_supervised.py 34.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
"""Utilities to evaluate the clustering performance of models.

Functions named as *_score return a scalar value to maximize: the higher the
better.
"""

# Authors: Olivier Grisel <olivier.grisel@ensta.org>
#          Wei LI <kuantkid@gmail.com>
#          Diego Molla <dmolla-aliod@gmail.com>
#          Arnaud Fouchet <foucheta@gmail.com>
#          Thierry Guillemot <thierry.guillemot.work@gmail.com>
#          Gregory Stupp <stuppie@gmail.com>
#          Joel Nothman <joel.nothman@gmail.com>
#          Arya McCarthy <arya@jhu.edu>
# License: BSD 3 clause


from math import log

import numpy as np
from scipy import sparse as sp
from scipy.special import comb

from ._expected_mutual_info_fast import expected_mutual_information
from ...utils.validation import check_array, check_consistent_length
from ...utils.validation import _deprecate_positional_args
from ...utils.fixes import _astype_copy_false


def _comb2(n):
    # the exact version is faster for k == 2: use it by default globally in
    # this module instead of the float approximate variant
    return comb(n, 2, exact=1)


def check_clusterings(labels_true, labels_pred):
    """Check that the labels arrays are 1D and of same dimension.

    Parameters
    ----------
    labels_true : array-like of shape (n_samples,)
        The true labels.

    labels_pred : array-like of shape (n_samples,)
        The predicted labels.
    """
    labels_true = check_array(
        labels_true, ensure_2d=False, ensure_min_samples=0, dtype=None,
    )
    labels_pred = check_array(
        labels_pred, ensure_2d=False, ensure_min_samples=0, dtype=None,
    )

    # input checks
    if labels_true.ndim != 1:
        raise ValueError(
            "labels_true must be 1D: shape is %r" % (labels_true.shape,))
    if labels_pred.ndim != 1:
        raise ValueError(
            "labels_pred must be 1D: shape is %r" % (labels_pred.shape,))
    check_consistent_length(labels_true, labels_pred)

    return labels_true, labels_pred


def _generalized_average(U, V, average_method):
    """Return a particular mean of two numbers."""
    if average_method == "min":
        return min(U, V)
    elif average_method == "geometric":
        return np.sqrt(U * V)
    elif average_method == "arithmetic":
        return np.mean([U, V])
    elif average_method == "max":
        return max(U, V)
    else:
        raise ValueError("'average_method' must be 'min', 'geometric', "
                         "'arithmetic', or 'max'")


@_deprecate_positional_args
def contingency_matrix(labels_true, labels_pred, *, eps=None, sparse=False):
    """Build a contingency matrix describing the relationship between labels.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        Ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        Cluster labels to evaluate

    eps : None or float, optional.
        If a float, that value is added to all values in the contingency
        matrix. This helps to stop NaN propagation.
        If ``None``, nothing is adjusted.

    sparse : boolean, optional.
        If True, return a sparse CSR continency matrix. If ``eps is not None``,
        and ``sparse is True``, will throw ValueError.

        .. versionadded:: 0.18

    Returns
    -------
    contingency : {array-like, sparse}, shape=[n_classes_true, n_classes_pred]
        Matrix :math:`C` such that :math:`C_{i, j}` is the number of samples in
        true class :math:`i` and in predicted class :math:`j`. If
        ``eps is None``, the dtype of this array will be integer. If ``eps`` is
        given, the dtype will be float.
        Will be a ``scipy.sparse.csr_matrix`` if ``sparse=True``.
    """

    if eps is not None and sparse:
        raise ValueError("Cannot set 'eps' when sparse=True")

    classes, class_idx = np.unique(labels_true, return_inverse=True)
    clusters, cluster_idx = np.unique(labels_pred, return_inverse=True)
    n_classes = classes.shape[0]
    n_clusters = clusters.shape[0]
    # Using coo_matrix to accelerate simple histogram calculation,
    # i.e. bins are consecutive integers
    # Currently, coo_matrix is faster than histogram2d for simple cases
    contingency = sp.coo_matrix((np.ones(class_idx.shape[0]),
                                 (class_idx, cluster_idx)),
                                shape=(n_classes, n_clusters),
                                dtype=np.int)
    if sparse:
        contingency = contingency.tocsr()
        contingency.sum_duplicates()
    else:
        contingency = contingency.toarray()
        if eps is not None:
            # don't use += as contingency is integer
            contingency = contingency + eps
    return contingency


# clustering measures

def adjusted_rand_score(labels_true, labels_pred):
    """Rand index adjusted for chance.

