_base.py
27.5 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# Authors: Nicolas Tresegnie <nicolas.tresegnie@gmail.com>
# Sergey Feldman <sergeyfeldman@gmail.com>
# License: BSD 3 clause
import numbers
import warnings
import numpy as np
import numpy.ma as ma
from scipy import sparse
from scipy import stats
from ..base import BaseEstimator, TransformerMixin
from ..utils.sparsefuncs import _get_median
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils.validation import _deprecate_positional_args
from ..utils._mask import _get_mask
from ..utils import is_scalar_nan
def _check_inputs_dtype(X, missing_values):
if (X.dtype.kind in ("f", "i", "u") and
not isinstance(missing_values, numbers.Real)):
raise ValueError("'X' and 'missing_values' types are expected to be"
" both numerical. Got X.dtype={} and "
" type(missing_values)={}."
.format(X.dtype, type(missing_values)))
def _most_frequent(array, extra_value, n_repeat):
"""Compute the most frequent value in a 1d array extended with
[extra_value] * n_repeat, where extra_value is assumed to be not part
of the array."""
# Compute the most frequent value in array only
if array.size > 0:
with warnings.catch_warnings():
# stats.mode raises a warning when input array contains objects due
# to incapacity to detect NaNs. Irrelevant here since input array
# has already been NaN-masked.
warnings.simplefilter("ignore", RuntimeWarning)
mode = stats.mode(array)
most_frequent_value = mode[0][0]
most_frequent_count = mode[1][0]
else:
most_frequent_value = 0
most_frequent_count = 0
# Compare to array + [extra_value] * n_repeat
if most_frequent_count == 0 and n_repeat == 0:
return np.nan
elif most_frequent_count < n_repeat:
return extra_value
elif most_frequent_count > n_repeat:
return most_frequent_value
elif most_frequent_count == n_repeat:
# Ties the breaks. Copy the behaviour of scipy.stats.mode
if most_frequent_value < extra_value:
return most_frequent_value
else:
return extra_value
class _BaseImputer(TransformerMixin, BaseEstimator):
"""Base class for all imputers.
It adds automatically support for `add_indicator`.
"""
def __init__(self, *, missing_values=np.nan, add_indicator=False):
self.missing_values = missing_values
self.add_indicator = add_indicator
def _fit_indicator(self, X):
"""Fit a MissingIndicator."""
if self.add_indicator:
self.indicator_ = MissingIndicator(
missing_values=self.missing_values, error_on_new=False
)
self.indicator_.fit(X)
else:
self.indicator_ = None
def _transform_indicator(self, X):
"""Compute the indicator mask.'
Note that X must be the original data as passed to the imputer before
any imputation, since imputation may be done inplace in some cases.
"""
if self.add_indicator:
if not hasattr(self, 'indicator_'):
raise ValueError(
"Make sure to call _fit_indicator before "
"_transform_indicator"
)
return self.indicator_.transform(X)
def _concatenate_indicator(self, X_imputed, X_indicator):
"""Concatenate indicator mask with the imputed data."""
if not self.add_indicator:
return X_imputed
hstack = sparse.hstack if sparse.issparse(X_imputed) else np.hstack
if X_indicator is None:
raise ValueError(
"Data from the missing indicator are not provided. Call "
"_fit_indicator and _transform_indicator in the imputer "
"implementation."
)
return hstack((X_imputed, X_indicator))
def _more_tags(self):
return {'allow_nan': is_scalar_nan(self.missing_values)}
class SimpleImputer(_BaseImputer):
"""Imputation transformer for completing missing values.
Read more in the :ref:`User Guide <impute>`.
.. versionadded:: 0.20
`SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer`
estimator which is now removed.
Parameters
----------
missing_values : number, string, np.nan (default) or None
The placeholder for the missing values. All occurrences of
`missing_values` will be imputed. For pandas' dataframes with
nullable integer dtypes with missing values, `missing_values`
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
strategy : string, default='mean'
The imputation strategy.
- If "mean", then replace missing values using the mean along
each column. Can only be used with numeric data.
- If "median", then replace missing values using the median along
each column. Can only be used with numeric data.
- If "most_frequent", then replace missing using the most frequent
value along each column. Can be used with strings or numeric data.
- If "constant", then replace missing values with fill_value. Can be
used with strings or numeric data.
.. versionadded:: 0.20
strategy="constant" for fixed value imputation.
fill_value : string or numerical value, default=None
When strategy == "constant", fill_value is used to replace all
occurrences of missing_values.
