
        assert_almost_equal(auc_prc, 1.)

        y_true = [0, 1]
        y_score = [1, 0]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 0., 1.])
        assert_array_almost_equal(r, [1., 0.,  0.])
        # Here we are doing a terrible prediction: we are always getting
        # it wrong, hence the average_precision_score is the accuracy at
        # chance: 50%
        assert_almost_equal(auc_prc, 0.5)

        y_true = [1, 0]
        y_score = [1, 1]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 1])
        assert_array_almost_equal(r, [1., 0])
        assert_almost_equal(auc_prc, .5)

        y_true = [1, 0]
        y_score = [1, 0]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [1, 1])
        assert_array_almost_equal(r, [1, 0])
        assert_almost_equal(auc_prc, 1.)

        y_true = [1, 0]
        y_score = [0.5, 0.5]
        p, r, _ = precision_recall_curve(y_true, y_score)
        auc_prc = average_precision_score(y_true, y_score)
        assert_array_almost_equal(p, [0.5, 1])
        assert_array_almost_equal(r, [1, 0.])
        assert_almost_equal(auc_prc, .5)

        y_true = [0, 0]
        y_score = [0.25, 0.75]
        with pytest.raises(Exception):
            precision_recall_curve(y_true, y_score)
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score)

        y_true = [1, 1]
        y_score = [0.25, 0.75]
        p, r, _ = precision_recall_curve(y_true, y_score)
        assert_almost_equal(average_precision_score(y_true, y_score), 1.)
        assert_array_almost_equal(p, [1., 1., 1.])
        assert_array_almost_equal(r, [1, 0.5, 0.])

        # Multi-label classification task
        y_true = np.array([[0, 1], [0, 1]])
        y_score = np.array([[0, 1], [0, 1]])
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="macro")
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="weighted")
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 1.)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 1.)

        y_true = np.array([[0, 1], [0, 1]])
        y_score = np.array([[0, 1], [1, 0]])
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="macro")
        with pytest.raises(Exception):
            average_precision_score(y_true, y_score, average="weighted")
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.75)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

        y_true = np.array([[1, 0], [0, 1]])
        y_score = np.array([[0, 1], [1, 0]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="macro"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

        y_true = np.array([[1, 0], [0, 1]])
        y_score = np.array([[0.5, 0.5], [0.5, 0.5]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="macro"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="samples"), 0.5)
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="micro"), 0.5)

    with np.errstate(all="ignore"):
        # if one class is never present weighted should not be NaN
        y_true = np.array([[0, 0], [0, 1]])
        y_score = np.array([[0, 0], [0, 1]])
        assert_almost_equal(average_precision_score(y_true, y_score,
                            average="weighted"), 1)


def test_average_precision_constant_values():
    # Check the average_precision_score of a constant predictor is
    # the TPR

    # Generate a dataset with 25% of positives
    y_true = np.zeros(100, dtype=int)
    y_true[::4] = 1
    # And a constant score
    y_score = np.ones(100)
    # The precision is then the fraction of positive whatever the recall
    # is, as there is only one threshold:
    assert average_precision_score(y_true, y_score) == .25


def test_average_precision_score_pos_label_errors():
    # Raise an error when pos_label is not in binary y_true
    y_true = np.array([0, 1])
    y_pred = np.array([0, 1])
    error_message = ("pos_label=2 is invalid. Set it to a label in y_true.")
    with pytest.raises(ValueError, match=error_message):
        average_precision_score(y_true, y_pred, pos_label=2)
    # Raise an error for multilabel-indicator y_true with
    # pos_label other than 1
    y_true = np.array([[1, 0], [0, 1], [0, 1], [1, 0]])
    y_pred = np.array([[0.9, 0.1], [0.1, 0.9], [0.8, 0.2], [0.2, 0.8]])
    error_message = ("Parameter pos_label is fixed to 1 for multilabel"
                     "-indicator y_true. Do not set pos_label or set "
                     "pos_label to 1.")
    with pytest.raises(ValueError, match=error_message):
        average_precision_score(y_true, y_pred, pos_label=0)


def test_score_scale_invariance():
    # Test that average_precision_score and roc_auc_score are invariant by
    # the scaling or shifting of probabilities
    # This test was expanded (added scaled_down) in response to github
    # issue #3864 (and others), where overly aggressive rounding was causing
    # problems for users with very small y_score values
    y_true, _, probas_pred = make_prediction(binary=True)