    The Rand Index computes a similarity measure between two clusterings
    by considering all pairs of samples and counting pairs that are
    assigned in the same or different clusters in the predicted and
    true clusterings.

    The raw RI score is then "adjusted for chance" into the ARI score
    using the following scheme::

        ARI = (RI - Expected_RI) / (max(RI) - Expected_RI)

    The adjusted Rand index is thus ensured to have a value close to
    0.0 for random labeling independently of the number of clusters and
    samples and exactly 1.0 when the clusterings are identical (up to
    a permutation).

    ARI is a symmetric measure::

        adjusted_rand_score(a, b) == adjusted_rand_score(b, a)

    Read more in the :ref:`User Guide <adjusted_rand_score>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        Ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        Cluster labels to evaluate

    Returns
    -------
    ari : float
       Similarity score between -1.0 and 1.0. Random labelings have an ARI
       close to 0.0. 1.0 stands for perfect match.

    Examples
    --------

    Perfectly matching labelings have a score of 1 even

      >>> from sklearn.metrics.cluster import adjusted_rand_score
      >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 1])
      1.0
      >>> adjusted_rand_score([0, 0, 1, 1], [1, 1, 0, 0])
      1.0

    Labelings that assign all classes members to the same clusters
    are complete be not always pure, hence penalized::

      >>> adjusted_rand_score([0, 0, 1, 2], [0, 0, 1, 1])
      0.57...

    ARI is symmetric, so labelings that have pure clusters with members
    coming from the same classes but unnecessary splits are penalized::

      >>> adjusted_rand_score([0, 0, 1, 1], [0, 0, 1, 2])
      0.57...

    If classes members are completely split across different clusters, the
    assignment is totally incomplete, hence the ARI is very low::

      >>> adjusted_rand_score([0, 0, 0, 0], [0, 1, 2, 3])
      0.0

    References
    ----------

    .. [Hubert1985] L. Hubert and P. Arabie, Comparing Partitions,
      Journal of Classification 1985
      https://link.springer.com/article/10.1007%2FBF01908075

    .. [wk] https://en.wikipedia.org/wiki/Rand_index#Adjusted_Rand_index

    See also
    --------
    adjusted_mutual_info_score: Adjusted Mutual Information

    """
    labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
    n_samples = labels_true.shape[0]
    n_classes = np.unique(labels_true).shape[0]
    n_clusters = np.unique(labels_pred).shape[0]

    # Special limit cases: no clustering since the data is not split;
    # or trivial clustering where each document is assigned a unique cluster.
    # These are perfect matches hence return 1.0.
    if (n_classes == n_clusters == 1 or
            n_classes == n_clusters == 0 or
            n_classes == n_clusters == n_samples):
        return 1.0

    # Compute the ARI using the contingency data
    contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
    sum_comb_c = sum(_comb2(n_c) for n_c in np.ravel(contingency.sum(axis=1)))
    sum_comb_k = sum(_comb2(n_k) for n_k in np.ravel(contingency.sum(axis=0)))
    sum_comb = sum(_comb2(n_ij) for n_ij in contingency.data)

    prod_comb = (sum_comb_c * sum_comb_k) / _comb2(n_samples)
    mean_comb = (sum_comb_k + sum_comb_c) / 2.
    return (sum_comb - prod_comb) / (mean_comb - prod_comb)


@_deprecate_positional_args
def homogeneity_completeness_v_measure(labels_true, labels_pred, *, beta=1.0):
    """Compute the homogeneity and completeness and V-Measure scores at once.

    Those metrics are based on normalized conditional entropy measures of
    the clustering labeling to evaluate given the knowledge of a Ground
    Truth class labels of the same samples.

    A clustering result satisfies homogeneity if all of its clusters
    contain only data points which are members of a single class.

    A clustering result satisfies completeness if all the data points
    that are members of a given class are elements of the same cluster.

    Both scores have positive values between 0.0 and 1.0, larger values
    being desirable.

    Those 3 metrics are independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score values in any way.

    V-Measure is furthermore symmetric: swapping ``labels_true`` and
    ``label_pred`` will give the same score. This does not hold for
    homogeneity and completeness. V-Measure is identical to
    :func:`normalized_mutual_info_score` with the arithmetic averaging
    method.