If left to the default, fill_value will be 0 when imputing numerical
data and "missing_value" for strings or object data types.
verbose : integer, default=0
Controls the verbosity of the imputer.
copy : boolean, default=True
If True, a copy of X will be created. If False, imputation will
be done in-place whenever possible. Note that, in the following cases,
a new copy will always be made, even if `copy=False`:
- If X is not an array of floating values;
- If X is encoded as a CSR matrix;
- If add_indicator=True.
add_indicator : boolean, default=False
If True, a :class:`MissingIndicator` transform will stack onto output
of the imputer's transform. This allows a predictive estimator
to account for missingness despite imputation. If a feature has no
missing values at fit/train time, the feature won't appear on
the missing indicator even if there are missing values at
transform/test time.
Attributes
----------
statistics_ : array of shape (n_features,)
The imputation fill value for each feature.
Computing statistics can result in `np.nan` values.
During :meth:`transform`, features corresponding to `np.nan`
statistics will be discarded.
indicator_ : :class:`sklearn.impute.MissingIndicator`
Indicator used to add binary indicators for missing values.
``None`` if add_indicator is False.
See also
--------
IterativeImputer : Multivariate imputation of missing values.
Examples
--------
>>> import numpy as np
>>> from sklearn.impute import SimpleImputer
>>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
>>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
SimpleImputer()
>>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
>>> print(imp_mean.transform(X))
[[ 7. 2. 3. ]
[ 4. 3.5 6. ]
[10. 3.5 9. ]]
Notes
-----
Columns which only contained missing values at :meth:`fit` are discarded
upon :meth:`transform` if strategy is not "constant".
"""
@_deprecate_positional_args
def __init__(self, *, missing_values=np.nan, strategy="mean",
fill_value=None, verbose=0, copy=True, add_indicator=False):
super().__init__(
missing_values=missing_values,
add_indicator=add_indicator
)
self.strategy = strategy
self.fill_value = fill_value
self.verbose = verbose
self.copy = copy
def _validate_input(self, X, in_fit):
allowed_strategies = ["mean", "median", "most_frequent", "constant"]
if self.strategy not in allowed_strategies:
raise ValueError("Can only use these strategies: {0} "
" got strategy={1}".format(allowed_strategies,
self.strategy))
if self.strategy in ("most_frequent", "constant"):
dtype = None
else:
dtype = FLOAT_DTYPES
if not is_scalar_nan(self.missing_values):
force_all_finite = True
else:
force_all_finite = "allow-nan"
try:
X = self._validate_data(X, reset=in_fit,
accept_sparse='csc', dtype=dtype,
force_all_finite=force_all_finite,
copy=self.copy)
except ValueError as ve:
if "could not convert" in str(ve):
new_ve = ValueError("Cannot use {} strategy with non-numeric "
"data:\n{}".format(self.strategy, ve))
raise new_ve from None
else:
raise ve
_check_inputs_dtype(X, self.missing_values)
if X.dtype.kind not in ("i", "u", "f", "O"):
raise ValueError("SimpleImputer does not support data with dtype "
"{0}. Please provide either a numeric array (with"
" a floating point or integer dtype) or "
"categorical data represented either as an array "
"with integer dtype or an array of string values "
"with an object dtype.".format(X.dtype))
return X
def fit(self, X, y=None):
"""Fit the imputer on X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Input data, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
Returns
-------
self : SimpleImputer
"""
X = self._validate_input(X, in_fit=True)
super()._fit_indicator(X)
# default fill_value is 0 for numerical input and "missing_value"
# otherwise
if self.fill_value is None:
if X.dtype.kind in ("i", "u", "f"):
fill_value = 0
else:
fill_value = "missing_value"
else:
fill_value = self.fill_value
# fill_value should be numerical in case of numerical input
if (self.strategy == "constant" and
X.dtype.kind in ("i", "u", "f") and
not isinstance(fill_value, numbers.Real)):
raise ValueError("'fill_value'={0} is invalid. Expected a "
"numerical value when imputing numerical "
"data".format(fill_value))
if sparse.issparse(X):
# missing_values = 0 not allowed with sparse data as it would
# force densification
if self.missing_values == 0:
raise ValueError("Imputation not possible when missing_values "
"== 0 and input is sparse. Provide a dense "
"array instead.")
