_regression.py 27.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
"""Metrics to assess performance on regression task

Functions named as ``*_score`` return a scalar value to maximize: the higher
the better

Function named as ``*_error`` or ``*_loss`` return a scalar value to minimize:
the lower the better
"""

# Authors: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Arnaud Joly <a.joly@ulg.ac.be>
#          Jochen Wersdorfer <jochen@wersdoerfer.de>
#          Lars Buitinck
#          Joel Nothman <joel.nothman@gmail.com>
#          Karan Desai <karandesai281196@gmail.com>
#          Noel Dawe <noel@dawe.me>
#          Manoj Kumar <manojkumarsivaraj334@gmail.com>
#          Michael Eickenberg <michael.eickenberg@gmail.com>
#          Konstantin Shmelkov <konstantin.shmelkov@polytechnique.edu>
#          Christian Lorentzen <lorentzen.ch@googlemail.com>
# License: BSD 3 clause

import numpy as np
import warnings

from .._loss.glm_distribution import TweedieDistribution
from ..utils.validation import (check_array, check_consistent_length,
                                _num_samples)
from ..utils.validation import column_or_1d
from ..utils.validation import _deprecate_positional_args
from ..exceptions import UndefinedMetricWarning


__ALL__ = [
    "max_error",
    "mean_absolute_error",
    "mean_squared_error",
    "mean_squared_log_error",
    "median_absolute_error",
    "r2_score",
    "explained_variance_score",
    "mean_tweedie_deviance",
    "mean_poisson_deviance",
    "mean_gamma_deviance",
]


def _check_reg_targets(y_true, y_pred, multioutput, dtype="numeric"):
    """Check that y_true and y_pred belong to the same regression task

    Parameters
    ----------
    y_true : array-like

    y_pred : array-like

    multioutput : array-like or string in ['raw_values', uniform_average',
        'variance_weighted'] or None
        None is accepted due to backward compatibility of r2_score().

    Returns
    -------
    type_true : one of {'continuous', continuous-multioutput'}
        The type of the true target data, as output by
        'utils.multiclass.type_of_target'

    y_true : array-like of shape (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples, n_outputs)
        Estimated target values.

    multioutput : array-like of shape (n_outputs) or string in ['raw_values',
        uniform_average', 'variance_weighted'] or None
        Custom output weights if ``multioutput`` is array-like or
        just the corresponding argument if ``multioutput`` is a
        correct keyword.
    dtype: str or list, default="numeric"
        the dtype argument passed to check_array

    """
    check_consistent_length(y_true, y_pred)
    y_true = check_array(y_true, ensure_2d=False, dtype=dtype)
    y_pred = check_array(y_pred, ensure_2d=False, dtype=dtype)

    if y_true.ndim == 1:
        y_true = y_true.reshape((-1, 1))

    if y_pred.ndim == 1:
        y_pred = y_pred.reshape((-1, 1))

    if y_true.shape[1] != y_pred.shape[1]:
        raise ValueError("y_true and y_pred have different number of output "
                         "({0}!={1})".format(y_true.shape[1], y_pred.shape[1]))

    n_outputs = y_true.shape[1]
    allowed_multioutput_str = ('raw_values', 'uniform_average',
                               'variance_weighted')
    if isinstance(multioutput, str):
        if multioutput not in allowed_multioutput_str:
            raise ValueError("Allowed 'multioutput' string values are {}. "
                             "You provided multioutput={!r}".format(
                                 allowed_multioutput_str,
                                 multioutput))
    elif multioutput is not None:
        multioutput = check_array(multioutput, ensure_2d=False)
        if n_outputs == 1:
            raise ValueError("Custom weights are useful only in "
                             "multi-output cases.")
        elif n_outputs != len(multioutput):
            raise ValueError(("There must be equally many custom weights "
                              "(%d) as outputs (%d).") %
                             (len(multioutput), n_outputs))
    y_type = 'continuous' if n_outputs == 1 else 'continuous-multioutput'

    return y_type, y_true, y_pred, multioutput


@_deprecate_positional_args
def mean_absolute_error(y_true, y_pred, *,
                        sample_weight=None,
                        multioutput='uniform_average'):
    """Mean absolute error regression loss

    Read more in the :ref:`User Guide <mean_absolute_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), optional
        Sample weights.

    multioutput : string in ['raw_values', 'uniform_average'] \
                or array-like of shape (n_outputs)
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.