    Read more in the :ref:`User Guide <homogeneity_completeness>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        cluster labels to evaluate

    beta : float
        Ratio of weight attributed to ``homogeneity`` vs ``completeness``.
        If ``beta`` is greater than 1, ``completeness`` is weighted more
        strongly in the calculation. If ``beta`` is less than 1,
        ``homogeneity`` is weighted more strongly.

    Returns
    -------
    homogeneity : float
       score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

    completeness : float
       score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

    v_measure : float
        harmonic mean of the first two

    See also
    --------
    homogeneity_score
    completeness_score
    v_measure_score
    """
    labels_true, labels_pred = check_clusterings(labels_true, labels_pred)

    if len(labels_true) == 0:
        return 1.0, 1.0, 1.0

    entropy_C = entropy(labels_true)
    entropy_K = entropy(labels_pred)

    contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
    MI = mutual_info_score(None, None, contingency=contingency)

    homogeneity = MI / (entropy_C) if entropy_C else 1.0
    completeness = MI / (entropy_K) if entropy_K else 1.0

    if homogeneity + completeness == 0.0:
        v_measure_score = 0.0
    else:
        v_measure_score = ((1 + beta) * homogeneity * completeness
                           / (beta * homogeneity + completeness))

    return homogeneity, completeness, v_measure_score


def homogeneity_score(labels_true, labels_pred):
    """Homogeneity metric of a cluster labeling given a ground truth.

    A clustering result satisfies homogeneity if all of its clusters
    contain only data points which are members of a single class.

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is not symmetric: switching ``label_true`` with ``label_pred``
    will return the :func:`completeness_score` which will be different in
    general.

    Read more in the :ref:`User Guide <homogeneity_completeness>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        cluster labels to evaluate

    Returns
    -------
    homogeneity : float
       score between 0.0 and 1.0. 1.0 stands for perfectly homogeneous labeling

    References
    ----------

    .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A
       conditional entropy-based external cluster evaluation measure
       <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_

    See also
    --------
    completeness_score
    v_measure_score

    Examples
    --------

    Perfect labelings are homogeneous::

      >>> from sklearn.metrics.cluster import homogeneity_score
      >>> homogeneity_score([0, 0, 1, 1], [1, 1, 0, 0])
      1.0

    Non-perfect labelings that further split classes into more clusters can be
    perfectly homogeneous::

      >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 1, 2]))
      1.000000
      >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 2, 3]))
      1.000000

    Clusters that include samples from different classes do not make for an
    homogeneous labeling::

      >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 1, 0, 1]))
      0.0...
      >>> print("%.6f" % homogeneity_score([0, 0, 1, 1], [0, 0, 0, 0]))
      0.0...

    """
    return homogeneity_completeness_v_measure(labels_true, labels_pred)[0]


def completeness_score(labels_true, labels_pred):
    """Completeness metric of a cluster labeling given a ground truth.

    A clustering result satisfies completeness if all the data points
    that are members of a given class are elements of the same cluster.

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is not symmetric: switching ``label_true`` with ``label_pred``
    will return the :func:`homogeneity_score` which will be different in
    general.

    Read more in the :ref:`User Guide <homogeneity_completeness>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        cluster labels to evaluate

    Returns
    -------
    completeness : float
       score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

    References
    ----------

    .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A
       conditional entropy-based external cluster evaluation measure
       <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_

    See also
    --------
    homogeneity_score
    v_measure_score

    Examples
    --------

    Perfect labelings are complete::

      >>> from sklearn.metrics.cluster import completeness_score
      >>> completeness_score([0, 0, 1, 1], [1, 1, 0, 0])
      1.0

    Non-perfect labelings that assign all classes members to the same clusters
    are still complete::

      >>> print(completeness_score([0, 0, 1, 1], [0, 0, 0, 0]))
      1.0
      >>> print(completeness_score([0, 1, 2, 3], [0, 0, 1, 1]))
      0.999...

    If classes members are split across different clusters, the
    assignment cannot be complete::

      >>> print(completeness_score([0, 0, 1, 1], [0, 1, 0, 1]))
      0.0
      >>> print(completeness_score([0, 0, 0, 0], [0, 1, 2, 3]))
      0.0

    """
    return homogeneity_completeness_v_measure(labels_true, labels_pred)[1]


@_deprecate_positional_args
def v_measure_score(labels_true, labels_pred, *, beta=1.0):
    """V-measure cluster labeling given a ground truth.

