__init__.py
4.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
The :mod:`sklearn.metrics` module includes score functions, performance metrics
and pairwise metrics and distance computations.
"""
from ._ranking import auc
from ._ranking import average_precision_score
from ._ranking import coverage_error
from ._ranking import dcg_score
from ._ranking import label_ranking_average_precision_score
from ._ranking import label_ranking_loss
from ._ranking import ndcg_score
from ._ranking import precision_recall_curve
from ._ranking import roc_auc_score
from ._ranking import roc_curve
from ._classification import accuracy_score
from ._classification import balanced_accuracy_score
from ._classification import classification_report
from ._classification import cohen_kappa_score
from ._classification import confusion_matrix
from ._classification import f1_score
from ._classification import fbeta_score
from ._classification import hamming_loss
from ._classification import hinge_loss
from ._classification import jaccard_score
from ._classification import log_loss
from ._classification import matthews_corrcoef
from ._classification import precision_recall_fscore_support
from ._classification import precision_score
from ._classification import recall_score
from ._classification import zero_one_loss
from ._classification import brier_score_loss
from ._classification import multilabel_confusion_matrix
from . import cluster
from .cluster import adjusted_mutual_info_score
from .cluster import adjusted_rand_score
from .cluster import completeness_score
from .cluster import consensus_score
from .cluster import homogeneity_completeness_v_measure
from .cluster import homogeneity_score
from .cluster import mutual_info_score
from .cluster import normalized_mutual_info_score
from .cluster import fowlkes_mallows_score
from .cluster import silhouette_samples
from .cluster import silhouette_score
from .cluster import calinski_harabasz_score
from .cluster import v_measure_score
from .cluster import davies_bouldin_score
from .pairwise import euclidean_distances
from .pairwise import nan_euclidean_distances
from .pairwise import pairwise_distances
from .pairwise import pairwise_distances_argmin
from .pairwise import pairwise_distances_argmin_min
from .pairwise import pairwise_kernels
from .pairwise import pairwise_distances_chunked
from ._regression import explained_variance_score
from ._regression import max_error
from ._regression import mean_absolute_error
from ._regression import mean_squared_error
from ._regression import mean_squared_log_error
from ._regression import median_absolute_error
from ._regression import r2_score
from ._regression import mean_tweedie_deviance
from ._regression import mean_poisson_deviance
from ._regression import mean_gamma_deviance
from ._scorer import check_scoring
from ._scorer import make_scorer
from ._scorer import SCORERS
from ._scorer import get_scorer
from ._plot.roc_curve import plot_roc_curve
from ._plot.roc_curve import RocCurveDisplay
from ._plot.precision_recall_curve import plot_precision_recall_curve
from ._plot.precision_recall_curve import PrecisionRecallDisplay
from ._plot.confusion_matrix import plot_confusion_matrix
from ._plot.confusion_matrix import ConfusionMatrixDisplay
__all__ = [
'accuracy_score',
'adjusted_mutual_info_score',
'adjusted_rand_score',
'auc',
'average_precision_score',
'balanced_accuracy_score',
'calinski_harabasz_score',
'check_scoring',
'classification_report',
'cluster',
'cohen_kappa_score',
'completeness_score',
'ConfusionMatrixDisplay',
'confusion_matrix',
'consensus_score',
'coverage_error',
'dcg_score',
'davies_bouldin_score',
'euclidean_distances',
'explained_variance_score',
'f1_score',
'fbeta_score',
'fowlkes_mallows_score',
'get_scorer',
'hamming_loss',
'hinge_loss',
'homogeneity_completeness_v_measure',
'homogeneity_score',
'jaccard_score',
'label_ranking_average_precision_score',
'label_ranking_loss',
'log_loss',
'make_scorer',
'nan_euclidean_distances',
'matthews_corrcoef',
'max_error',
'mean_absolute_error',
'mean_squared_error',
'mean_squared_log_error',
'mean_poisson_deviance',
'mean_gamma_deviance',
'mean_tweedie_deviance',
'median_absolute_error',
'multilabel_confusion_matrix',
'mutual_info_score',
'ndcg_score',
'normalized_mutual_info_score',
'pairwise_distances',
'pairwise_distances_argmin',
'pairwise_distances_argmin_min',
'pairwise_distances_chunked',
'pairwise_kernels',
'plot_confusion_matrix',
'plot_precision_recall_curve',
'plot_roc_curve',
'PrecisionRecallDisplay',
'precision_recall_curve',
'precision_recall_fscore_support',
'precision_score',
'r2_score',
'recall_score',
'RocCurveDisplay',
'roc_auc_score',
'roc_curve',
'SCORERS',
'silhouette_samples',
'silhouette_score',
'v_measure_score',
'zero_one_loss',
'brier_score_loss',
]