_bayes.py
24.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
"""
Various bayesian regression
"""
# Authors: V. Michel, F. Pedregosa, A. Gramfort
# License: BSD 3 clause
from math import log
import numpy as np
from scipy import linalg
from ._base import LinearModel, _rescale_data
from ..base import RegressorMixin
from ..utils.extmath import fast_logdet
from scipy.linalg import pinvh
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args
###############################################################################
# BayesianRidge regression
class BayesianRidge(RegressorMixin, LinearModel):
"""Bayesian ridge regression.
Fit a Bayesian ridge model. See the Notes section for details on this
implementation and the optimization of the regularization parameters
lambda (precision of the weights) and alpha (precision of the noise).
Read more in the :ref:`User Guide <bayesian_regression>`.
Parameters
----------
n_iter : int, default=300
Maximum number of iterations. Should be greater than or equal to 1.
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
alpha_init : float, default=None
Initial value for alpha (precision of the noise).
If not set, alpha_init is 1/Var(y).
.. versionadded:: 0.22
lambda_init : float, default=None
Initial value for lambda (precision of the weights).
If not set, lambda_init is 1.
.. versionadded:: 0.22
compute_score : bool, default=False
If True, compute the log marginal likelihood at each iteration of the
optimization.
fit_intercept : bool, default=True
Whether to calculate the intercept for this model.
The intercept is not treated as a probabilistic parameter
and thus has no associated variance. If set
to False, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
intercept_ : float
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
alpha_ : float
Estimated precision of the noise.
lambda_ : float
Estimated precision of the weights.
sigma_ : array-like of shape (n_features, n_features)
Estimated variance-covariance matrix of the weights
scores_ : array-like of shape (n_iter_+1,)
If computed_score is True, value of the log marginal likelihood (to be
maximized) at each iteration of the optimization. The array starts
with the value of the log marginal likelihood obtained for the initial
values of alpha and lambda and ends with the value obtained for the
estimated alpha and lambda.
n_iter_ : int
The actual number of iterations to reach the stopping criterion.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.BayesianRidge()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
BayesianRidge()
>>> clf.predict([[1, 1]])
array([1.])
Notes
-----
There exist several strategies to perform Bayesian ridge regression. This
implementation is based on the algorithm described in Appendix A of
(Tipping, 2001) where updates of the regularization parameters are done as
suggested in (MacKay, 1992). Note that according to A New
View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these
update rules do not guarantee that the marginal likelihood is increasing
between two consecutive iterations of the optimization.
References
----------
D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems,
Vol. 4, No. 3, 1992.
M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine,
Journal of Machine Learning Research, Vol. 1, 2001.
"""
@_deprecate_positional_args
def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None,
lambda_init=None, compute_score=False, fit_intercept=True,
normalize=False, copy_X=True, verbose=False):
self.n_iter = n_iter
self.tol = tol
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.alpha_init = alpha_init
self.lambda_init = lambda_init
self.compute_score = compute_score
self.fit_intercept = fit_intercept
self.normalize = normalize
self.copy_X = copy_X
self.verbose = verbose
def fit(self, X, y, sample_weight=None):
"""Fit the model
Parameters
----------
X : ndarray of shape (n_samples, n_features)
Training data
y : ndarray of shape (n_samples,)
Target values. Will be cast to X's dtype if necessary
sample_weight : ndarray of shape (n_samples,), default=None
Individual weights for each sample
.. versionadded:: 0.20
parameter *sample_weight* support to BayesianRidge.
Returns
-------
self : returns an instance of self.
"""
if self.n_iter < 1:
raise ValueError('n_iter should be greater than or equal to 1.'