    This score is identical to :func:`normalized_mutual_info_score` with
    the ``'arithmetic'`` option for averaging.

    The V-measure is the harmonic mean between homogeneity and completeness::

        v = (1 + beta) * homogeneity * completeness
             / (beta * homogeneity + completeness)

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is furthermore symmetric: switching ``label_true`` with
    ``label_pred`` will return the same score value. This can be useful to
    measure the agreement of two independent label assignments strategies
    on the same dataset when the real ground truth is not known.


    Read more in the :ref:`User Guide <homogeneity_completeness>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        ground truth class labels to be used as a reference

    labels_pred : array-like of shape (n_samples,)
        cluster labels to evaluate

    beta : float
        Ratio of weight attributed to ``homogeneity`` vs ``completeness``.
        If ``beta`` is greater than 1, ``completeness`` is weighted more
        strongly in the calculation. If ``beta`` is less than 1,
        ``homogeneity`` is weighted more strongly.

    Returns
    -------
    v_measure : float
       score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

    References
    ----------

    .. [1] `Andrew Rosenberg and Julia Hirschberg, 2007. V-Measure: A
       conditional entropy-based external cluster evaluation measure
       <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_

    See also
    --------
    homogeneity_score
    completeness_score
    normalized_mutual_info_score

    Examples
    --------

    Perfect labelings are both homogeneous and complete, hence have score 1.0::

      >>> from sklearn.metrics.cluster import v_measure_score
      >>> v_measure_score([0, 0, 1, 1], [0, 0, 1, 1])
      1.0
      >>> v_measure_score([0, 0, 1, 1], [1, 1, 0, 0])
      1.0

    Labelings that assign all classes members to the same clusters
    are complete be not homogeneous, hence penalized::

      >>> print("%.6f" % v_measure_score([0, 0, 1, 2], [0, 0, 1, 1]))
      0.8...
      >>> print("%.6f" % v_measure_score([0, 1, 2, 3], [0, 0, 1, 1]))
      0.66...

    Labelings that have pure clusters with members coming from the same
    classes are homogeneous but un-necessary splits harms completeness
    and thus penalize V-measure as well::

      >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 1, 2]))
      0.8...
      >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 1, 2, 3]))
      0.66...

    If classes members are completely split across different clusters,
    the assignment is totally incomplete, hence the V-Measure is null::

      >>> print("%.6f" % v_measure_score([0, 0, 0, 0], [0, 1, 2, 3]))
      0.0...

    Clusters that include samples from totally different classes totally
    destroy the homogeneity of the labeling, hence::

      >>> print("%.6f" % v_measure_score([0, 0, 1, 1], [0, 0, 0, 0]))
      0.0...

    """
    return homogeneity_completeness_v_measure(labels_true, labels_pred,
                                              beta=beta)[2]


@_deprecate_positional_args
def mutual_info_score(labels_true, labels_pred, *, contingency=None):
    """Mutual Information between two clusterings.

    The Mutual Information is a measure of the similarity between two labels of
    the same data. Where :math:`|U_i|` is the number of the samples
    in cluster :math:`U_i` and :math:`|V_j|` is the number of the
    samples in cluster :math:`V_j`, the Mutual Information
    between clusterings :math:`U` and :math:`V` is given as:

    .. math::

        MI(U,V)=\\sum_{i=1}^{|U|} \\sum_{j=1}^{|V|} \\frac{|U_i\\cap V_j|}{N}
        \\log\\frac{N|U_i \\cap V_j|}{|U_i||V_j|}

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is furthermore symmetric: switching ``label_true`` with
    ``label_pred`` will return the same score value. This can be useful to
    measure the agreement of two independent label assignments strategies
    on the same dataset when the real ground truth is not known.

    Read more in the :ref:`User Guide <mutual_info_score>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        A clustering of the data into disjoint subsets.

    labels_pred : int array-like of shape (n_samples,)
        A clustering of the data into disjoint subsets.

    contingency : {None, array, sparse matrix}, \
                  shape = [n_classes_true, n_classes_pred]
        A contingency matrix given by the :func:`contingency_matrix` function.
        If value is ``None``, it will be computed, otherwise the given value is
        used, with ``labels_true`` and ``labels_pred`` ignored.