    roc_auc = roc_auc_score(y_true, probas_pred)
    roc_auc_scaled_up = roc_auc_score(y_true, 100 * probas_pred)
    roc_auc_scaled_down = roc_auc_score(y_true, 1e-6 * probas_pred)
    roc_auc_shifted = roc_auc_score(y_true, probas_pred - 10)
    assert roc_auc == roc_auc_scaled_up
    assert roc_auc == roc_auc_scaled_down
    assert roc_auc == roc_auc_shifted

    pr_auc = average_precision_score(y_true, probas_pred)
    pr_auc_scaled_up = average_precision_score(y_true, 100 * probas_pred)
    pr_auc_scaled_down = average_precision_score(y_true, 1e-6 * probas_pred)
    pr_auc_shifted = average_precision_score(y_true, probas_pred - 10)
    assert pr_auc == pr_auc_scaled_up
    assert pr_auc == pr_auc_scaled_down
    assert pr_auc == pr_auc_shifted


def check_lrap_toy(lrap_score):
    # Check on several small example that it works
    assert_almost_equal(lrap_score([[0, 1]], [[0.25, 0.75]]), 1)
    assert_almost_equal(lrap_score([[0, 1]], [[0.75, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[1, 1]], [[0.75, 0.25]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 1 / 2)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 1 / 3)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.75]]),
                        (2 / 3 + 1 / 1) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.75]]),
                        (2 / 3 + 1 / 2) / 2)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 1 / 3)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.75, 0.5, 0.25]]),
                        (1 / 2 + 2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.75, 0.5, 0.25]]),
                        (1 + 2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 1 / 3)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.5, 0.75, 0.25]]),
                        (1 + 2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 1 / 2)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.5, 0.75, 0.25]]),
                        (1 / 2 + 2 / 3) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 1)

    # Tie handling
    assert_almost_equal(lrap_score([[1, 0]], [[0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1]], [[0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[1, 1]], [[0.5, 0.5]]), 1)

    assert_almost_equal(lrap_score([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 0.5)
    assert_almost_equal(lrap_score([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(lrap_score([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1 / 3)
    assert_almost_equal(lrap_score([[1, 0, 1]], [[0.25, 0.5, 0.5]]),
                        (2 / 3 + 1 / 2) / 2)
    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.25, 0.5, 0.5]]),
                        (2 / 3 + 1 / 2) / 2)
    assert_almost_equal(lrap_score([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 1)

    assert_almost_equal(lrap_score([[1, 1, 0]], [[0.5, 0.5, 0.5]]), 2 / 3)

    assert_almost_equal(lrap_score([[1, 1, 1, 0]], [[0.5, 0.5, 0.5, 0.5]]),
                        3 / 4)


def check_zero_or_all_relevant_labels(lrap_score):
    random_state = check_random_state(0)

    for n_labels in range(2, 5):
        y_score = random_state.uniform(size=(1, n_labels))
        y_score_ties = np.zeros_like(y_score)

        # No relevant labels
        y_true = np.zeros((1, n_labels))
        assert lrap_score(y_true, y_score) == 1.
        assert lrap_score(y_true, y_score_ties) == 1.

        # Only relevant labels
        y_true = np.ones((1, n_labels))
        assert lrap_score(y_true, y_score) == 1.
        assert lrap_score(y_true, y_score_ties) == 1.

    # Degenerate case: only one label
    assert_almost_equal(lrap_score([[1], [0], [1], [0]],
                                   [[0.5], [0.5], [0.5], [0.5]]), 1.)


def check_lrap_error_raised(lrap_score):
    # Raise value error if not appropriate format
    with pytest.raises(ValueError):
        lrap_score([0, 1, 0], [0.25, 0.3, 0.2])
    with pytest.raises(ValueError):
        lrap_score([0, 1, 2],
                   [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]])
    with pytest.raises(ValueError):
        lrap_score([(0), (1), (2)],
                   [[0.25, 0.75, 0.0], [0.7, 0.3, 0.0], [0.8, 0.2, 0.0]])

