_iterative.py 29.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741

from time import time
from collections import namedtuple
import warnings

from scipy import stats
import numpy as np

from ..base import clone
from ..exceptions import ConvergenceWarning
from ..preprocessing import normalize
from ..utils import (check_array, check_random_state, _safe_indexing,
                     is_scalar_nan)
from ..utils.validation import FLOAT_DTYPES, check_is_fitted
from ..utils._mask import _get_mask

from ._base import _BaseImputer
from ._base import SimpleImputer
from ._base import _check_inputs_dtype


_ImputerTriplet = namedtuple('_ImputerTriplet', ['feat_idx',
                                                 'neighbor_feat_idx',
                                                 'estimator'])


class IterativeImputer(_BaseImputer):
    """Multivariate imputer that estimates each feature from all the others.

    A strategy for imputing missing values by modeling each feature with
    missing values as a function of other features in a round-robin fashion.

    Read more in the :ref:`User Guide <iterative_imputer>`.

    .. versionadded:: 0.21

    .. note::

      This estimator is still **experimental** for now: the predictions
      and the API might change without any deprecation cycle. To use it,
      you need to explicitly import ``enable_iterative_imputer``::

        >>> # explicitly require this experimental feature
        >>> from sklearn.experimental import enable_iterative_imputer  # noqa
        >>> # now you can import normally from sklearn.impute
        >>> from sklearn.impute import IterativeImputer

    Parameters
    ----------
    estimator : estimator object, default=BayesianRidge()
        The estimator to use at each step of the round-robin imputation.
        If ``sample_posterior`` is True, the estimator must support
        ``return_std`` in its ``predict`` method.

    missing_values : int, np.nan, default=np.nan
        The placeholder for the missing values. All occurrences of
        `missing_values` will be imputed. For pandas' dataframes with
        nullable integer dtypes with missing values, `missing_values`
        should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.

    sample_posterior : boolean, default=False
        Whether to sample from the (Gaussian) predictive posterior of the
        fitted estimator for each imputation. Estimator must support
        ``return_std`` in its ``predict`` method if set to ``True``. Set to
        ``True`` if using ``IterativeImputer`` for multiple imputations.

    max_iter : int, default=10
        Maximum number of imputation rounds to perform before returning the
        imputations computed during the final round. A round is a single
        imputation of each feature with missing values. The stopping criterion
        is met once `abs(max(X_t - X_{t-1}))/abs(max(X[known_vals]))` < tol,
        where `X_t` is `X` at iteration `t. Note that early stopping is only
        applied if ``sample_posterior=False``.

    tol : float, default=1e-3
        Tolerance of the stopping condition.

    n_nearest_features : int, default=None
        Number of other features to use to estimate the missing values of
        each feature column. Nearness between features is measured using
        the absolute correlation coefficient between each feature pair (after
        initial imputation). To ensure coverage of features throughout the
        imputation process, the neighbor features are not necessarily nearest,
        but are drawn with probability proportional to correlation for each
        imputed target feature. Can provide significant speed-up when the
        number of features is huge. If ``None``, all features will be used.

    initial_strategy : str, default='mean'
        Which strategy to use to initialize the missing values. Same as the
        ``strategy`` parameter in :class:`sklearn.impute.SimpleImputer`
        Valid values: {"mean", "median", "most_frequent", or "constant"}.

    imputation_order : str, default='ascending'
        The order in which the features will be imputed. Possible values:

        "ascending"
            From features with fewest missing values to most.
        "descending"
            From features with most missing values to fewest.
        "roman"
            Left to right.
        "arabic"
            Right to left.
        "random"
            A random order for each round.

    skip_complete : boolean, default=False
        If ``True`` then features with missing values during ``transform``
        which did not have any missing values during ``fit`` will be imputed
        with the initial imputation method only. Set to ``True`` if you have
        many features with no missing values at both ``fit`` and ``transform``
        time to save compute.

    min_value : float or array-like of shape (n_features,), default=None.
        Minimum possible imputed value. Broadcast to shape (n_features,) if
        scalar. If array-like, expects shape (n_features,), one min value for
        each feature. `None` (default) is converted to -np.inf.