    Returns
    -------
    mi : float
       Mutual information, a non-negative value

    Notes
    -----
    The logarithm used is the natural logarithm (base-e).

    See also
    --------
    adjusted_mutual_info_score: Adjusted against chance Mutual Information
    normalized_mutual_info_score: Normalized Mutual Information
    """
    if contingency is None:
        labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
        contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
    else:
        contingency = check_array(contingency,
                                  accept_sparse=['csr', 'csc', 'coo'],
                                  dtype=[int, np.int32, np.int64])

    if isinstance(contingency, np.ndarray):
        # For an array
        nzx, nzy = np.nonzero(contingency)
        nz_val = contingency[nzx, nzy]
    elif sp.issparse(contingency):
        # For a sparse matrix
        nzx, nzy, nz_val = sp.find(contingency)
    else:
        raise ValueError("Unsupported type for 'contingency': %s" %
                         type(contingency))

    contingency_sum = contingency.sum()
    pi = np.ravel(contingency.sum(axis=1))
    pj = np.ravel(contingency.sum(axis=0))
    log_contingency_nm = np.log(nz_val)
    contingency_nm = nz_val / contingency_sum
    # Don't need to calculate the full outer product, just for non-zeroes
    outer = (pi.take(nzx).astype(np.int64, copy=False)
             * pj.take(nzy).astype(np.int64, copy=False))
    log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum())
    mi = (contingency_nm * (log_contingency_nm - log(contingency_sum)) +
          contingency_nm * log_outer)
    return np.clip(mi.sum(), 0.0, None)


@_deprecate_positional_args
def adjusted_mutual_info_score(labels_true, labels_pred, *,
                               average_method='arithmetic'):
    """Adjusted Mutual Information between two clusterings.

    Adjusted Mutual Information (AMI) is an adjustment of the Mutual
    Information (MI) score to account for chance. It accounts for the fact that
    the MI is generally higher for two clusterings with a larger number of
    clusters, regardless of whether there is actually more information shared.
    For two clusterings :math:`U` and :math:`V`, the AMI is given as::

        AMI(U, V) = [MI(U, V) - E(MI(U, V))] / [avg(H(U), H(V)) - E(MI(U, V))]

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is furthermore symmetric: switching ``label_true`` with
    ``label_pred`` will return the same score value. This can be useful to
    measure the agreement of two independent label assignments strategies
    on the same dataset when the real ground truth is not known.

    Be mindful that this function is an order of magnitude slower than other
    metrics, such as the Adjusted Rand Index.

    Read more in the :ref:`User Guide <mutual_info_score>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        A clustering of the data into disjoint subsets.

    labels_pred : int array-like of shape (n_samples,)
        A clustering of the data into disjoint subsets.

    average_method : string, optional (default: 'arithmetic')
        How to compute the normalizer in the denominator. Possible options
        are 'min', 'geometric', 'arithmetic', and 'max'.

        .. versionadded:: 0.20

        .. versionchanged:: 0.22
           The default value of ``average_method`` changed from 'max' to
           'arithmetic'.

    Returns
    -------
    ami: float (upperlimited by 1.0)
       The AMI returns a value of 1 when the two partitions are identical
       (ie perfectly matched). Random partitions (independent labellings) have
       an expected AMI around 0 on average hence can be negative.

    See also
    --------
    adjusted_rand_score: Adjusted Rand Index
    mutual_info_score: Mutual Information (not adjusted for chance)

    Examples
    --------

    Perfect labelings are both homogeneous and complete, hence have
    score 1.0::

      >>> from sklearn.metrics.cluster import adjusted_mutual_info_score
      >>> adjusted_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
      ... # doctest: +SKIP
      1.0
      >>> adjusted_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
      ... # doctest: +SKIP
      1.0

    If classes members are completely split across different clusters,
    the assignment is totally in-complete, hence the AMI is null::

      >>> adjusted_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
      ... # doctest: +SKIP
      0.0

    References
    ----------
    .. [1] `Vinh, Epps, and Bailey, (2010). Information Theoretic Measures for
       Clusterings Comparison: Variants, Properties, Normalization and
       Correction for Chance, JMLR
       <http://jmlr.csail.mit.edu/papers/volume11/vinh10a/vinh10a.pdf>`_

    .. [2] `Wikipedia entry for the Adjusted Mutual Information
       <https://en.wikipedia.org/wiki/Adjusted_Mutual_Information>`_