    # Check that y_true.shape != y_score.shape raise the proper exception
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [0, 1])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0], [1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0], [1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        lrap_score([[0, 1], [0, 1]], [[0], [1]])


def check_lrap_only_ties(lrap_score):
    # Check tie handling in score
    # Basic check with only ties and increasing label space
    for n_labels in range(2, 10):
        y_score = np.ones((1, n_labels))

        # Check for growing number of consecutive relevant
        for n_relevant in range(1, n_labels):
            # Check for a bunch of positions
            for pos in range(n_labels - n_relevant):
                y_true = np.zeros((1, n_labels))
                y_true[0, pos:pos + n_relevant] = 1
                assert_almost_equal(lrap_score(y_true, y_score),
                                    n_relevant / n_labels)


def check_lrap_without_tie_and_increasing_score(lrap_score):
    # Check that Label ranking average precision works for various
    # Basic check with increasing label space size and decreasing score
    for n_labels in range(2, 10):
        y_score = n_labels - (np.arange(n_labels).reshape((1, n_labels)) + 1)

        # First and last
        y_true = np.zeros((1, n_labels))
        y_true[0, 0] = 1
        y_true[0, -1] = 1
        assert_almost_equal(lrap_score(y_true, y_score),
                            (2 / n_labels + 1) / 2)

        # Check for growing number of consecutive relevant label
        for n_relevant in range(1, n_labels):
            # Check for a bunch of position
            for pos in range(n_labels - n_relevant):
                y_true = np.zeros((1, n_labels))
                y_true[0, pos:pos + n_relevant] = 1
                assert_almost_equal(lrap_score(y_true, y_score),
                                    sum((r + 1) / ((pos + r + 1) * n_relevant)
                                        for r in range(n_relevant)))


def _my_lrap(y_true, y_score):
    """Simple implementation of label ranking average precision"""
    check_consistent_length(y_true, y_score)
    y_true = check_array(y_true)
    y_score = check_array(y_score)
    n_samples, n_labels = y_true.shape
    score = np.empty((n_samples, ))
    for i in range(n_samples):
        # The best rank correspond to 1. Rank higher than 1 are worse.
        # The best inverse ranking correspond to n_labels.
        unique_rank, inv_rank = np.unique(y_score[i], return_inverse=True)
        n_ranks = unique_rank.size
        rank = n_ranks - inv_rank

        # Rank need to be corrected to take into account ties
        # ex: rank 1 ex aequo means that both label are rank 2.
        corr_rank = np.bincount(rank, minlength=n_ranks + 1).cumsum()
        rank = corr_rank[rank]

        relevant = y_true[i].nonzero()[0]
        if relevant.size == 0 or relevant.size == n_labels:
            score[i] = 1
            continue

        score[i] = 0.
        for label in relevant:
            # Let's count the number of relevant label with better rank
            # (smaller rank).
            n_ranked_above = sum(rank[r] <= rank[label] for r in relevant)

            # Weight by the rank of the actual label
            score[i] += n_ranked_above / rank[label]

        score[i] /= relevant.size

    return score.mean()


def check_alternative_lrap_implementation(lrap_score, n_classes=5,
                                          n_samples=20, random_state=0):
    _, y_true = make_multilabel_classification(n_features=1,
                                               allow_unlabeled=False,
                                               random_state=random_state,
                                               n_classes=n_classes,
                                               n_samples=n_samples)

    # Score with ties
    y_score = _sparse_random_matrix(n_components=y_true.shape[0],
                                    n_features=y_true.shape[1],
                                    random_state=random_state)

    if hasattr(y_score, "toarray"):
        y_score = y_score.toarray()
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap)

    # Uniform score
    random_state = check_random_state(random_state)
    y_score = random_state.uniform(size=(n_samples, n_classes))
    score_lrap = label_ranking_average_precision_score(y_true, y_score)
    score_my_lrap = _my_lrap(y_true, y_score)
    assert_almost_equal(score_lrap, score_my_lrap)


@pytest.mark.parametrize(
        'check',
        (check_lrap_toy,
         check_lrap_without_tie_and_increasing_score,
         check_lrap_only_ties,
         check_zero_or_all_relevant_labels))
@pytest.mark.parametrize(
        'func',
        (label_ranking_average_precision_score, _my_lrap))
def test_label_ranking_avp(check, func):
    check(func)


def test_lrap_error_raised():
    check_lrap_error_raised(label_ranking_average_precision_score)