    max_value : float or array-like of shape (n_features,), default=None.
        Maximum possible imputed value. Broadcast to shape (n_features,) if
        scalar. If array-like, expects shape (n_features,), one max value for
        each feature. `None` (default) is converted to np.inf.

    verbose : int, default=0
        Verbosity flag, controls the debug messages that are issued
        as functions are evaluated. The higher, the more verbose. Can be 0, 1,
        or 2.

    random_state : int, RandomState instance or None, default=None
        The seed of the pseudo random number generator to use. Randomizes
        selection of estimator features if n_nearest_features is not None, the
        ``imputation_order`` if ``random``, and the sampling from posterior if
        ``sample_posterior`` is True. Use an integer for determinism.
        See :term:`the Glossary <random_state>`.

    add_indicator : boolean, default=False
        If True, a :class:`MissingIndicator` transform will stack onto output
        of the imputer's transform. This allows a predictive estimator
        to account for missingness despite imputation. If a feature has no
        missing values at fit/train time, the feature won't appear on
        the missing indicator even if there are missing values at
        transform/test time.

    Attributes
    ----------
    initial_imputer_ : object of type :class:`sklearn.impute.SimpleImputer`
        Imputer used to initialize the missing values.

    imputation_sequence_ : list of tuples
        Each tuple has ``(feat_idx, neighbor_feat_idx, estimator)``, where
        ``feat_idx`` is the current feature to be imputed,
        ``neighbor_feat_idx`` is the array of other features used to impute the
        current feature, and ``estimator`` is the trained estimator used for
        the imputation. Length is ``self.n_features_with_missing_ *
        self.n_iter_``.

    n_iter_ : int
        Number of iteration rounds that occurred. Will be less than
        ``self.max_iter`` if early stopping criterion was reached.

    n_features_with_missing_ : int
        Number of features with missing values.

    indicator_ : :class:`sklearn.impute.MissingIndicator`
        Indicator used to add binary indicators for missing values.
        ``None`` if add_indicator is False.

    random_state_ : RandomState instance
        RandomState instance that is generated either from a seed, the random
        number generator or by `np.random`.

    See also
    --------
    SimpleImputer : Univariate imputation of missing values.

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.experimental import enable_iterative_imputer
    >>> from sklearn.impute import IterativeImputer
    >>> imp_mean = IterativeImputer(random_state=0)
    >>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
    IterativeImputer(random_state=0)
    >>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
    >>> imp_mean.transform(X)
    array([[ 6.9584...,  2.       ,  3.        ],
           [ 4.       ,  2.6000...,  6.        ],
           [10.       ,  4.9999...,  9.        ]])

    Notes
    -----
    To support imputation in inductive mode we store each feature's estimator
    during the ``fit`` phase, and predict without refitting (in order) during
    the ``transform`` phase.

    Features which contain all missing values at ``fit`` are discarded upon
    ``transform``.

    References
    ----------
    .. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice:
        Multivariate Imputation by Chained Equations in R". Journal of
        Statistical Software 45: 1-67.
        <https://www.jstatsoft.org/article/view/v045i03>`_

    .. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in
        Multivariate Data Suitable for use with an Electronic Computer".
        Journal of the Royal Statistical Society 22(2): 302-306.
        <https://www.jstor.org/stable/2984099>`_
    """
    def __init__(self,
                 estimator=None, *,
                 missing_values=np.nan,
                 sample_posterior=False,
                 max_iter=10,
                 tol=1e-3,
                 n_nearest_features=None,
                 initial_strategy="mean",
                 imputation_order='ascending',
                 skip_complete=False,
                 min_value=None,
                 max_value=None,
                 verbose=0,
                 random_state=None,
                 add_indicator=False):
        super().__init__(
            missing_values=missing_values,
            add_indicator=add_indicator
        )

        self.estimator = estimator
        self.sample_posterior = sample_posterior
        self.max_iter = max_iter
        self.tol = tol
        self.n_nearest_features = n_nearest_features
        self.initial_strategy = initial_strategy
        self.imputation_order = imputation_order
        self.skip_complete = skip_complete
        self.min_value = min_value
        self.max_value = max_value
        self.verbose = verbose
        self.random_state = random_state

    def _impute_one_feature(self,
                            X_filled,
                            mask_missing_values,
                            feat_idx,
                            neighbor_feat_idx,
                            estimator=None,
                            fit_mode=True):
        """Impute a single feature from the others provided.