    Returns
    -------
    loss : float or ndarray of floats
        If multioutput is 'raw_values', then mean absolute error is returned
        for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

        MAE output is non-negative floating point. The best value is 0.0.

    Examples
    --------
    >>> from sklearn.metrics import mean_absolute_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_absolute_error(y_true, y_pred)
    0.5
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> mean_absolute_error(y_true, y_pred)
    0.75
    >>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
    array([0.5, 1. ])
    >>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.85...
    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    check_consistent_length(y_true, y_pred, sample_weight)
    output_errors = np.average(np.abs(y_pred - y_true),
                               weights=sample_weight, axis=0)
    if isinstance(multioutput, str):
        if multioutput == 'raw_values':
            return output_errors
        elif multioutput == 'uniform_average':
            # pass None as weights to np.average: uniform mean
            multioutput = None

    return np.average(output_errors, weights=multioutput)


@_deprecate_positional_args
def mean_squared_error(y_true, y_pred, *,
                       sample_weight=None,
                       multioutput='uniform_average', squared=True):
    """Mean squared error regression loss

    Read more in the :ref:`User Guide <mean_squared_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), optional
        Sample weights.

    multioutput : string in ['raw_values', 'uniform_average'] \
                or array-like of shape (n_outputs)
        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    squared : boolean value, optional (default = True)
        If True returns MSE value, if False returns RMSE value.

    Returns
    -------
    loss : float or ndarray of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import mean_squared_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_squared_error(y_true, y_pred)
    0.375
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> mean_squared_error(y_true, y_pred, squared=False)
    0.612...
    >>> y_true = [[0.5, 1],[-1, 1],[7, -6]]
    >>> y_pred = [[0, 2],[-1, 2],[8, -5]]
    >>> mean_squared_error(y_true, y_pred)
    0.708...
    >>> mean_squared_error(y_true, y_pred, squared=False)
    0.822...
    >>> mean_squared_error(y_true, y_pred, multioutput='raw_values')
    array([0.41666667, 1.        ])
    >>> mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.825...

    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    check_consistent_length(y_true, y_pred, sample_weight)
    output_errors = np.average((y_true - y_pred) ** 2, axis=0,
                               weights=sample_weight)

    if not squared:
        output_errors = np.sqrt(output_errors)

    if isinstance(multioutput, str):
        if multioutput == 'raw_values':
            return output_errors
        elif multioutput == 'uniform_average':
            # pass None as weights to np.average: uniform mean
            multioutput = None

    return np.average(output_errors, weights=multioutput)


@_deprecate_positional_args
def mean_squared_log_error(y_true, y_pred, *,
                           sample_weight=None,
                           multioutput='uniform_average'):
    """Mean squared logarithmic error regression loss

    Read more in the :ref:`User Guide <mean_squared_log_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), optional
        Sample weights.

    multioutput : string in ['raw_values', 'uniform_average'] \
            or array-like of shape (n_outputs)

        Defines aggregating of multiple output values.
        Array-like value defines weights used to average errors.

        'raw_values' :
            Returns a full set of errors when the input is of multioutput
            format.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        A non-negative floating point value (the best value is 0.0), or an
        array of floating point values, one for each individual target.

    Examples
    --------
    >>> from sklearn.metrics import mean_squared_log_error
    >>> y_true = [3, 5, 2.5, 7]
    >>> y_pred = [2.5, 5, 4, 8]
    >>> mean_squared_log_error(y_true, y_pred)
    0.039...
    >>> y_true = [[0.5, 1], [1, 2], [7, 6]]
    >>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
    >>> mean_squared_log_error(y_true, y_pred)
    0.044...
    >>> mean_squared_log_error(y_true, y_pred, multioutput='raw_values')
    array([0.00462428, 0.08377444])
    >>> mean_squared_log_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.060...

