_omp.py 32.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
"""Orthogonal matching pursuit algorithms
"""

# Author: Vlad Niculae
#
# License: BSD 3 clause

import warnings
from math import sqrt

import numpy as np
from scipy import linalg
from scipy.linalg.lapack import get_lapack_funcs
from joblib import Parallel, delayed

from ._base import LinearModel, _pre_fit
from ..base import RegressorMixin, MultiOutputMixin
from ..utils import as_float_array, check_array
from ..utils.validation import _deprecate_positional_args
from ..model_selection import check_cv

premature = """ Orthogonal matching pursuit ended prematurely due to linear
dependence in the dictionary. The requested precision might not have been met.
"""


def _cholesky_omp(X, y, n_nonzero_coefs, tol=None, copy_X=True,
                  return_path=False):
    """Orthogonal Matching Pursuit step using the Cholesky decomposition.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        Input dictionary. Columns are assumed to have unit norm.

    y : array, shape (n_samples,)
        Input targets

    n_nonzero_coefs : int
        Targeted number of non-zero elements

    tol : float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_X : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : array, shape (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx : array, shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    coef : array, shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    """
    if copy_X:
        X = X.copy('F')
    else:  # even if we are allowed to overwrite, still copy it if bad order
        X = np.asfortranarray(X)

    min_float = np.finfo(X.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (X,))
    potrs, = get_lapack_funcs(('potrs',), (X,))

    alpha = np.dot(X.T, y)
    residual = y
    gamma = np.empty(0)
    n_active = 0
    indices = np.arange(X.shape[1])  # keeping track of swapping

    max_features = X.shape[1] if tol is not None else n_nonzero_coefs

    L = np.empty((max_features, max_features), dtype=X.dtype)

    if return_path:
        coefs = np.empty_like(L)

    while True:
        lam = np.argmax(np.abs(np.dot(X.T, residual)))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # atom already selected or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=2)
            break

        if n_active > 0:
            # Updates the Cholesky decomposition of X' X
            L[n_active, :n_active] = np.dot(X[:, :n_active].T, X[:, lam])
            linalg.solve_triangular(L[:n_active, :n_active],
                                    L[n_active, :n_active],
                                    trans=0, lower=1,
                                    overwrite_b=True,
                                    check_finite=False)
            v = nrm2(L[n_active, :n_active]) ** 2
            Lkk = linalg.norm(X[:, lam]) ** 2 - v
            if Lkk <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=2)
                break
            L[n_active, n_active] = sqrt(Lkk)
        else:
            L[0, 0] = linalg.norm(X[:, lam])

        X.T[n_active], X.T[lam] = swap(X.T[n_active], X.T[lam])
        alpha[n_active], alpha[lam] = alpha[lam], alpha[n_active]
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        n_active += 1

        # solves LL'x = X'y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], alpha[:n_active], lower=True,
                         overwrite_b=False)

        if return_path:
            coefs[:n_active, n_active - 1] = gamma
        residual = y - np.dot(X[:, :n_active], gamma)
        if tol is not None and nrm2(residual) ** 2 <= tol:
            break
        elif n_active == max_features:
            break

    if return_path:
        return gamma, indices[:n_active], coefs[:, :n_active], n_active
    else:
        return gamma, indices[:n_active], n_active


def _gram_omp(Gram, Xy, n_nonzero_coefs, tol_0=None, tol=None,
              copy_Gram=True, copy_Xy=True, return_path=False):
    """Orthogonal Matching Pursuit step on a precomputed Gram matrix.

    This function uses the Cholesky decomposition method.