        This function predicts the missing values of one of the features using
        the current estimates of all the other features. The ``estimator`` must
        support ``return_std=True`` in its ``predict`` method for this function
        to work.

        Parameters
        ----------
        X_filled : ndarray
            Input data with the most recent imputations.

        mask_missing_values : ndarray
            Input data's missing indicator matrix.

        feat_idx : int
            Index of the feature currently being imputed.

        neighbor_feat_idx : ndarray
            Indices of the features to be used in imputing ``feat_idx``.

        estimator : object
            The estimator to use at this step of the round-robin imputation.
            If ``sample_posterior`` is True, the estimator must support
            ``return_std`` in its ``predict`` method.
            If None, it will be cloned from self._estimator.

        fit_mode : boolean, default=True
            Whether to fit and predict with the estimator or just predict.

        Returns
        -------
        X_filled : ndarray
            Input data with ``X_filled[missing_row_mask, feat_idx]`` updated.

        estimator : estimator with sklearn API
            The fitted estimator used to impute
            ``X_filled[missing_row_mask, feat_idx]``.
        """
        if estimator is None and fit_mode is False:
            raise ValueError("If fit_mode is False, then an already-fitted "
                             "estimator should be passed in.")

        if estimator is None:
            estimator = clone(self._estimator)

        missing_row_mask = mask_missing_values[:, feat_idx]
        if fit_mode:
            X_train = _safe_indexing(X_filled[:, neighbor_feat_idx],
                                     ~missing_row_mask)
            y_train = _safe_indexing(X_filled[:, feat_idx],
                                     ~missing_row_mask)
            estimator.fit(X_train, y_train)

        # if no missing values, don't predict
        if np.sum(missing_row_mask) == 0:
            return X_filled, estimator

        # get posterior samples if there is at least one missing value
        X_test = _safe_indexing(X_filled[:, neighbor_feat_idx],
                                missing_row_mask)
        if self.sample_posterior:
            mus, sigmas = estimator.predict(X_test, return_std=True)
            imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype)
            # two types of problems: (1) non-positive sigmas
            # (2) mus outside legal range of min_value and max_value
            # (results in inf sample)
            positive_sigmas = sigmas > 0
            imputed_values[~positive_sigmas] = mus[~positive_sigmas]
            mus_too_low = mus < self._min_value[feat_idx]
            imputed_values[mus_too_low] = self._min_value[feat_idx]
            mus_too_high = mus > self._max_value[feat_idx]
            imputed_values[mus_too_high] = self._max_value[feat_idx]
            # the rest can be sampled without statistical issues
            inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high
            mus = mus[inrange_mask]
            sigmas = sigmas[inrange_mask]
            a = (self._min_value[feat_idx] - mus) / sigmas
            b = (self._max_value[feat_idx] - mus) / sigmas

            truncated_normal = stats.truncnorm(a=a, b=b,
                                               loc=mus, scale=sigmas)
            imputed_values[inrange_mask] = truncated_normal.rvs(
                random_state=self.random_state_)
        else:
            imputed_values = estimator.predict(X_test)
            imputed_values = np.clip(imputed_values,
                                     self._min_value[feat_idx],
                                     self._max_value[feat_idx])

        # update the feature
        X_filled[missing_row_mask, feat_idx] = imputed_values
        return X_filled, estimator

    def _get_neighbor_feat_idx(self,
                               n_features,
                               feat_idx,
                               abs_corr_mat):
        """Get a list of other features to predict ``feat_idx``.

        If self.n_nearest_features is less than or equal to the total
        number of features, then use a probability proportional to the absolute
        correlation between ``feat_idx`` and each other feature to randomly
        choose a subsample of the other features (without replacement).

        Parameters
        ----------
        n_features : int
            Number of features in ``X``.

        feat_idx : int
            Index of the feature currently being imputed.

        abs_corr_mat : ndarray, shape (n_features, n_features)
            Absolute correlation matrix of ``X``. The diagonal has been zeroed
            out and each feature has been normalized to sum to 1. Can be None.