    """
    labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
    n_samples = labels_true.shape[0]
    classes = np.unique(labels_true)
    clusters = np.unique(labels_pred)
    # Special limit cases: no clustering since the data is not split.
    # This is a perfect match hence return 1.0.
    if (classes.shape[0] == clusters.shape[0] == 1 or
            classes.shape[0] == clusters.shape[0] == 0):
        return 1.0
    contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
    contingency = contingency.astype(np.float64,
                                     **_astype_copy_false(contingency))
    # Calculate the MI for the two clusterings
    mi = mutual_info_score(labels_true, labels_pred,
                           contingency=contingency)
    # Calculate the expected value for the mutual information
    emi = expected_mutual_information(contingency, n_samples)
    # Calculate entropy for each labeling
    h_true, h_pred = entropy(labels_true), entropy(labels_pred)
    normalizer = _generalized_average(h_true, h_pred, average_method)
    denominator = normalizer - emi
    # Avoid 0.0 / 0.0 when expectation equals maximum, i.e a perfect match.
    # normalizer should always be >= emi, but because of floating-point
    # representation, sometimes emi is slightly larger. Correct this
    # by preserving the sign.
    if denominator < 0:
        denominator = min(denominator, -np.finfo('float64').eps)
    else:
        denominator = max(denominator, np.finfo('float64').eps)
    ami = (mi - emi) / denominator
    return ami


@_deprecate_positional_args
def normalized_mutual_info_score(labels_true, labels_pred, *,
                                 average_method='arithmetic'):
    """Normalized Mutual Information between two clusterings.

    Normalized Mutual Information (NMI) is a normalization of the Mutual
    Information (MI) score to scale the results between 0 (no mutual
    information) and 1 (perfect correlation). In this function, mutual
    information is normalized by some generalized mean of ``H(labels_true)``
    and ``H(labels_pred))``, defined by the `average_method`.

    This measure is not adjusted for chance. Therefore
    :func:`adjusted_mutual_info_score` might be preferred.

    This metric is independent of the absolute values of the labels:
    a permutation of the class or cluster label values won't change the
    score value in any way.

    This metric is furthermore symmetric: switching ``label_true`` with
    ``label_pred`` will return the same score value. This can be useful to
    measure the agreement of two independent label assignments strategies
    on the same dataset when the real ground truth is not known.

    Read more in the :ref:`User Guide <mutual_info_score>`.

    Parameters
    ----------
    labels_true : int array, shape = [n_samples]
        A clustering of the data into disjoint subsets.

    labels_pred : int array-like of shape (n_samples,)
        A clustering of the data into disjoint subsets.

    average_method : string, optional (default: 'arithmetic')
        How to compute the normalizer in the denominator. Possible options
        are 'min', 'geometric', 'arithmetic', and 'max'.

        .. versionadded:: 0.20

        .. versionchanged:: 0.22
           The default value of ``average_method`` changed from 'geometric' to
           'arithmetic'.

    Returns
    -------
    nmi : float
       score between 0.0 and 1.0. 1.0 stands for perfectly complete labeling

    See also
    --------
    v_measure_score: V-Measure (NMI with arithmetic mean option.)
    adjusted_rand_score: Adjusted Rand Index
    adjusted_mutual_info_score: Adjusted Mutual Information (adjusted
        against chance)

    Examples
    --------

    Perfect labelings are both homogeneous and complete, hence have
    score 1.0::

      >>> from sklearn.metrics.cluster import normalized_mutual_info_score
      >>> normalized_mutual_info_score([0, 0, 1, 1], [0, 0, 1, 1])
      ... # doctest: +SKIP
      1.0
      >>> normalized_mutual_info_score([0, 0, 1, 1], [1, 1, 0, 0])
      ... # doctest: +SKIP
      1.0

    If classes members are completely split across different clusters,
    the assignment is totally in-complete, hence the NMI is null::

      >>> normalized_mutual_info_score([0, 0, 0, 0], [0, 1, 2, 3])
      ... # doctest: +SKIP
      0.0

