_bayes.py 24.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
"""
Various bayesian regression
"""

# Authors: V. Michel, F. Pedregosa, A. Gramfort
# License: BSD 3 clause

from math import log
import numpy as np
from scipy import linalg

from ._base import LinearModel, _rescale_data
from ..base import RegressorMixin
from ..utils.extmath import fast_logdet
from scipy.linalg import pinvh
from ..utils.validation import _check_sample_weight
from ..utils.validation import _deprecate_positional_args


###############################################################################
# BayesianRidge regression

class BayesianRidge(RegressorMixin, LinearModel):
    """Bayesian ridge regression.

    Fit a Bayesian ridge model. See the Notes section for details on this
    implementation and the optimization of the regularization parameters
    lambda (precision of the weights) and alpha (precision of the noise).

    Read more in the :ref:`User Guide <bayesian_regression>`.

    Parameters
    ----------
    n_iter : int, default=300
        Maximum number of iterations. Should be greater than or equal to 1.

    tol : float, default=1e-3
        Stop the algorithm if w has converged.

    alpha_1 : float, default=1e-6
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter.

    alpha_2 : float, default=1e-6
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter.

    lambda_1 : float, default=1e-6
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter.

    lambda_2 : float, default=1e-6
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter.

    alpha_init : float, default=None
        Initial value for alpha (precision of the noise).
        If not set, alpha_init is 1/Var(y).

            .. versionadded:: 0.22

    lambda_init : float, default=None
        Initial value for lambda (precision of the weights).
        If not set, lambda_init is 1.

            .. versionadded:: 0.22

    compute_score : bool, default=False
        If True, compute the log marginal likelihood at each iteration of the
        optimization.

    fit_intercept : bool, default=True
        Whether to calculate the intercept for this model.
        The intercept is not treated as a probabilistic parameter
        and thus has no associated variance. If set
        to False, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    verbose : bool, default=False
        Verbose mode when fitting the model.


    Attributes
    ----------
    coef_ : array-like of shape (n_features,)
        Coefficients of the regression model (mean of distribution)

    intercept_ : float
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    alpha_ : float
       Estimated precision of the noise.

    lambda_ : float
       Estimated precision of the weights.

    sigma_ : array-like of shape (n_features, n_features)
        Estimated variance-covariance matrix of the weights

    scores_ : array-like of shape (n_iter_+1,)
        If computed_score is True, value of the log marginal likelihood (to be
        maximized) at each iteration of the optimization. The array starts
        with the value of the log marginal likelihood obtained for the initial
        values of alpha and lambda and ends with the value obtained for the
        estimated alpha and lambda.

    n_iter_ : int
        The actual number of iterations to reach the stopping criterion.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.BayesianRidge()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    BayesianRidge()
    >>> clf.predict([[1, 1]])
    array([1.])

    Notes
    -----
    There exist several strategies to perform Bayesian ridge regression. This
    implementation is based on the algorithm described in Appendix A of
    (Tipping, 2001) where updates of the regularization parameters are done as
    suggested in (MacKay, 1992). Note that according to A New
    View of Automatic Relevance Determination (Wipf and Nagarajan, 2008) these
    update rules do not guarantee that the marginal likelihood is increasing
    between two consecutive iterations of the optimization.

    References
    ----------
    D. J. C. MacKay, Bayesian Interpolation, Computation and Neural Systems,
    Vol. 4, No. 3, 1992.

    M. E. Tipping, Sparse Bayesian Learning and the Relevance Vector Machine,
    Journal of Machine Learning Research, Vol. 1, 2001.
    """
    @_deprecate_positional_args
    def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                 lambda_1=1.e-6, lambda_2=1.e-6, alpha_init=None,
                 lambda_init=None, compute_score=False, fit_intercept=True,
                 normalize=False, copy_X=True, verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.alpha_init = alpha_init
        self.lambda_init = lambda_init
        self.compute_score = compute_score
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y, sample_weight=None):
        """Fit the model

        Parameters
        ----------
        X : ndarray of shape (n_samples, n_features)
            Training data
        y : ndarray of shape (n_samples,)
            Target values. Will be cast to X's dtype if necessary

        sample_weight : ndarray of shape (n_samples,), default=None
            Individual weights for each sample

            .. versionadded:: 0.20
               parameter *sample_weight* support to BayesianRidge.