        Returns
        -------
        neighbor_feat_idx : array-like
            The features to use to impute ``feat_idx``.
        """
        if (self.n_nearest_features is not None and
                self.n_nearest_features < n_features):
            p = abs_corr_mat[:, feat_idx]
            neighbor_feat_idx = self.random_state_.choice(
                np.arange(n_features), self.n_nearest_features, replace=False,
                p=p)
        else:
            inds_left = np.arange(feat_idx)
            inds_right = np.arange(feat_idx + 1, n_features)
            neighbor_feat_idx = np.concatenate((inds_left, inds_right))
        return neighbor_feat_idx

    def _get_ordered_idx(self, mask_missing_values):
        """Decide in what order we will update the features.

        As a homage to the MICE R package, we will have 4 main options of
        how to order the updates, and use a random order if anything else
        is specified.

        Also, this function skips features which have no missing values.

        Parameters
        ----------
        mask_missing_values : array-like, shape (n_samples, n_features)
            Input data's missing indicator matrix, where "n_samples" is the
            number of samples and "n_features" is the number of features.

        Returns
        -------
        ordered_idx : ndarray, shape (n_features,)
            The order in which to impute the features.
        """
        frac_of_missing_values = mask_missing_values.mean(axis=0)
        if self.skip_complete:
            missing_values_idx = np.flatnonzero(frac_of_missing_values)
        else:
            missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0])
        if self.imputation_order == 'roman':
            ordered_idx = missing_values_idx
        elif self.imputation_order == 'arabic':
            ordered_idx = missing_values_idx[::-1]
        elif self.imputation_order == 'ascending':
            n = len(frac_of_missing_values) - len(missing_values_idx)
            ordered_idx = np.argsort(frac_of_missing_values,
                                     kind='mergesort')[n:]
        elif self.imputation_order == 'descending':
            n = len(frac_of_missing_values) - len(missing_values_idx)
            ordered_idx = np.argsort(frac_of_missing_values,
                                     kind='mergesort')[n:][::-1]
        elif self.imputation_order == 'random':
            ordered_idx = missing_values_idx
            self.random_state_.shuffle(ordered_idx)
        else:
            raise ValueError("Got an invalid imputation order: '{0}'. It must "
                             "be one of the following: 'roman', 'arabic', "
                             "'ascending', 'descending', or "
                             "'random'.".format(self.imputation_order))
        return ordered_idx

    def _get_abs_corr_mat(self, X_filled, tolerance=1e-6):
        """Get absolute correlation matrix between features.

        Parameters
        ----------
        X_filled : ndarray, shape (n_samples, n_features)
            Input data with the most recent imputations.

        tolerance : float, default=1e-6
            ``abs_corr_mat`` can have nans, which will be replaced
            with ``tolerance``.

        Returns
        -------
        abs_corr_mat : ndarray, shape (n_features, n_features)
            Absolute correlation matrix of ``X`` at the beginning of the
            current round. The diagonal has been zeroed out and each feature's
            absolute correlations with all others have been normalized to sum
            to 1.
        """
        n_features = X_filled.shape[1]
        if (self.n_nearest_features is None or
                self.n_nearest_features >= n_features):
            return None
        with np.errstate(invalid='ignore'):
            # if a feature in the neighboorhood has only a single value
            # (e.g., categorical feature), the std. dev. will be null and
            # np.corrcoef will raise a warning due to a division by zero
            abs_corr_mat = np.abs(np.corrcoef(X_filled.T))
        # np.corrcoef is not defined for features with zero std
        abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance
        # ensures exploration, i.e. at least some probability of sampling
        np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat)
        # features are not their own neighbors
        np.fill_diagonal(abs_corr_mat, 0)
        # needs to sum to 1 for np.random.choice sampling
        abs_corr_mat = normalize(abs_corr_mat, norm='l1', axis=0, copy=False)
        return abs_corr_mat

    def _initial_imputation(self, X):
        """Perform initial imputation for input X.

        Parameters
        ----------
        X : ndarray, shape (n_samples, n_features)
            Input data, where "n_samples" is the number of samples and
            "n_features" is the number of features.