' Got {!r}.'.format(self.n_iter))
X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True)
if sample_weight is not None:
sample_weight = _check_sample_weight(sample_weight, X,
dtype=X.dtype)
X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X,
sample_weight=sample_weight)
if sample_weight is not None:
# Sample weight can be implemented via a simple rescaling.
X, y = _rescale_data(X, y, sample_weight)
self.X_offset_ = X_offset_
self.X_scale_ = X_scale_
n_samples, n_features = X.shape
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero
alpha_ = self.alpha_init
lambda_ = self.lambda_init
if alpha_ is None:
alpha_ = 1. / (np.var(y) + eps)
if lambda_ is None:
lambda_ = 1.
verbose = self.verbose
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
self.scores_ = list()
coef_old_ = None
XT_y = np.dot(X.T, y)
U, S, Vh = linalg.svd(X, full_matrices=False)
eigen_vals_ = S ** 2
# Convergence loop of the bayesian ridge regression
for iter_ in range(self.n_iter):
# update posterior mean coef_ based on alpha_ and lambda_ and
# compute corresponding rmse
coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
XT_y, U, Vh, eigen_vals_,
alpha_, lambda_)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(n_samples, n_features,
eigen_vals_,
alpha_, lambda_,
coef_, rmse_)
self.scores_.append(s)
# Update alpha and lambda according to (MacKay, 1992)
gamma_ = np.sum((alpha_ * eigen_vals_) /
(lambda_ + alpha_ * eigen_vals_))
lambda_ = ((gamma_ + 2 * lambda_1) /
(np.sum(coef_ ** 2) + 2 * lambda_2))
alpha_ = ((n_samples - gamma_ + 2 * alpha_1) /
(rmse_ + 2 * alpha_2))
# Check for convergence
if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Convergence after ", str(iter_), " iterations")
break
coef_old_ = np.copy(coef_)
self.n_iter_ = iter_ + 1
# return regularization parameters and corresponding posterior mean,
# log marginal likelihood and posterior covariance
self.alpha_ = alpha_
self.lambda_ = lambda_
self.coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
XT_y, U, Vh, eigen_vals_,
alpha_, lambda_)
if self.compute_score:
# compute the log marginal likelihood
s = self._log_marginal_likelihood(n_samples, n_features,
eigen_vals_,
alpha_, lambda_,
coef_, rmse_)
self.scores_.append(s)
self.scores_ = np.array(self.scores_)
# posterior covariance is given by 1/alpha_ * scaled_sigma_
scaled_sigma_ = np.dot(Vh.T,
Vh / (eigen_vals_ +
lambda_ / alpha_)[:, np.newaxis])
self.sigma_ = (1. / alpha_) * scaled_sigma_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if return_std is False:
return y_mean
else:
if self.normalize:
X = (X - self.X_offset_) / self.X_scale_
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
return y_mean, y_std
def _update_coef_(self, X, y, n_samples, n_features, XT_y, U, Vh,
eigen_vals_, alpha_, lambda_):
"""Update posterior mean and compute corresponding rmse.
Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where
scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features)
+ np.dot(X.T, X))^-1
"""
if n_samples > n_features:
coef_ = np.dot(Vh.T,
Vh / (eigen_vals_ +
lambda_ / alpha_)[:, np.newaxis])
coef_ = np.dot(coef_, XT_y)
else:
coef_ = np.dot(X.T, np.dot(
U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T))
coef_ = np.dot(coef_, y)
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
return coef_, rmse_
def _log_marginal_likelihood(self, n_samples, n_features, eigen_vals,
alpha_, lambda_, coef, rmse):
"""Log marginal likelihood."""
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
# compute the log of the determinant of the posterior covariance.
# posterior covariance is given by
# sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1
if n_samples > n_features:
logdet_sigma = - np.sum(np.log(lambda_ + alpha_ * eigen_vals))
else:
logdet_sigma = np.full(n_features, lambda_,
dtype=np.array(lambda_).dtype)
logdet_sigma[:n_samples] += alpha_ * eigen_vals
logdet_sigma = - np.sum(np.log(logdet_sigma))
score = lambda_1 * log(lambda_) - lambda_2 * lambda_
score += alpha_1 * log(alpha_) - alpha_2 * alpha_
score += 0.5 * (n_features * log(lambda_) +
n_samples * log(alpha_) -
alpha_ * rmse -
lambda_ * np.sum(coef ** 2) +
logdet_sigma -
n_samples * log(2 * np.pi))
return score
###############################################################################
# ARD (Automatic Relevance Determination) regression
class ARDRegression(RegressorMixin, LinearModel):
"""Bayesian ARD regression.