    Parameters
    ----------
    Gram : array, shape (n_features, n_features)
        Gram matrix of the input data matrix

    Xy : array, shape (n_features,)
        Input targets

    n_nonzero_coefs : int
        Targeted number of non-zero elements

    tol_0 : float
        Squared norm of y, required if tol is not None.

    tol : float
        Targeted squared error, if not None overrides n_nonzero_coefs.

    copy_Gram : bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    Returns
    -------
    gamma : array, shape (n_nonzero_coefs,)
        Non-zero elements of the solution

    idx : array, shape (n_nonzero_coefs,)
        Indices of the positions of the elements in gamma within the solution
        vector

    coefs : array, shape (n_features, n_nonzero_coefs)
        The first k values of column k correspond to the coefficient value
        for the active features at that step. The lower left triangle contains
        garbage. Only returned if ``return_path=True``.

    n_active : int
        Number of active features at convergence.
    """
    Gram = Gram.copy('F') if copy_Gram else np.asfortranarray(Gram)

    if copy_Xy or not Xy.flags.writeable:
        Xy = Xy.copy()

    min_float = np.finfo(Gram.dtype).eps
    nrm2, swap = linalg.get_blas_funcs(('nrm2', 'swap'), (Gram,))
    potrs, = get_lapack_funcs(('potrs',), (Gram,))

    indices = np.arange(len(Gram))  # keeping track of swapping
    alpha = Xy
    tol_curr = tol_0
    delta = 0
    gamma = np.empty(0)
    n_active = 0

    max_features = len(Gram) if tol is not None else n_nonzero_coefs

    L = np.empty((max_features, max_features), dtype=Gram.dtype)

    L[0, 0] = 1.
    if return_path:
        coefs = np.empty_like(L)

    while True:
        lam = np.argmax(np.abs(alpha))
        if lam < n_active or alpha[lam] ** 2 < min_float:
            # selected same atom twice, or inner product too small
            warnings.warn(premature, RuntimeWarning, stacklevel=3)
            break
        if n_active > 0:
            L[n_active, :n_active] = Gram[lam, :n_active]
            linalg.solve_triangular(L[:n_active, :n_active],
                                    L[n_active, :n_active],
                                    trans=0, lower=1,
                                    overwrite_b=True,
                                    check_finite=False)
            v = nrm2(L[n_active, :n_active]) ** 2
            Lkk = Gram[lam, lam] - v
            if Lkk <= min_float:  # selected atoms are dependent
                warnings.warn(premature, RuntimeWarning, stacklevel=3)
                break
            L[n_active, n_active] = sqrt(Lkk)
        else:
            L[0, 0] = sqrt(Gram[lam, lam])

        Gram[n_active], Gram[lam] = swap(Gram[n_active], Gram[lam])
        Gram.T[n_active], Gram.T[lam] = swap(Gram.T[n_active], Gram.T[lam])
        indices[n_active], indices[lam] = indices[lam], indices[n_active]
        Xy[n_active], Xy[lam] = Xy[lam], Xy[n_active]
        n_active += 1
        # solves LL'x = X'y as a composition of two triangular systems
        gamma, _ = potrs(L[:n_active, :n_active], Xy[:n_active], lower=True,
                         overwrite_b=False)
        if return_path:
            coefs[:n_active, n_active - 1] = gamma
        beta = np.dot(Gram[:, :n_active], gamma)
        alpha = Xy - beta
        if tol is not None:
            tol_curr += delta
            delta = np.inner(gamma, beta[:n_active])
            tol_curr -= delta
            if abs(tol_curr) <= tol:
                break
        elif n_active == max_features:
            break

    if return_path:
        return gamma, indices[:n_active], coefs[:, :n_active], n_active
    else:
        return gamma, indices[:n_active], n_active


@_deprecate_positional_args
def orthogonal_mp(X, y, *, n_nonzero_coefs=None, tol=None, precompute=False,
                  copy_X=True, return_path=False,
                  return_n_iter=False):
    r"""Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems.
    An instance of the problem has the form:

    When parametrized by the number of non-zero coefficients using
    `n_nonzero_coefs`:
    argmin ||y - X\gamma||^2 subject to ||\gamma||_0 <= n_{nonzero coefs}

    When parametrized by error using the parameter `tol`:
    argmin ||\gamma||_0 subject to ||y - X\gamma||^2 <= tol

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    X : array, shape (n_samples, n_features)
        Input data. Columns are assumed to have unit norm.

    y : array, shape (n_samples,) or (n_samples, n_targets)
        Input targets

    n_nonzero_coefs : int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    precompute : {True, False, 'auto'},
        Whether to perform precomputations. Improves performance when n_targets
        or n_samples is very large.