@pytest.mark.parametrize('n_samples', (1, 2, 8, 20))
@pytest.mark.parametrize('n_classes', (2, 5, 10))
@pytest.mark.parametrize('random_state', range(1))
def test_alternative_lrap_implementation(n_samples, n_classes, random_state):

    check_alternative_lrap_implementation(
               label_ranking_average_precision_score,
               n_classes, n_samples, random_state)


def test_lrap_sample_weighting_zero_labels():
    # Degenerate sample labeling (e.g., zero labels for a sample) is a valid
    # special case for lrap (the sample is considered to achieve perfect
    # precision), but this case is not tested in test_common.
    # For these test samples, the APs are 0.5, 0.75, and 1.0 (default for zero
    # labels).
    y_true = np.array([[1, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0]],
                      dtype=np.bool)
    y_score = np.array([[0.3, 0.4, 0.2, 0.1], [0.1, 0.2, 0.3, 0.4],
                        [0.4, 0.3, 0.2, 0.1]])
    samplewise_lraps = np.array([0.5, 0.75, 1.0])
    sample_weight = np.array([1.0, 1.0, 0.0])

    assert_almost_equal(
        label_ranking_average_precision_score(y_true, y_score,
                                              sample_weight=sample_weight),
        np.sum(sample_weight * samplewise_lraps) / np.sum(sample_weight))


def test_coverage_error():
    # Toy case
    assert_almost_equal(coverage_error([[0, 1]], [[0.25, 0.75]]), 1)
    assert_almost_equal(coverage_error([[0, 1]], [[0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1]], [[0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[0, 0]], [[0.75, 0.25]]), 0)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.75]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.75]]), 1)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.75]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.75]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.75]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.75]]), 3)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.75, 0.5, 0.25]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.75, 0.5, 0.25]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.75, 0.5, 0.25]]), 1)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.75, 0.5, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.75, 0.5, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.75, 0.5, 0.25]]), 3)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.5, 0.75, 0.25]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.5, 0.75, 0.25]]), 1)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.5, 0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.5, 0.75, 0.25]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.5, 0.75, 0.25]]), 2)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.5, 0.75, 0.25]]), 3)

    # Non trival case
    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0]],
                                       [[0.1, 10., -3], [0, 1, 3]]),
                        (1 + 3) / 2.)

    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]],
                                       [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]),
                        (1 + 3 + 3) / 3.)

    assert_almost_equal(coverage_error([[0, 1, 0], [1, 1, 0], [0, 1, 1]],
                                       [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]),
                        (1 + 3 + 3) / 3.)


def test_coverage_tie_handling():
    assert_almost_equal(coverage_error([[0, 0]], [[0.5, 0.5]]), 0)
    assert_almost_equal(coverage_error([[1, 0]], [[0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1]], [[0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[1, 1]], [[0.5, 0.5]]), 2)

    assert_almost_equal(coverage_error([[0, 0, 0]], [[0.25, 0.5, 0.5]]), 0)
    assert_almost_equal(coverage_error([[0, 0, 1]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 0]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 2)
    assert_almost_equal(coverage_error([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 3)
    assert_almost_equal(coverage_error([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 3)


def test_label_ranking_loss():
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.25, 0.75]]), 0)
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.75, 0.25]]), 1)

    assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.75]]),
                        0)
    assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.75]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.75]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.75]]),
                        2 / 2)
    assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.75]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.75]]),
                        2 / 2)

    # Undefined metrics -  the ranking doesn't matter
    assert_almost_equal(label_ranking_loss([[0, 0]], [[0.75, 0.25]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 1]], [[0.75, 0.25]]), 0)
    assert_almost_equal(label_ranking_loss([[0, 0]], [[0.5, 0.5]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 1]], [[0.5, 0.5]]), 0)

    assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.5, 0.75, 0.25]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.5, 0.75, 0.25]]),
                        0)
    assert_almost_equal(label_ranking_loss([[0, 0, 0]], [[0.25, 0.5, 0.5]]),
                        0)
    assert_almost_equal(label_ranking_loss([[1, 1, 1]], [[0.25, 0.5, 0.5]]), 0)