Fit the weights of a regression model, using an ARD prior. The weights of
the regression model are assumed to be in Gaussian distributions.
Also estimate the parameters lambda (precisions of the distributions of the
weights) and alpha (precision of the distribution of the noise).
The estimation is done by an iterative procedures (Evidence Maximization)
Read more in the :ref:`User Guide <bayesian_regression>`.
Parameters
----------
n_iter : int, default=300
Maximum number of iterations.
tol : float, default=1e-3
Stop the algorithm if w has converged.
alpha_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the alpha parameter.
alpha_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the alpha parameter.
lambda_1 : float, default=1e-6
Hyper-parameter : shape parameter for the Gamma distribution prior
over the lambda parameter.
lambda_2 : float, default=1e-6
Hyper-parameter : inverse scale parameter (rate parameter) for the
Gamma distribution prior over the lambda parameter.
compute_score : bool, default=False
If True, compute the objective function at each step of the model.
threshold_lambda : float, default=10 000
threshold for removing (pruning) weights with high precision from
the computation.
fit_intercept : bool, default=True
whether to calculate the intercept for this model. If set
to false, no intercept will be used in calculations
(i.e. data is expected to be centered).
normalize : bool, default=False
This parameter is ignored when ``fit_intercept`` is set to False.
If True, the regressors X will be normalized before regression by
subtracting the mean and dividing by the l2-norm.
If you wish to standardize, please use
:class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
on an estimator with ``normalize=False``.
copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.
verbose : bool, default=False
Verbose mode when fitting the model.
Attributes
----------
coef_ : array-like of shape (n_features,)
Coefficients of the regression model (mean of distribution)
alpha_ : float
estimated precision of the noise.
lambda_ : array-like of shape (n_features,)
estimated precisions of the weights.
sigma_ : array-like of shape (n_features, n_features)
estimated variance-covariance matrix of the weights
scores_ : float
if computed, value of the objective function (to be maximized)
intercept_ : float
Independent term in decision function. Set to 0.0 if
``fit_intercept = False``.
Examples
--------
>>> from sklearn import linear_model
>>> clf = linear_model.ARDRegression()
>>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
ARDRegression()
>>> clf.predict([[1, 1]])
array([1.])
Notes
-----
For an example, see :ref:`examples/linear_model/plot_ard.py
<sphx_glr_auto_examples_linear_model_plot_ard.py>`.
References
----------
D. J. C. MacKay, Bayesian nonlinear modeling for the prediction
competition, ASHRAE Transactions, 1994.
R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
Their beta is our ``self.alpha_``
Their alpha is our ``self.lambda_``
ARD is a little different than the slide: only dimensions/features for
which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are
discarded.
"""
@_deprecate_positional_args
def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
threshold_lambda=1.e+4, fit_intercept=True, normalize=False,
copy_X=True, verbose=False):
self.n_iter = n_iter
self.tol = tol
self.fit_intercept = fit_intercept
self.normalize = normalize
self.alpha_1 = alpha_1
self.alpha_2 = alpha_2
self.lambda_1 = lambda_1
self.lambda_2 = lambda_2
self.compute_score = compute_score
self.threshold_lambda = threshold_lambda
self.copy_X = copy_X
self.verbose = verbose
def fit(self, X, y):
"""Fit the ARDRegression model according to the given training data
and parameters.
Iterative procedure to maximize the evidence
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training vector, where n_samples in the number of samples and
n_features is the number of features.
y : array-like of shape (n_samples,)
Target values (integers). Will be cast to X's dtype if necessary
Returns
-------
self : returns an instance of self.