    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    check_consistent_length(y_true, y_pred, sample_weight)

    if (y_true < 0).any() or (y_pred < 0).any():
        raise ValueError("Mean Squared Logarithmic Error cannot be used when "
                         "targets contain negative values.")

    return mean_squared_error(np.log1p(y_true), np.log1p(y_pred),
                              sample_weight=sample_weight,
                              multioutput=multioutput)


@_deprecate_positional_args
def median_absolute_error(y_true, y_pred, *, multioutput='uniform_average'):
    """Median absolute error regression loss

    Median absolute error output is non-negative floating point. The best value
    is 0.0. Read more in the :ref:`User Guide <median_absolute_error>`.

    Parameters
    ----------
    y_true : array-like of shape = (n_samples) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape = (n_samples) or (n_samples, n_outputs)
        Estimated target values.

    multioutput : {'raw_values', 'uniform_average'} or array-like of shape \
                (n_outputs,)
        Defines aggregating of multiple output values. Array-like value defines
        weights used to average errors.

        'raw_values' :
            Returns a full set of errors in case of multioutput input.

        'uniform_average' :
            Errors of all outputs are averaged with uniform weight.

    Returns
    -------
    loss : float or ndarray of floats
        If multioutput is 'raw_values', then mean absolute error is returned
        for each output separately.
        If multioutput is 'uniform_average' or an ndarray of weights, then the
        weighted average of all output errors is returned.

    Examples
    --------
    >>> from sklearn.metrics import median_absolute_error
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> median_absolute_error(y_true, y_pred)
    0.5
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> median_absolute_error(y_true, y_pred)
    0.75
    >>> median_absolute_error(y_true, y_pred, multioutput='raw_values')
    array([0.5, 1. ])
    >>> median_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
    0.85

    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    output_errors = np.median(np.abs(y_pred - y_true), axis=0)
    if isinstance(multioutput, str):
        if multioutput == 'raw_values':
            return output_errors
        elif multioutput == 'uniform_average':
            # pass None as weights to np.average: uniform mean
            multioutput = None

    return np.average(output_errors, weights=multioutput)


@_deprecate_positional_args
def explained_variance_score(y_true, y_pred, *,
                             sample_weight=None,
                             multioutput='uniform_average'):
    """Explained variance regression score function

    Best possible score is 1.0, lower values are worse.

    Read more in the :ref:`User Guide <explained_variance_score>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), optional
        Sample weights.

    multioutput : string in ['raw_values', 'uniform_average', \
                'variance_weighted'] or array-like of shape (n_outputs)
        Defines aggregating of multiple output scores.
        Array-like value defines weights used to average scores.

        'raw_values' :
            Returns a full set of scores in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

        'variance_weighted' :
            Scores of all outputs are averaged, weighted by the variances
            of each individual output.

    Returns
    -------
    score : float or ndarray of floats
        The explained variance or ndarray if 'multioutput' is 'raw_values'.

    Notes
    -----
    This is not a symmetric function.

    Examples
    --------
    >>> from sklearn.metrics import explained_variance_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> explained_variance_score(y_true, y_pred)
    0.957...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> explained_variance_score(y_true, y_pred, multioutput='uniform_average')
    0.983...

    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    check_consistent_length(y_true, y_pred, sample_weight)

    y_diff_avg = np.average(y_true - y_pred, weights=sample_weight, axis=0)
    numerator = np.average((y_true - y_pred - y_diff_avg) ** 2,
                           weights=sample_weight, axis=0)

    y_true_avg = np.average(y_true, weights=sample_weight, axis=0)
    denominator = np.average((y_true - y_true_avg) ** 2,
                             weights=sample_weight, axis=0)

    nonzero_numerator = numerator != 0
    nonzero_denominator = denominator != 0
    valid_score = nonzero_numerator & nonzero_denominator
    output_scores = np.ones(y_true.shape[1])

    output_scores[valid_score] = 1 - (numerator[valid_score] /
                                      denominator[valid_score])
    output_scores[nonzero_numerator & ~nonzero_denominator] = 0.
    if isinstance(multioutput, str):
        if multioutput == 'raw_values':
            # return scores individually
            return output_scores
        elif multioutput == 'uniform_average':
            # passing to np.average() None as weights results is uniform mean
            avg_weights = None
        elif multioutput == 'variance_weighted':
            avg_weights = denominator
    else:
        avg_weights = multioutput

    return np.average(output_scores, weights=avg_weights)


@_deprecate_positional_args
def r2_score(y_true, y_pred, *, sample_weight=None,
             multioutput="uniform_average"):
    """R^2 (coefficient of determination) regression score function.