        Returns
        -------
        self : returns an instance of self.
        """

        if self.n_iter < 1:
            raise ValueError('n_iter should be greater than or equal to 1.'
                             ' Got {!r}.'.format(self.n_iter))

        X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True)

        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X,
                                                 dtype=X.dtype)

        X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X,
            sample_weight=sample_weight)

        if sample_weight is not None:
            # Sample weight can be implemented via a simple rescaling.
            X, y = _rescale_data(X, y, sample_weight)

        self.X_offset_ = X_offset_
        self.X_scale_ = X_scale_
        n_samples, n_features = X.shape

        # Initialization of the values of the parameters
        eps = np.finfo(np.float64).eps
        # Add `eps` in the denominator to omit division by zero if `np.var(y)`
        # is zero
        alpha_ = self.alpha_init
        lambda_ = self.lambda_init
        if alpha_ is None:
            alpha_ = 1. / (np.var(y) + eps)
        if lambda_ is None:
            lambda_ = 1.

        verbose = self.verbose
        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2

        self.scores_ = list()
        coef_old_ = None

        XT_y = np.dot(X.T, y)
        U, S, Vh = linalg.svd(X, full_matrices=False)
        eigen_vals_ = S ** 2

        # Convergence loop of the bayesian ridge regression
        for iter_ in range(self.n_iter):

            # update posterior mean coef_ based on alpha_ and lambda_ and
            # compute corresponding rmse
            coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
                                              XT_y, U, Vh, eigen_vals_,
                                              alpha_, lambda_)
            if self.compute_score:
                # compute the log marginal likelihood
                s = self._log_marginal_likelihood(n_samples, n_features,
                                                  eigen_vals_,
                                                  alpha_, lambda_,
                                                  coef_, rmse_)
                self.scores_.append(s)

            # Update alpha and lambda according to (MacKay, 1992)
            gamma_ = np.sum((alpha_ * eigen_vals_) /
                            (lambda_ + alpha_ * eigen_vals_))
            lambda_ = ((gamma_ + 2 * lambda_1) /
                       (np.sum(coef_ ** 2) + 2 * lambda_2))
            alpha_ = ((n_samples - gamma_ + 2 * alpha_1) /
                      (rmse_ + 2 * alpha_2))

            # Check for convergence
            if iter_ != 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print("Convergence after ", str(iter_), " iterations")
                break
            coef_old_ = np.copy(coef_)

        self.n_iter_ = iter_ + 1

        # return regularization parameters and corresponding posterior mean,
        # log marginal likelihood and posterior covariance
        self.alpha_ = alpha_
        self.lambda_ = lambda_
        self.coef_, rmse_ = self._update_coef_(X, y, n_samples, n_features,
                                               XT_y, U, Vh, eigen_vals_,
                                               alpha_, lambda_)
        if self.compute_score:
            # compute the log marginal likelihood
            s = self._log_marginal_likelihood(n_samples, n_features,
                                              eigen_vals_,
                                              alpha_, lambda_,
                                              coef_, rmse_)
            self.scores_.append(s)
            self.scores_ = np.array(self.scores_)

        # posterior covariance is given by 1/alpha_ * scaled_sigma_
        scaled_sigma_ = np.dot(Vh.T,
                               Vh / (eigen_vals_ +
                                     lambda_ / alpha_)[:, np.newaxis])
        self.sigma_ = (1. / alpha_) * scaled_sigma_

        self._set_intercept(X_offset_, y_offset_, X_scale_)

        return self

    def predict(self, X, return_std=False):
        """Predict using the linear model.

        In addition to the mean of the predictive distribution, also its
        standard deviation can be returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples.

        return_std : bool, default=False
            Whether to return the standard deviation of posterior prediction.

        Returns
        -------
        y_mean : array-like of shape (n_samples,)
            Mean of predictive distribution of query points.

        y_std : array-like of shape (n_samples,)
            Standard deviation of predictive distribution of query points.
        """
        y_mean = self._decision_function(X)
        if return_std is False:
            return y_mean
        else:
            if self.normalize:
                X = (X - self.X_offset_) / self.X_scale_
            sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
            y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
            return y_mean, y_std

    def _update_coef_(self, X, y, n_samples, n_features, XT_y, U, Vh,
                      eigen_vals_, alpha_, lambda_):
        """Update posterior mean and compute corresponding rmse.