    # Non trival case
    assert_almost_equal(label_ranking_loss([[0, 1, 0], [1, 1, 0]],
                                           [[0.1, 10., -3], [0, 1, 3]]),
                        (0 + 2 / 2) / 2.)

    assert_almost_equal(label_ranking_loss(
        [[0, 1, 0], [1, 1, 0], [0, 1, 1]],
        [[0.1, 10, -3], [0, 1, 3], [0, 2, 0]]),
        (0 + 2 / 2 + 1 / 2) / 3.)

    assert_almost_equal(label_ranking_loss(
        [[0, 1, 0], [1, 1, 0], [0, 1, 1]],
        [[0.1, 10, -3], [3, 1, 3], [0, 2, 0]]),
        (0 + 2 / 2 + 1 / 2) / 3.)

    # Sparse csr matrices
    assert_almost_equal(label_ranking_loss(
        csr_matrix(np.array([[0, 1, 0], [1, 1, 0]])),
        [[0.1, 10, -3], [3, 1, 3]]),
        (0 + 2 / 2) / 2.)


def test_ranking_appropriate_input_shape():
    # Check that y_true.shape != y_score.shape raise the proper exception
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [0, 1])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0], [1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0], [1]], [[0, 1], [0, 1]])
    with pytest.raises(ValueError):
        label_ranking_loss([[0, 1], [0, 1]], [[0], [1]])


def test_ranking_loss_ties_handling():
    # Tie handling
    assert_almost_equal(label_ranking_loss([[1, 0]], [[0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[0, 1]], [[0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[0, 0, 1]], [[0.25, 0.5, 0.5]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 0]], [[0.25, 0.5, 0.5]]),
                        1 / 2)
    assert_almost_equal(label_ranking_loss([[0, 1, 1]], [[0.25, 0.5, 0.5]]), 0)
    assert_almost_equal(label_ranking_loss([[1, 0, 0]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[1, 0, 1]], [[0.25, 0.5, 0.5]]), 1)
    assert_almost_equal(label_ranking_loss([[1, 1, 0]], [[0.25, 0.5, 0.5]]), 1)


def test_dcg_score():
    _, y_true = make_multilabel_classification(random_state=0, n_classes=10)
    y_score = - y_true + 1
    _test_dcg_score_for(y_true, y_score)
    y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10))
    _test_dcg_score_for(y_true, y_score)


def _test_dcg_score_for(y_true, y_score):
    discount = np.log2(np.arange(y_true.shape[1]) + 2)
    ideal = _dcg_sample_scores(y_true, y_true)
    score = _dcg_sample_scores(y_true, y_score)
    assert (score <= ideal).all()
    assert (_dcg_sample_scores(y_true, y_true, k=5) <= ideal).all()
    assert ideal.shape == (y_true.shape[0], )
    assert score.shape == (y_true.shape[0], )
    assert ideal == pytest.approx(
        (np.sort(y_true)[:, ::-1] / discount).sum(axis=1))


def test_dcg_ties():
    y_true = np.asarray([np.arange(5)])
    y_score = np.zeros(y_true.shape)
    dcg = _dcg_sample_scores(y_true, y_score)
    dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True)
    discounts = 1 / np.log2(np.arange(2, 7))
    assert dcg == pytest.approx([discounts.sum() * y_true.mean()])
    assert dcg_ignore_ties == pytest.approx(
        [(discounts * y_true[:, ::-1]).sum()])
    y_score[0, 3:] = 1
    dcg = _dcg_sample_scores(y_true, y_score)
    dcg_ignore_ties = _dcg_sample_scores(y_true, y_score, ignore_ties=True)
    assert dcg_ignore_ties == pytest.approx(
        [(discounts * y_true[:, ::-1]).sum()])
    assert dcg == pytest.approx([
        discounts[:2].sum() * y_true[0, 3:].mean() +
        discounts[2:].sum() * y_true[0, :3].mean()
    ])


def test_ndcg_ignore_ties_with_k():
    a = np.arange(12).reshape((2, 6))
    assert ndcg_score(a, a, k=3, ignore_ties=True) == pytest.approx(
        ndcg_score(a, a, k=3, ignore_ties=True))


def test_ndcg_invariant():
    y_true = np.arange(70).reshape(7, 10)
    y_score = y_true + np.random.RandomState(0).uniform(
        -.2, .2, size=y_true.shape)
    ndcg = ndcg_score(y_true, y_score)
    ndcg_no_ties = ndcg_score(y_true, y_score, ignore_ties=True)
    assert ndcg == pytest.approx(ndcg_no_ties)
    assert ndcg == pytest.approx(1.)
    y_score += 1000
    assert ndcg_score(y_true, y_score) == pytest.approx(1.)