    """
    labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
    classes = np.unique(labels_true)
    clusters = np.unique(labels_pred)
    # Special limit cases: no clustering since the data is not split.
    # This is a perfect match hence return 1.0.
    if (classes.shape[0] == clusters.shape[0] == 1 or
            classes.shape[0] == clusters.shape[0] == 0):
        return 1.0
    contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
    contingency = contingency.astype(np.float64,
                                     **_astype_copy_false(contingency))
    # Calculate the MI for the two clusterings
    mi = mutual_info_score(labels_true, labels_pred,
                           contingency=contingency)
    # Calculate the expected value for the mutual information
    # Calculate entropy for each labeling
    h_true, h_pred = entropy(labels_true), entropy(labels_pred)
    normalizer = _generalized_average(h_true, h_pred, average_method)
    # Avoid 0.0 / 0.0 when either entropy is zero.
    normalizer = max(normalizer, np.finfo('float64').eps)
    nmi = mi / normalizer
    return nmi


@_deprecate_positional_args
def fowlkes_mallows_score(labels_true, labels_pred, *, sparse=False):
    """Measure the similarity of two clusterings of a set of points.

    .. versionadded:: 0.18

    The Fowlkes-Mallows index (FMI) is defined as the geometric mean between of
    the precision and recall::

        FMI = TP / sqrt((TP + FP) * (TP + FN))

    Where ``TP`` is the number of **True Positive** (i.e. the number of pair of
    points that belongs in the same clusters in both ``labels_true`` and
    ``labels_pred``), ``FP`` is the number of **False Positive** (i.e. the
    number of pair of points that belongs in the same clusters in
    ``labels_true`` and not in ``labels_pred``) and ``FN`` is the number of
    **False Negative** (i.e the number of pair of points that belongs in the
    same clusters in ``labels_pred`` and not in ``labels_True``).

    The score ranges from 0 to 1. A high value indicates a good similarity
    between two clusters.

    Read more in the :ref:`User Guide <fowlkes_mallows_scores>`.

    Parameters
    ----------
    labels_true : int array, shape = (``n_samples``,)
        A clustering of the data into disjoint subsets.

    labels_pred : array, shape = (``n_samples``, )
        A clustering of the data into disjoint subsets.

    sparse : bool
        Compute contingency matrix internally with sparse matrix.

    Returns
    -------
    score : float
       The resulting Fowlkes-Mallows score.

    Examples
    --------

    Perfect labelings are both homogeneous and complete, hence have
    score 1.0::

      >>> from sklearn.metrics.cluster import fowlkes_mallows_score
      >>> fowlkes_mallows_score([0, 0, 1, 1], [0, 0, 1, 1])
      1.0
      >>> fowlkes_mallows_score([0, 0, 1, 1], [1, 1, 0, 0])
      1.0

    If classes members are completely split across different clusters,
    the assignment is totally random, hence the FMI is null::

      >>> fowlkes_mallows_score([0, 0, 0, 0], [0, 1, 2, 3])
      0.0

    References
    ----------
    .. [1] `E. B. Fowkles and C. L. Mallows, 1983. "A method for comparing two
       hierarchical clusterings". Journal of the American Statistical
       Association
       <http://wildfire.stat.ucla.edu/pdflibrary/fowlkes.pdf>`_

    .. [2] `Wikipedia entry for the Fowlkes-Mallows Index
           <https://en.wikipedia.org/wiki/Fowlkes-Mallows_index>`_
    """
    labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
    n_samples, = labels_true.shape

    c = contingency_matrix(labels_true, labels_pred,
                           sparse=True)
    c = c.astype(np.int64, **_astype_copy_false(c))
    tk = np.dot(c.data, c.data) - n_samples
    pk = np.sum(np.asarray(c.sum(axis=0)).ravel() ** 2) - n_samples
    qk = np.sum(np.asarray(c.sum(axis=1)).ravel() ** 2) - n_samples
    return np.sqrt(tk / pk) * np.sqrt(tk / qk) if tk != 0. else 0.


def entropy(labels):
    """Calculates the entropy for a labeling.

    Parameters
    ----------
    labels : int array, shape = [n_samples]
        The labels

    Notes
    -----
    The logarithm used is the natural logarithm (base-e).
    """
    if len(labels) == 0:
        return 1.0
    label_idx = np.unique(labels, return_inverse=True)[1]
    pi = np.bincount(label_idx).astype(np.float64)
    pi = pi[pi > 0]
    pi_sum = np.sum(pi)
    # log(a / b) should be calculated as log(a) - log(b) for
    # possible loss of precision
    return -np.sum((pi / pi_sum) * (np.log(pi) - log(pi_sum)))