    copy_X : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, optional default False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : array, shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis yields coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp_gram
    lars_path
    decomposition.sparse_encode

    Notes
    -----
    Orthogonal matching pursuit was introduced in S. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    X = check_array(X, order='F', copy=copy_X)
    copy_X = False
    if y.ndim == 1:
        y = y.reshape(-1, 1)
    y = check_array(y)
    if y.shape[1] > 1:  # subsequent targets will be affected
        copy_X = True
    if n_nonzero_coefs is None and tol is None:
        # default for n_nonzero_coefs is 0.1 * n_features
        # but at least one.
        n_nonzero_coefs = max(int(0.1 * X.shape[1]), 1)
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cannot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > X.shape[1]:
        raise ValueError("The number of atoms cannot be more than the number "
                         "of features")
    if precompute == 'auto':
        precompute = X.shape[0] > X.shape[1]
    if precompute:
        G = np.dot(X.T, X)
        G = np.asfortranarray(G)
        Xy = np.dot(X.T, y)
        if tol is not None:
            norms_squared = np.sum((y ** 2), axis=0)
        else:
            norms_squared = None
        return orthogonal_mp_gram(G, Xy, n_nonzero_coefs=n_nonzero_coefs,
                                  tol=tol, norms_squared=norms_squared,
                                  copy_Gram=copy_X, copy_Xy=False,
                                  return_path=return_path)

    if return_path:
        coef = np.zeros((X.shape[1], y.shape[1], X.shape[1]))
    else:
        coef = np.zeros((X.shape[1], y.shape[1]))
    n_iters = []

    for k in range(y.shape[1]):
        out = _cholesky_omp(
            X, y[:, k], n_nonzero_coefs, tol,
            copy_X=copy_X, return_path=return_path)
        if return_path:
            _, idx, coefs, n_iter = out
            coef = coef[:, :, :len(idx)]
            for n_active, x in enumerate(coefs.T):
                coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
        else:
            x, idx, n_iter = out
            coef[idx, k] = x
        n_iters.append(n_iter)

    if y.shape[1] == 1:
        n_iters = n_iters[0]

    if return_n_iter:
        return np.squeeze(coef), n_iters
    else:
        return np.squeeze(coef)


@_deprecate_positional_args
def orthogonal_mp_gram(Gram, Xy, *, n_nonzero_coefs=None, tol=None,
                       norms_squared=None, copy_Gram=True,
                       copy_Xy=True, return_path=False,
                       return_n_iter=False):
    """Gram Orthogonal Matching Pursuit (OMP)

    Solves n_targets Orthogonal Matching Pursuit problems using only
    the Gram matrix X.T * X and the product X.T * y.

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    Gram : array, shape (n_features, n_features)
        Gram matrix of the input data: X.T * X

    Xy : array, shape (n_features,) or (n_features, n_targets)
        Input targets multiplied by X: X.T * y

    n_nonzero_coefs : int
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    norms_squared : array-like, shape (n_targets,)
        Squared L2 norms of the lines of y. Required if tol is not None.

    copy_Gram : bool, optional
        Whether the gram matrix must be copied by the algorithm. A false
        value is only helpful if it is already Fortran-ordered, otherwise a
        copy is made anyway.

    copy_Xy : bool, optional
        Whether the covariance vector Xy must be copied by the algorithm.
        If False, it may be overwritten.

    return_path : bool, optional. Default: False
        Whether to return every value of the nonzero coefficients along the
        forward path. Useful for cross-validation.

    return_n_iter : bool, optional default False
        Whether or not to return the number of iterations.

    Returns
    -------
    coef : array, shape (n_features,) or (n_features, n_targets)
        Coefficients of the OMP solution. If `return_path=True`, this contains
        the whole coefficient path. In this case its shape is
        (n_features, n_features) or (n_features, n_targets, n_features) and
        iterating over the last axis yields coefficients in increasing order
        of active features.

    n_iters : array-like or int
        Number of active features across every target. Returned only if
        `return_n_iter` is set to True.