        Returns
        -------
        Xt : ndarray, shape (n_samples, n_features)
            Input data, where "n_samples" is the number of samples and
            "n_features" is the number of features.

        X_filled : ndarray, shape (n_samples, n_features)
            Input data with the most recent imputations.

        mask_missing_values : ndarray, shape (n_samples, n_features)
            Input data's missing indicator matrix, where "n_samples" is the
            number of samples and "n_features" is the number of features.
        """
        if is_scalar_nan(self.missing_values):
            force_all_finite = "allow-nan"
        else:
            force_all_finite = True

        X = self._validate_data(X, dtype=FLOAT_DTYPES, order="F",
                                force_all_finite=force_all_finite)
        _check_inputs_dtype(X, self.missing_values)

        mask_missing_values = _get_mask(X, self.missing_values)
        if self.initial_imputer_ is None:
            self.initial_imputer_ = SimpleImputer(
                missing_values=self.missing_values,
                strategy=self.initial_strategy
            )
            X_filled = self.initial_imputer_.fit_transform(X)
        else:
            X_filled = self.initial_imputer_.transform(X)

        valid_mask = np.flatnonzero(np.logical_not(
            np.isnan(self.initial_imputer_.statistics_)))
        Xt = X[:, valid_mask]
        mask_missing_values = mask_missing_values[:, valid_mask]

        return Xt, X_filled, mask_missing_values

    @staticmethod
    def _validate_limit(limit, limit_type, n_features):
        """Validate the limits (min/max) of the feature values
        Converts scalar min/max limits to vectors of shape (n_features,)

        Parameters
        ----------
        limit: scalar or array-like
            The user-specified limit (i.e, min_value or max_value)
        limit_type: string, "max" or "min"
            n_features: Number of features in the dataset

        Returns
        -------
        limit: ndarray, shape(n_features,)
            Array of limits, one for each feature
        """
        limit_bound = np.inf if limit_type == "max" else -np.inf
        limit = limit_bound if limit is None else limit
        if np.isscalar(limit):
            limit = np.full(n_features, limit)
        limit = check_array(
            limit, force_all_finite=False, copy=False, ensure_2d=False
        )
        if not limit.shape[0] == n_features:
            raise ValueError(
                f"'{limit_type}_value' should be of "
                f"shape ({n_features},) when an array-like "
                f"is provided. Got {limit.shape}, instead."
            )
        return limit

    def fit_transform(self, X, y=None):
        """Fits the imputer on X and return the transformed X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data, where "n_samples" is the number of samples and
            "n_features" is the number of features.

        y : ignored.

        Returns
        -------
        Xt : array-like, shape (n_samples, n_features)
            The imputed input data.
        """
        self.random_state_ = getattr(self, "random_state_",
                                     check_random_state(self.random_state))

        if self.max_iter < 0:
            raise ValueError(
                "'max_iter' should be a positive integer. Got {} instead."
                .format(self.max_iter))

        if self.tol < 0:
            raise ValueError(
                "'tol' should be a non-negative float. Got {} instead."
                .format(self.tol)
            )

        if self.estimator is None:
            from ..linear_model import BayesianRidge
            self._estimator = BayesianRidge()
        else:
            self._estimator = clone(self.estimator)

        if hasattr(self._estimator, 'random_state'):
            self._estimator.random_state = self.random_state_

        self.imputation_sequence_ = []

        self.initial_imputer_ = None
        super()._fit_indicator(X)
        X_indicator = super()._transform_indicator(X)
        X, Xt, mask_missing_values = self._initial_imputation(X)
        if self.max_iter == 0 or np.all(mask_missing_values):
            self.n_iter_ = 0
            return super()._concatenate_indicator(Xt, X_indicator)

        # Edge case: a single feature. We return the initial ...
        if Xt.shape[1] == 1:
            self.n_iter_ = 0
            return super()._concatenate_indicator(Xt, X_indicator)

        self._min_value = IterativeImputer._validate_limit(
            self.min_value, "min", X.shape[1])
        self._max_value = IterativeImputer._validate_limit(
            self.max_value, "max", X.shape[1])

        if not np.all(np.greater(self._max_value, self._min_value)):
            raise ValueError(
                "One (or more) features have min_value >= max_value.")