    Best possible score is 1.0 and it can be negative (because the
    model can be arbitrarily worse). A constant model that always
    predicts the expected value of y, disregarding the input features,
    would get a R^2 score of 0.0.

    Read more in the :ref:`User Guide <r2_score>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,) or (n_samples, n_outputs)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), optional
        Sample weights.

    multioutput : string in ['raw_values', 'uniform_average', \
'variance_weighted'] or None or array-like of shape (n_outputs)

        Defines aggregating of multiple output scores.
        Array-like value defines weights used to average scores.
        Default is "uniform_average".

        'raw_values' :
            Returns a full set of scores in case of multioutput input.

        'uniform_average' :
            Scores of all outputs are averaged with uniform weight.

        'variance_weighted' :
            Scores of all outputs are averaged, weighted by the variances
            of each individual output.

        .. versionchanged:: 0.19
            Default value of multioutput is 'uniform_average'.

    Returns
    -------
    z : float or ndarray of floats
        The R^2 score or ndarray of scores if 'multioutput' is
        'raw_values'.

    Notes
    -----
    This is not a symmetric function.

    Unlike most other scores, R^2 score may be negative (it need not actually
    be the square of a quantity R).

    This metric is not well-defined for single samples and will return a NaN
    value if n_samples is less than two.

    References
    ----------
    .. [1] `Wikipedia entry on the Coefficient of determination
            <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_

    Examples
    --------
    >>> from sklearn.metrics import r2_score
    >>> y_true = [3, -0.5, 2, 7]
    >>> y_pred = [2.5, 0.0, 2, 8]
    >>> r2_score(y_true, y_pred)
    0.948...
    >>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
    >>> y_pred = [[0, 2], [-1, 2], [8, -5]]
    >>> r2_score(y_true, y_pred,
    ...          multioutput='variance_weighted')
    0.938...
    >>> y_true = [1, 2, 3]
    >>> y_pred = [1, 2, 3]
    >>> r2_score(y_true, y_pred)
    1.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [2, 2, 2]
    >>> r2_score(y_true, y_pred)
    0.0
    >>> y_true = [1, 2, 3]
    >>> y_pred = [3, 2, 1]
    >>> r2_score(y_true, y_pred)
    -3.0
    """
    y_type, y_true, y_pred, multioutput = _check_reg_targets(
        y_true, y_pred, multioutput)
    check_consistent_length(y_true, y_pred, sample_weight)

    if _num_samples(y_pred) < 2:
        msg = "R^2 score is not well-defined with less than two samples."
        warnings.warn(msg, UndefinedMetricWarning)
        return float('nan')

    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
        weight = sample_weight[:, np.newaxis]
    else:
        weight = 1.

    numerator = (weight * (y_true - y_pred) ** 2).sum(axis=0,
                                                      dtype=np.float64)
    denominator = (weight * (y_true - np.average(
        y_true, axis=0, weights=sample_weight)) ** 2).sum(axis=0,
                                                          dtype=np.float64)
    nonzero_denominator = denominator != 0
    nonzero_numerator = numerator != 0
    valid_score = nonzero_denominator & nonzero_numerator
    output_scores = np.ones([y_true.shape[1]])
    output_scores[valid_score] = 1 - (numerator[valid_score] /
                                      denominator[valid_score])
    # arbitrary set to zero to avoid -inf scores, having a constant
    # y_true is not interesting for scoring a regression anyway
    output_scores[nonzero_numerator & ~nonzero_denominator] = 0.
    if isinstance(multioutput, str):
        if multioutput == 'raw_values':
            # return scores individually
            return output_scores
        elif multioutput == 'uniform_average':
            # passing None as weights results is uniform mean
            avg_weights = None
        elif multioutput == 'variance_weighted':
            avg_weights = denominator
            # avoid fail on constant y or one-element arrays
            if not np.any(nonzero_denominator):
                if not np.any(nonzero_numerator):
                    return 1.0
                else:
                    return 0.0
    else:
        avg_weights = multioutput

    return np.average(output_scores, weights=avg_weights)


def max_error(y_true, y_pred):
    """
    max_error metric calculates the maximum residual error.

    Read more in the :ref:`User Guide <max_error>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,)
        Estimated target values.