        Posterior mean is given by coef_ = scaled_sigma_ * X.T * y where
        scaled_sigma_ = (lambda_/alpha_ * np.eye(n_features)
                         + np.dot(X.T, X))^-1
        """

        if n_samples > n_features:
            coef_ = np.dot(Vh.T,
                           Vh / (eigen_vals_ +
                                 lambda_ / alpha_)[:, np.newaxis])
            coef_ = np.dot(coef_, XT_y)
        else:
            coef_ = np.dot(X.T, np.dot(
                U / (eigen_vals_ + lambda_ / alpha_)[None, :], U.T))
            coef_ = np.dot(coef_, y)

        rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)

        return coef_, rmse_

    def _log_marginal_likelihood(self, n_samples, n_features, eigen_vals,
                                 alpha_, lambda_, coef, rmse):
        """Log marginal likelihood."""
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2
        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2

        # compute the log of the determinant of the posterior covariance.
        # posterior covariance is given by
        # sigma = (lambda_ * np.eye(n_features) + alpha_ * np.dot(X.T, X))^-1
        if n_samples > n_features:
            logdet_sigma = - np.sum(np.log(lambda_ + alpha_ * eigen_vals))
        else:
            logdet_sigma = np.full(n_features, lambda_,
                                   dtype=np.array(lambda_).dtype)
            logdet_sigma[:n_samples] += alpha_ * eigen_vals
            logdet_sigma = - np.sum(np.log(logdet_sigma))

        score = lambda_1 * log(lambda_) - lambda_2 * lambda_
        score += alpha_1 * log(alpha_) - alpha_2 * alpha_
        score += 0.5 * (n_features * log(lambda_) +
                        n_samples * log(alpha_) -
                        alpha_ * rmse -
                        lambda_ * np.sum(coef ** 2) +
                        logdet_sigma -
                        n_samples * log(2 * np.pi))

        return score


###############################################################################
# ARD (Automatic Relevance Determination) regression


class ARDRegression(RegressorMixin, LinearModel):
    """Bayesian ARD regression.

    Fit the weights of a regression model, using an ARD prior. The weights of
    the regression model are assumed to be in Gaussian distributions.
    Also estimate the parameters lambda (precisions of the distributions of the
    weights) and alpha (precision of the distribution of the noise).
    The estimation is done by an iterative procedures (Evidence Maximization)

    Read more in the :ref:`User Guide <bayesian_regression>`.

    Parameters
    ----------
    n_iter : int, default=300
        Maximum number of iterations.

    tol : float, default=1e-3
        Stop the algorithm if w has converged.

    alpha_1 : float, default=1e-6
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the alpha parameter.

    alpha_2 : float, default=1e-6
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the alpha parameter.

    lambda_1 : float, default=1e-6
        Hyper-parameter : shape parameter for the Gamma distribution prior
        over the lambda parameter.

    lambda_2 : float, default=1e-6
        Hyper-parameter : inverse scale parameter (rate parameter) for the
        Gamma distribution prior over the lambda parameter.

    compute_score : bool, default=False
        If True, compute the objective function at each step of the model.

    threshold_lambda : float, default=10 000
        threshold for removing (pruning) weights with high precision from
        the computation.

    fit_intercept : bool, default=True
        whether to calculate the intercept for this model. If set
        to false, no intercept will be used in calculations
        (i.e. data is expected to be centered).

    normalize : bool, default=False
        This parameter is ignored when ``fit_intercept`` is set to False.
        If True, the regressors X will be normalized before regression by
        subtracting the mean and dividing by the l2-norm.
        If you wish to standardize, please use
        :class:`sklearn.preprocessing.StandardScaler` before calling ``fit``
        on an estimator with ``normalize=False``.

    copy_X : bool, default=True
        If True, X will be copied; else, it may be overwritten.

    verbose : bool, default=False
        Verbose mode when fitting the model.