    See also
    --------
    OrthogonalMatchingPursuit
    orthogonal_mp
    lars_path
    decomposition.sparse_encode

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    """
    Gram = check_array(Gram, order='F', copy=copy_Gram)
    Xy = np.asarray(Xy)
    if Xy.ndim > 1 and Xy.shape[1] > 1:
        # or subsequent target will be affected
        copy_Gram = True
    if Xy.ndim == 1:
        Xy = Xy[:, np.newaxis]
        if tol is not None:
            norms_squared = [norms_squared]
    if copy_Xy or not Xy.flags.writeable:
        # Make the copy once instead of many times in _gram_omp itself.
        Xy = Xy.copy()

    if n_nonzero_coefs is None and tol is None:
        n_nonzero_coefs = int(0.1 * len(Gram))
    if tol is not None and norms_squared is None:
        raise ValueError('Gram OMP needs the precomputed norms in order '
                         'to evaluate the error sum of squares.')
    if tol is not None and tol < 0:
        raise ValueError("Epsilon cannot be negative")
    if tol is None and n_nonzero_coefs <= 0:
        raise ValueError("The number of atoms must be positive")
    if tol is None and n_nonzero_coefs > len(Gram):
        raise ValueError("The number of atoms cannot be more than the number "
                         "of features")

    if return_path:
        coef = np.zeros((len(Gram), Xy.shape[1], len(Gram)))
    else:
        coef = np.zeros((len(Gram), Xy.shape[1]))

    n_iters = []
    for k in range(Xy.shape[1]):
        out = _gram_omp(
            Gram, Xy[:, k], n_nonzero_coefs,
            norms_squared[k] if tol is not None else None, tol,
            copy_Gram=copy_Gram, copy_Xy=False,
            return_path=return_path)
        if return_path:
            _, idx, coefs, n_iter = out
            coef = coef[:, :, :len(idx)]
            for n_active, x in enumerate(coefs.T):
                coef[idx[:n_active + 1], k, n_active] = x[:n_active + 1]
        else:
            x, idx, n_iter = out
            coef[idx, k] = x
        n_iters.append(n_iter)

    if Xy.shape[1] == 1:
        n_iters = n_iters[0]

    if return_n_iter:
        return np.squeeze(coef), n_iters
    else:
        return np.squeeze(coef)


class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel):
    """Orthogonal Matching Pursuit model (OMP)

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    n_nonzero_coefs : int, optional
        Desired number of non-zero entries in the solution. If None (by
        default) this value is set to 10% of n_features.

    tol : float, optional
        Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : boolean, optional, default True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    precompute : {True, False, 'auto'}, default 'auto'
        Whether to use a precomputed Gram and Xy matrix to speed up
        calculations. Improves performance when :term:`n_targets` or
        :term:`n_samples` is very large. Note that if you already have such
        matrices, you can pass them directly to the fit method.

    Attributes
    ----------
    coef_ : array, shape (n_features,) or (n_targets, n_features)
        parameter vector (w in the formula)

    intercept_ : float or array, shape (n_targets,)
        independent term in decision function.

    n_iter_ : int or array-like
        Number of active features across every target.

    Examples
    --------
    >>> from sklearn.linear_model import OrthogonalMatchingPursuit
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(noise=4, random_state=0)
    >>> reg = OrthogonalMatchingPursuit().fit(X, y)
    >>> reg.score(X, y)
    0.9991...
    >>> reg.predict(X[:1,])
    array([-78.3854...])

    Notes
    -----
    Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang,
    Matching pursuits with time-frequency dictionaries, IEEE Transactions on
    Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415.
    (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

    This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad,
    M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal
    Matching Pursuit Technical Report - CS Technion, April 2008.
    https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

    See also
    --------
    orthogonal_mp
    orthogonal_mp_gram
    lars_path
    Lars
    LassoLars
    decomposition.sparse_encode
    OrthogonalMatchingPursuitCV
    """
    @_deprecate_positional_args
    def __init__(self, *, n_nonzero_coefs=None, tol=None, fit_intercept=True,
                 normalize=True, precompute='auto'):
        self.n_nonzero_coefs = n_nonzero_coefs
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.precompute = precompute

    def fit(self, X, y):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Training data.