    Returns
    -------
    max_error : float
        A positive floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import max_error
    >>> y_true = [3, 2, 7, 1]
    >>> y_pred = [4, 2, 7, 1]
    >>> max_error(y_true, y_pred)
    1
    """
    y_type, y_true, y_pred, _ = _check_reg_targets(y_true, y_pred, None)
    if y_type == 'continuous-multioutput':
        raise ValueError("Multioutput not supported in max_error")
    return np.max(np.abs(y_true - y_pred))


@_deprecate_positional_args
def mean_tweedie_deviance(y_true, y_pred, *, sample_weight=None, power=0):
    """Mean Tweedie deviance regression loss.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values.

    y_pred : array-like of shape (n_samples,)
        Estimated target values.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    power : float, default=0
        Tweedie power parameter. Either power <= 0 or power >= 1.

        The higher `p` the less weight is given to extreme
        deviations between true and predicted targets.

        - power < 0: Extreme stable distribution. Requires: y_pred > 0.
        - power = 0 : Normal distribution, output corresponds to
          mean_squared_error. y_true and y_pred can be any real numbers.
        - power = 1 : Poisson distribution. Requires: y_true >= 0 and
          y_pred > 0.
        - 1 < p < 2 : Compound Poisson distribution. Requires: y_true >= 0
          and y_pred > 0.
        - power = 2 : Gamma distribution. Requires: y_true > 0 and y_pred > 0.
        - power = 3 : Inverse Gaussian distribution. Requires: y_true > 0
          and y_pred > 0.
        - otherwise : Positive stable distribution. Requires: y_true > 0
          and y_pred > 0.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_tweedie_deviance
    >>> y_true = [2, 0, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_tweedie_deviance(y_true, y_pred, power=1)
    1.4260...
    """
    y_type, y_true, y_pred, _ = _check_reg_targets(
        y_true, y_pred, None, dtype=[np.float64, np.float32])
    if y_type == 'continuous-multioutput':
        raise ValueError("Multioutput not supported in mean_tweedie_deviance")
    check_consistent_length(y_true, y_pred, sample_weight)

    if sample_weight is not None:
        sample_weight = column_or_1d(sample_weight)
        sample_weight = sample_weight[:, np.newaxis]

    dist = TweedieDistribution(power=power)
    dev = dist.unit_deviance(y_true, y_pred, check_input=True)

    return np.average(dev, weights=sample_weight)


@_deprecate_positional_args
def mean_poisson_deviance(y_true, y_pred, *, sample_weight=None):
    """Mean Poisson deviance regression loss.

    Poisson deviance is equivalent to the Tweedie deviance with
    the power parameter `power=1`.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values. Requires y_true >= 0.

    y_pred : array-like of shape (n_samples,)
        Estimated target values. Requires y_pred > 0.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_poisson_deviance
    >>> y_true = [2, 0, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_poisson_deviance(y_true, y_pred)
    1.4260...
    """
    return mean_tweedie_deviance(
        y_true, y_pred, sample_weight=sample_weight, power=1
    )


@_deprecate_positional_args
def mean_gamma_deviance(y_true, y_pred, *, sample_weight=None):
    """Mean Gamma deviance regression loss.

    Gamma deviance is equivalent to the Tweedie deviance with
    the power parameter `power=2`. It is invariant to scaling of
    the target variable, and measures relative errors.

    Read more in the :ref:`User Guide <mean_tweedie_deviance>`.

    Parameters
    ----------
    y_true : array-like of shape (n_samples,)
        Ground truth (correct) target values. Requires y_true > 0.

    y_pred : array-like of shape (n_samples,)
        Estimated target values. Requires y_pred > 0.

    sample_weight : array-like of shape (n_samples,), default=None
        Sample weights.

    Returns
    -------
    loss : float
        A non-negative floating point value (the best value is 0.0).

    Examples
    --------
    >>> from sklearn.metrics import mean_gamma_deviance
    >>> y_true = [2, 0.5, 1, 4]
    >>> y_pred = [0.5, 0.5, 2., 2.]
    >>> mean_gamma_deviance(y_true, y_pred)
    1.0568...
    """
    return mean_tweedie_deviance(
        y_true, y_pred, sample_weight=sample_weight, power=2
    )