    Attributes
    ----------
    coef_ : array-like of shape (n_features,)
        Coefficients of the regression model (mean of distribution)

    alpha_ : float
       estimated precision of the noise.

    lambda_ : array-like of shape (n_features,)
       estimated precisions of the weights.

    sigma_ : array-like of shape (n_features, n_features)
        estimated variance-covariance matrix of the weights

    scores_ : float
        if computed, value of the objective function (to be maximized)

    intercept_ : float
        Independent term in decision function. Set to 0.0 if
        ``fit_intercept = False``.

    Examples
    --------
    >>> from sklearn import linear_model
    >>> clf = linear_model.ARDRegression()
    >>> clf.fit([[0,0], [1, 1], [2, 2]], [0, 1, 2])
    ARDRegression()
    >>> clf.predict([[1, 1]])
    array([1.])

    Notes
    -----
    For an example, see :ref:`examples/linear_model/plot_ard.py
    <sphx_glr_auto_examples_linear_model_plot_ard.py>`.

    References
    ----------
    D. J. C. MacKay, Bayesian nonlinear modeling for the prediction
    competition, ASHRAE Transactions, 1994.

    R. Salakhutdinov, Lecture notes on Statistical Machine Learning,
    http://www.utstat.toronto.edu/~rsalakhu/sta4273/notes/Lecture2.pdf#page=15
    Their beta is our ``self.alpha_``
    Their alpha is our ``self.lambda_``
    ARD is a little different than the slide: only dimensions/features for
    which ``self.lambda_ < self.threshold_lambda`` are kept and the rest are
    discarded.
    """
    @_deprecate_positional_args
    def __init__(self, *, n_iter=300, tol=1.e-3, alpha_1=1.e-6, alpha_2=1.e-6,
                 lambda_1=1.e-6, lambda_2=1.e-6, compute_score=False,
                 threshold_lambda=1.e+4, fit_intercept=True, normalize=False,
                 copy_X=True, verbose=False):
        self.n_iter = n_iter
        self.tol = tol
        self.fit_intercept = fit_intercept
        self.normalize = normalize
        self.alpha_1 = alpha_1
        self.alpha_2 = alpha_2
        self.lambda_1 = lambda_1
        self.lambda_2 = lambda_2
        self.compute_score = compute_score
        self.threshold_lambda = threshold_lambda
        self.copy_X = copy_X
        self.verbose = verbose

    def fit(self, X, y):
        """Fit the ARDRegression model according to the given training data
        and parameters.

        Iterative procedure to maximize the evidence

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training vector, where n_samples in the number of samples and
            n_features is the number of features.
        y : array-like of shape (n_samples,)
            Target values (integers). Will be cast to X's dtype if necessary

        Returns
        -------
        self : returns an instance of self.
        """
        X, y = self._validate_data(X, y, dtype=np.float64, y_numeric=True,
                                   ensure_min_samples=2)

        n_samples, n_features = X.shape
        coef_ = np.zeros(n_features)

        X, y, X_offset_, y_offset_, X_scale_ = self._preprocess_data(
            X, y, self.fit_intercept, self.normalize, self.copy_X)

        # Launch the convergence loop
        keep_lambda = np.ones(n_features, dtype=bool)

        lambda_1 = self.lambda_1
        lambda_2 = self.lambda_2
        alpha_1 = self.alpha_1
        alpha_2 = self.alpha_2
        verbose = self.verbose

        # Initialization of the values of the parameters
        eps = np.finfo(np.float64).eps
        # Add `eps` in the denominator to omit division by zero if `np.var(y)`
        # is zero
        alpha_ = 1. / (np.var(y) + eps)
        lambda_ = np.ones(n_features)

        self.scores_ = list()
        coef_old_ = None

        def update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_):
            coef_[keep_lambda] = alpha_ * np.dot(
                sigma_, np.dot(X[:, keep_lambda].T, y))
            return coef_

        update_sigma = (self._update_sigma if n_samples >= n_features
                        else self._update_sigma_woodbury)
        # Iterative procedure of ARDRegression
        for iter_ in range(self.n_iter):
            sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
            coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)