@pytest.mark.parametrize('ignore_ties', [True, False])
def test_ndcg_toy_examples(ignore_ties):
    y_true = 3 * np.eye(7)[:5]
    y_score = np.tile(np.arange(6, -1, -1), (5, 1))
    y_score_noisy = y_score + np.random.RandomState(0).uniform(
        -.2, .2, size=y_score.shape)
    assert _dcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            3 / np.log2(np.arange(2, 7)))
    assert _dcg_sample_scores(
        y_true, y_score_noisy, ignore_ties=ignore_ties) == pytest.approx(
            3 / np.log2(np.arange(2, 7)))
    assert _ndcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            1 / np.log2(np.arange(2, 7)))
    assert _dcg_sample_scores(y_true, y_score, log_base=10,
                              ignore_ties=ignore_ties) == pytest.approx(
                                  3 / np.log10(np.arange(2, 7)))
    assert ndcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            (1 / np.log2(np.arange(2, 7))).mean())
    assert dcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            (3 / np.log2(np.arange(2, 7))).mean())
    y_true = 3 * np.ones((5, 7))
    expected_dcg_score = (3 / np.log2(np.arange(2, 9))).sum()
    assert _dcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            expected_dcg_score * np.ones(5))
    assert _ndcg_sample_scores(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(np.ones(5))
    assert dcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(
            expected_dcg_score)
    assert ndcg_score(
        y_true, y_score, ignore_ties=ignore_ties) == pytest.approx(1.)


def test_ndcg_score():
    _, y_true = make_multilabel_classification(random_state=0, n_classes=10)
    y_score = - y_true + 1
    _test_ndcg_score_for(y_true, y_score)
    y_true, y_score = np.random.RandomState(0).random_sample((2, 100, 10))
    _test_ndcg_score_for(y_true, y_score)


def _test_ndcg_score_for(y_true, y_score):
    ideal = _ndcg_sample_scores(y_true, y_true)
    score = _ndcg_sample_scores(y_true, y_score)
    assert (score <= ideal).all()
    all_zero = (y_true == 0).all(axis=1)
    assert ideal[~all_zero] == pytest.approx(np.ones((~all_zero).sum()))
    assert ideal[all_zero] == pytest.approx(np.zeros(all_zero.sum()))
    assert score[~all_zero] == pytest.approx(
        _dcg_sample_scores(y_true, y_score)[~all_zero] /
        _dcg_sample_scores(y_true, y_true)[~all_zero])
    assert score[all_zero] == pytest.approx(np.zeros(all_zero.sum()))
    assert ideal.shape == (y_true.shape[0], )
    assert score.shape == (y_true.shape[0], )


def test_partial_roc_auc_score():
    # Check `roc_auc_score` for max_fpr != `None`
    y_true = np.array([0, 0, 1, 1])
    assert roc_auc_score(y_true, y_true, max_fpr=1) == 1
    assert roc_auc_score(y_true, y_true, max_fpr=0.001) == 1
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=-0.1)
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=1.1)
    with pytest.raises(ValueError):
        assert roc_auc_score(y_true, y_true, max_fpr=0)

    y_scores = np.array([0.1,  0,  0.1, 0.01])
    roc_auc_with_max_fpr_one = roc_auc_score(y_true, y_scores, max_fpr=1)
    unconstrained_roc_auc = roc_auc_score(y_true, y_scores)
    assert roc_auc_with_max_fpr_one == unconstrained_roc_auc
    assert roc_auc_score(y_true, y_scores, max_fpr=0.3) == 0.5

    y_true, y_pred, _ = make_prediction(binary=True)
    for max_fpr in np.linspace(1e-4, 1, 5):
        assert_almost_equal(
            roc_auc_score(y_true, y_pred, max_fpr=max_fpr),
            _partial_roc_auc_score(y_true, y_pred, max_fpr))