"""
X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True,
ensure_min_samples=2)
n_samples, n_features = X.shape
coef_ = np.zeros(n_features)
X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
X, y, self.fit_intercept, self.normalize, self.copy_X)
# Launch the convergence loop
keep_lambda = np.ones(n_features, dtype=bool)
lambda_1 = self.lambda_1
lambda_2 = self.lambda_2
alpha_1 = self.alpha_1
alpha_2 = self.alpha_2
verbose = self.verbose
# Initialization of the values of the parameters
eps = np.finfo(np.float64).eps
# Add `eps` in the denominator to omit division by zero if `np.var(y)`
# is zero
alpha_ = 1. / (np.var(y) + eps)
lambda_ = np.ones(n_features)
self.scores_ = list()
coef_old_ = None
def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):
coef_[keep_lambda] = alpha_ * np.dot(
sigma_, np.dot(X[:, keep_lambda].T, y))
return coef_
update_sigma = (self._update_sigma if n_samples >= n_features
else self._update_sigma_woodbury)
# Iterative procedure of ARDRegression
for iter_ in range(self.n_iter):
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
# Update alpha and lambda
rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_)
lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) /
((coef_[keep_lambda]) ** 2 +
2. * lambda_2))
alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) /
(rmse_ + 2. * alpha_2))
# Prune the weights with a precision over a threshold
keep_lambda = lambda_ < self.threshold_lambda
coef_[~keep_lambda] = 0
# Compute the objective function
if self.compute_score:
s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
s += alpha_1 * log(alpha_) - alpha_2 * alpha_
s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) +
np.sum(np.log(lambda_)))
s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum())
self.scores_.append(s)
# Check for convergence
if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
if verbose:
print("Converged after %s iterations" % iter_)
break
coef_old_ = np.copy(coef_)
if not keep_lambda.any():
break
if keep_lambda.any():
# update sigma and mu using updated params from the last iteration
sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
else:
sigma_ = np.array([]).reshape(0, 0)
self.coef_ = coef_
self.alpha_ = alpha_
self.sigma_ = sigma_
self.lambda_ = lambda_
self._set_intercept(X_offset_, y_offset_, X_scale_)
return self
def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples < n_features and will invert
# a matrix of shape (n_samples, n_samples) making use of the
# woodbury formula:
# https://en.wikipedia.org/wiki/Woodbury_matrix_identity
n_samples = X.shape[0]
X_keep = X[:, keep_lambda]
inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1)
sigma_ = pinvh(
np.eye(n_samples) / alpha_ + np.dot(X_keep * inv_lambda, X_keep.T)
)
sigma_ = np.dot(sigma_, X_keep * inv_lambda)
sigma_ = - np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_)
sigma_[np.diag_indices(sigma_.shape[1])] += 1. / lambda_[keep_lambda]
return sigma_
def _update_sigma(self, X, alpha_, lambda_, keep_lambda):
# See slides as referenced in the docstring note
# this function is used when n_samples >= n_features and will
# invert a matrix of shape (n_features, n_features)
X_keep = X[:, keep_lambda]
gram = np.dot(X_keep.T, X_keep)
eye = np.eye(gram.shape[0])
sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram
sigma_ = pinvh(sigma_inv)
return sigma_
def predict(self, X, return_std=False):
"""Predict using the linear model.
In addition to the mean of the predictive distribution, also its
standard deviation can be returned.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
Samples.
return_std : bool, default=False
Whether to return the standard deviation of posterior prediction.
Returns
-------
y_mean : array-like of shape (n_samples,)
Mean of predictive distribution of query points.
y_std : array-like of shape (n_samples,)
Standard deviation of predictive distribution of query points.
"""
y_mean = self._decision_function(X)
if return_std is False:
return y_mean
else:
if self.normalize:
X = (X - self.X_offset_) / self.X_scale_
X = X[:, self.lambda_ < self.threshold_lambda]
sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
return y_mean, y_std