            # Update alpha and lambda
            rmse_ = np.sum((y - np.dot(X, coef_)) ** 2)
            gamma_ = 1. - lambda_[keep_lambda] * np.diag(sigma_)
            lambda_[keep_lambda] = ((gamma_ + 2. * lambda_1) /
                                    ((coef_[keep_lambda]) ** 2 +
                                     2. * lambda_2))
            alpha_ = ((n_samples - gamma_.sum() + 2. * alpha_1) /
                      (rmse_ + 2. * alpha_2))

            # Prune the weights with a precision over a threshold
            keep_lambda = lambda_ < self.threshold_lambda
            coef_[~keep_lambda] = 0

            # Compute the objective function
            if self.compute_score:
                s = (lambda_1 * np.log(lambda_) - lambda_2 * lambda_).sum()
                s += alpha_1 * log(alpha_) - alpha_2 * alpha_
                s += 0.5 * (fast_logdet(sigma_) + n_samples * log(alpha_) +
                            np.sum(np.log(lambda_)))
                s -= 0.5 * (alpha_ * rmse_ + (lambda_ * coef_ ** 2).sum())
                self.scores_.append(s)

            # Check for convergence
            if iter_ > 0 and np.sum(np.abs(coef_old_ - coef_)) < self.tol:
                if verbose:
                    print("Converged after %s iterations" % iter_)
                break
            coef_old_ = np.copy(coef_)

            if not keep_lambda.any():
                break

        if keep_lambda.any():
            # update sigma and mu using updated params from the last iteration
            sigma_ = update_sigma(X, alpha_, lambda_, keep_lambda)
            coef_ = update_coeff(X, y, coef_, alpha_, keep_lambda, sigma_)
        else:
            sigma_ = np.array([]).reshape(0, 0)

        self.coef_ = coef_
        self.alpha_ = alpha_
        self.sigma_ = sigma_
        self.lambda_ = lambda_
        self._set_intercept(X_offset_, y_offset_, X_scale_)
        return self

    def _update_sigma_woodbury(self, X, alpha_, lambda_, keep_lambda):
        # See slides as referenced in the docstring note
        # this function is used when n_samples < n_features and will invert
        # a matrix of shape (n_samples, n_samples) making use of the
        # woodbury formula:
        # https://en.wikipedia.org/wiki/Woodbury_matrix_identity
        n_samples = X.shape[0]
        X_keep = X[:, keep_lambda]
        inv_lambda = 1 / lambda_[keep_lambda].reshape(1, -1)
        sigma_ = pinvh(
            np.eye(n_samples) / alpha_ + np.dot(X_keep * inv_lambda, X_keep.T)
        )
        sigma_ = np.dot(sigma_, X_keep * inv_lambda)
        sigma_ = - np.dot(inv_lambda.reshape(-1, 1) * X_keep.T, sigma_)
        sigma_[np.diag_indices(sigma_.shape[1])] += 1. / lambda_[keep_lambda]
        return sigma_

    def _update_sigma(self, X, alpha_, lambda_, keep_lambda):
        # See slides as referenced in the docstring note
        # this function is used when n_samples >= n_features and will
        # invert a matrix of shape (n_features, n_features)
        X_keep = X[:, keep_lambda]
        gram = np.dot(X_keep.T, X_keep)
        eye = np.eye(gram.shape[0])
        sigma_inv = lambda_[keep_lambda] * eye + alpha_ * gram
        sigma_ = pinvh(sigma_inv)
        return sigma_

    def predict(self, X, return_std=False):
        """Predict using the linear model.

        In addition to the mean of the predictive distribution, also its
        standard deviation can be returned.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Samples.

        return_std : bool, default=False
            Whether to return the standard deviation of posterior prediction.

        Returns
        -------
        y_mean : array-like of shape (n_samples,)
            Mean of predictive distribution of query points.

        y_std : array-like of shape (n_samples,)
            Standard deviation of predictive distribution of query points.
        """
        y_mean = self._decision_function(X)
        if return_std is False:
            return y_mean
        else:
            if self.normalize:
                X = (X - self.X_offset_) / self.X_scale_
            X = X[:, self.lambda_ < self.threshold_lambda]
            sigmas_squared_data = (np.dot(X, self.sigma_) * X).sum(axis=1)
            y_std = np.sqrt(sigmas_squared_data + (1. / self.alpha_))
            return y_mean, y_std