        y : array-like, shape (n_samples,) or (n_samples, n_targets)
            Target values. Will be cast to X's dtype if necessary


        Returns
        -------
        self : object
            returns an instance of self.
        """
        X, y = self._validate_data(X, y, multi_output=True, y_numeric=True)
        n_features = X.shape[1]

        X, y, X_offset, y_offset, X_scale, Gram, Xy = \
            _pre_fit(X, y, None, self.precompute, self.normalize,
                     self.fit_intercept, copy=True)

        if y.ndim == 1:
            y = y[:, np.newaxis]

        if self.n_nonzero_coefs is None and self.tol is None:
            # default for n_nonzero_coefs is 0.1 * n_features
            # but at least one.
            self.n_nonzero_coefs_ = max(int(0.1 * n_features), 1)
        else:
            self.n_nonzero_coefs_ = self.n_nonzero_coefs

        if Gram is False:
            coef_, self.n_iter_ = orthogonal_mp(
                X, y, n_nonzero_coefs=self.n_nonzero_coefs_, tol=self.tol,
                precompute=False, copy_X=True,
                return_n_iter=True)
        else:
            norms_sq = np.sum(y ** 2, axis=0) if self.tol is not None else None

            coef_, self.n_iter_ = orthogonal_mp_gram(
                Gram, Xy=Xy, n_nonzero_coefs=self.n_nonzero_coefs_,
                tol=self.tol, norms_squared=norms_sq,
                copy_Gram=True, copy_Xy=True,
                return_n_iter=True)
        self.coef_ = coef_.T
        self._set_intercept(X_offset, y_offset, X_scale)
        return self


def _omp_path_residues(X_train, y_train, X_test, y_test, copy=True,
                       fit_intercept=True, normalize=True, max_iter=100):
    """Compute the residues on left-out data for a full LARS path

    Parameters
    ----------
    X_train : array, shape (n_samples, n_features)
        The data to fit the LARS on

    y_train : array, shape (n_samples)
        The target variable to fit LARS on

    X_test : array, shape (n_samples, n_features)
        The data to compute the residues on

    y_test : array, shape (n_samples)
        The target variable to compute the residues on

    copy : boolean, optional
        Whether X_train, X_test, y_train and y_test should be copied.  If
        False, they may be overwritten.

    fit_intercept : boolean
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : boolean, optional, default True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    max_iter : integer, optional
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 100 by default.

    Returns
    -------
    residues : array, shape (n_samples, max_features)
        Residues of the prediction on the test data
    """

    if copy:
        X_train = X_train.copy()
        y_train = y_train.copy()
        X_test = X_test.copy()
        y_test = y_test.copy()

    if fit_intercept:
        X_mean = X_train.mean(axis=0)
        X_train -= X_mean
        X_test -= X_mean
        y_mean = y_train.mean(axis=0)
        y_train = as_float_array(y_train, copy=False)
        y_train -= y_mean
        y_test = as_float_array(y_test, copy=False)
        y_test -= y_mean

    if normalize:
        norms = np.sqrt(np.sum(X_train ** 2, axis=0))
        nonzeros = np.flatnonzero(norms)
        X_train[:, nonzeros] /= norms[nonzeros]

    coefs = orthogonal_mp(X_train, y_train, n_nonzero_coefs=max_iter, tol=None,
                          precompute=False, copy_X=False,
                          return_path=True)
    if coefs.ndim == 1:
        coefs = coefs[:, np.newaxis]
    if normalize:
        coefs[nonzeros] /= norms[nonzeros][:, np.newaxis]

    return np.dot(coefs.T, X_test.T) - y_test


class OrthogonalMatchingPursuitCV(RegressorMixin, LinearModel):
    """Cross-validated Orthogonal Matching Pursuit model (OMP).

    See glossary entry for :term:`cross-validation estimator`.

    Read more in the :ref:`User Guide <omp>`.