        # order in which to impute
        # note this is probably too slow for large feature data (d > 100000)
        # and a better way would be good.
        # see: https://goo.gl/KyCNwj and subsequent comments
        ordered_idx = self._get_ordered_idx(mask_missing_values)
        self.n_features_with_missing_ = len(ordered_idx)

        abs_corr_mat = self._get_abs_corr_mat(Xt)

        n_samples, n_features = Xt.shape
        if self.verbose > 0:
            print("[IterativeImputer] Completing matrix with shape %s"
                  % (X.shape,))
        start_t = time()
        if not self.sample_posterior:
            Xt_previous = Xt.copy()
            normalized_tol = self.tol * np.max(
                np.abs(X[~mask_missing_values])
            )
        for self.n_iter_ in range(1, self.max_iter + 1):
            if self.imputation_order == 'random':
                ordered_idx = self._get_ordered_idx(mask_missing_values)

            for feat_idx in ordered_idx:
                neighbor_feat_idx = self._get_neighbor_feat_idx(n_features,
                                                                feat_idx,
                                                                abs_corr_mat)
                Xt, estimator = self._impute_one_feature(
                    Xt, mask_missing_values, feat_idx, neighbor_feat_idx,
                    estimator=None, fit_mode=True)
                estimator_triplet = _ImputerTriplet(feat_idx,
                                                    neighbor_feat_idx,
                                                    estimator)
                self.imputation_sequence_.append(estimator_triplet)

            if self.verbose > 1:
                print('[IterativeImputer] Ending imputation round '
                      '%d/%d, elapsed time %0.2f'
                      % (self.n_iter_, self.max_iter, time() - start_t))

            if not self.sample_posterior:
                inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf,
                                          axis=None)
                if self.verbose > 0:
                    print('[IterativeImputer] '
                          'Change: {}, scaled tolerance: {} '.format(
                              inf_norm, normalized_tol))
                if inf_norm < normalized_tol:
                    if self.verbose > 0:
                        print('[IterativeImputer] Early stopping criterion '
                              'reached.')
                    break
                Xt_previous = Xt.copy()
        else:
            if not self.sample_posterior:
                warnings.warn("[IterativeImputer] Early stopping criterion not"
                              " reached.", ConvergenceWarning)
        Xt[~mask_missing_values] = X[~mask_missing_values]
        return super()._concatenate_indicator(Xt, X_indicator)

    def transform(self, X):
        """Imputes all missing values in X.

        Note that this is stochastic, and that if random_state is not fixed,
        repeated calls, or permuted input, will yield different results.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input data to complete.

        Returns
        -------
        Xt : array-like, shape (n_samples, n_features)
             The imputed input data.
        """
        check_is_fitted(self)

        X_indicator = super()._transform_indicator(X)
        X, Xt, mask_missing_values = self._initial_imputation(X)

        if self.n_iter_ == 0 or np.all(mask_missing_values):
            return super()._concatenate_indicator(Xt, X_indicator)

        imputations_per_round = len(self.imputation_sequence_) // self.n_iter_
        i_rnd = 0
        if self.verbose > 0:
            print("[IterativeImputer] Completing matrix with shape %s"
                  % (X.shape,))
        start_t = time()
        for it, estimator_triplet in enumerate(self.imputation_sequence_):
            Xt, _ = self._impute_one_feature(
                Xt,
                mask_missing_values,
                estimator_triplet.feat_idx,
                estimator_triplet.neighbor_feat_idx,
                estimator=estimator_triplet.estimator,
                fit_mode=False
            )
            if not (it + 1) % imputations_per_round:
                if self.verbose > 1:
                    print('[IterativeImputer] Ending imputation round '
                          '%d/%d, elapsed time %0.2f'
                          % (i_rnd + 1, self.n_iter_, time() - start_t))
                i_rnd += 1

        Xt[~mask_missing_values] = X[~mask_missing_values]

        return super()._concatenate_indicator(Xt, X_indicator)

    def fit(self, X, y=None):
        """Fits the imputer on X and return self.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Input data, where "n_samples" is the number of samples and
            "n_features" is the number of features.

        y : ignored

        Returns
        -------
        self : object
            Returns self.
        """
        self.fit_transform(X)
        return self