    Parameters
    ----------
    copy : bool, optional
        Whether the design matrix X must be copied by the algorithm. A false
        value is only helpful if X is already Fortran-ordered, otherwise a
        copy is made anyway.

    fit_intercept : boolean, optional
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : boolean, optional, default True
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    max_iter : integer, optional
        Maximum numbers of iterations to perform, therefore maximum features
        to include. 10% of ``n_features`` but at least 5 if available.

    cv : int, cross-validation generator or an iterable, optional
        Determines the cross-validation splitting strategy.
        Possible inputs for cv are:

        - None, to use the default 5-fold cross-validation,
        - integer, to specify the number of folds.
        - :term:`CV splitter`,
        - An iterable yielding (train, test) splits as arrays of indices.

        For integer/None inputs, :class:`KFold` is used.

        Refer :ref:`User Guide <cross_validation>` for the various
        cross-validation strategies that can be used here.

        .. versionchanged:: 0.22
            ``cv`` default value if None changed from 3-fold to 5-fold.

    n_jobs : int or None, optional (default=None)
        Number of CPUs to use during the cross validation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    verbose : boolean or integer, optional
        Sets the verbosity amount

    Attributes
    ----------
    intercept_ : float or array, shape (n_targets,)
        Independent term in decision function.

    coef_ : array, shape (n_features,) or (n_targets, n_features)
        Parameter vector (w in the problem formulation).

    n_nonzero_coefs_ : int
        Estimated number of non-zero coefficients giving the best mean squared
        error over the cross-validation folds.

    n_iter_ : int or array-like
        Number of active features across every target for the model refit with
        the best hyperparameters got by cross-validating across all folds.

    Examples
    --------
    >>> from sklearn.linear_model import OrthogonalMatchingPursuitCV
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=100, n_informative=10,
    ...                        noise=4, random_state=0)
    >>> reg = OrthogonalMatchingPursuitCV(cv=5).fit(X, y)
    >>> reg.score(X, y)
    0.9991...
    >>> reg.n_nonzero_coefs_
    10
    >>> reg.predict(X[:1,])
    array([-78.3854...])

    See also
    --------
    orthogonal_mp
    orthogonal_mp_gram
    lars_path
    Lars
    LassoLars
    OrthogonalMatchingPursuit
    LarsCV
    LassoLarsCV
    decomposition.sparse_encode

    """
    @_deprecate_positional_args
    def __init__(self, *, copy=True, fit_intercept=True, normalize=True,
                 max_iter=None, cv=None, n_jobs=None, verbose=False):
        self.copy = copy
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.max_iter = max_iter
        self.cv = cv
        self.n_jobs = n_jobs
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the model using X, y as training data.

        Parameters
        ----------
        X : array-like, shape [n_samples, n_features]
            Training data.

        y : array-like, shape [n_samples]
            Target values. Will be cast to X's dtype if necessary

        Returns
        -------
        self : object
            returns an instance of self.
        """
        X, y = self._validate_data(X, y, y_numeric=True, ensure_min_features=2,
                                   estimator=self)
        X = as_float_array(X, copy=False, force_all_finite=False)
        cv = check_cv(self.cv, classifier=False)
        max_iter = (min(max(int(0.1 * X.shape[1]), 5), X.shape[1])
                    if not self.max_iter
                    else self.max_iter)
        cv_paths = Parallel(n_jobs=self.n_jobs, verbose=self.verbose)(
            delayed(_omp_path_residues)(
                X[train], y[train], X[test], y[test], self.copy,
                self.fit_intercept, self.normalize, max_iter)
            for train, test in cv.split(X))

        min_early_stop = min(fold.shape[0] for fold in cv_paths)
        mse_folds = np.array([(fold[:min_early_stop] ** 2).mean(axis=1)
                              for fold in cv_paths])
        best_n_nonzero_coefs = np.argmin(mse_folds.mean(axis=0)) + 1
        self.n_nonzero_coefs_ = best_n_nonzero_coefs
        omp = OrthogonalMatchingPursuit(n_nonzero_coefs=best_n_nonzero_coefs,
                                        fit_intercept=self.fit_intercept,
                                        normalize=self.normalize)
        omp.fit(X, y)
        self.coef_ = omp.coef_
        self.intercept_ = omp.intercept_
        self.n_iter_ = omp.n_iter_
        return self