else:
self.statistics_ = self._sparse_fit(X,
self.strategy,
self.missing_values,
fill_value)
else:
self.statistics_ = self._dense_fit(X,
self.strategy,
self.missing_values,
fill_value)
return self
def _sparse_fit(self, X, strategy, missing_values, fill_value):
"""Fit the transformer on sparse data."""
mask_data = _get_mask(X.data, missing_values)
n_implicit_zeros = X.shape[0] - np.diff(X.indptr)
statistics = np.empty(X.shape[1])
if strategy == "constant":
# for constant strategy, self.statistcs_ is used to store
# fill_value in each column
statistics.fill(fill_value)
else:
for i in range(X.shape[1]):
column = X.data[X.indptr[i]:X.indptr[i + 1]]
mask_column = mask_data[X.indptr[i]:X.indptr[i + 1]]
column = column[~mask_column]
# combine explicit and implicit zeros
mask_zeros = _get_mask(column, 0)
column = column[~mask_zeros]
n_explicit_zeros = mask_zeros.sum()
n_zeros = n_implicit_zeros[i] + n_explicit_zeros
if strategy == "mean":
s = column.size + n_zeros
statistics[i] = np.nan if s == 0 else column.sum() / s
elif strategy == "median":
statistics[i] = _get_median(column,
n_zeros)
elif strategy == "most_frequent":
statistics[i] = _most_frequent(column,
0,
n_zeros)
return statistics
def _dense_fit(self, X, strategy, missing_values, fill_value):
"""Fit the transformer on dense data."""
mask = _get_mask(X, missing_values)
masked_X = ma.masked_array(X, mask=mask)
# Mean
if strategy == "mean":
mean_masked = np.ma.mean(masked_X, axis=0)
# Avoid the warning "Warning: converting a masked element to nan."
mean = np.ma.getdata(mean_masked)
mean[np.ma.getmask(mean_masked)] = np.nan
return mean
# Median
elif strategy == "median":
median_masked = np.ma.median(masked_X, axis=0)
# Avoid the warning "Warning: converting a masked element to nan."
median = np.ma.getdata(median_masked)
median[np.ma.getmaskarray(median_masked)] = np.nan
return median
# Most frequent
elif strategy == "most_frequent":
# Avoid use of scipy.stats.mstats.mode due to the required
# additional overhead and slow benchmarking performance.
# See Issue 14325 and PR 14399 for full discussion.
# To be able access the elements by columns
X = X.transpose()
mask = mask.transpose()
if X.dtype.kind == "O":
most_frequent = np.empty(X.shape[0], dtype=object)
else:
most_frequent = np.empty(X.shape[0])
for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
row_mask = np.logical_not(row_mask).astype(np.bool)
row = row[row_mask]
most_frequent[i] = _most_frequent(row, np.nan, 0)
return most_frequent
# Constant
elif strategy == "constant":
# for constant strategy, self.statistcs_ is used to store
# fill_value in each column
return np.full(X.shape[1], fill_value, dtype=X.dtype)
def transform(self, X):
"""Impute all missing values in X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data to complete.
"""
check_is_fitted(self)
X = self._validate_input(X, in_fit=False)
X_indicator = super()._transform_indicator(X)
statistics = self.statistics_
if X.shape[1] != statistics.shape[0]:
raise ValueError("X has %d features per sample, expected %d"
% (X.shape[1], self.statistics_.shape[0]))
# Delete the invalid columns if strategy is not constant
if self.strategy == "constant":
valid_statistics = statistics
else:
# same as np.isnan but also works for object dtypes
invalid_mask = _get_mask(statistics, np.nan)
valid_mask = np.logical_not(invalid_mask)
valid_statistics = statistics[valid_mask]
valid_statistics_indexes = np.flatnonzero(valid_mask)
if invalid_mask.any():
missing = np.arange(X.shape[1])[invalid_mask]
if self.verbose:
warnings.warn("Deleting features without "
"observed values: %s" % missing)
X = X[:, valid_statistics_indexes]
# Do actual imputation
if sparse.issparse(X):
if self.missing_values == 0:
raise ValueError("Imputation not possible when missing_values "
"== 0 and input is sparse. Provide a dense "
"array instead.")
else:
mask = _get_mask(X.data, self.missing_values)
indexes = np.repeat(
np.arange(len(X.indptr) - 1, dtype=np.int),
np.diff(X.indptr))[mask]
X.data[mask] = valid_statistics[indexes].astype(X.dtype,
copy=False)
else:
mask = _get_mask(X, self.missing_values)
n_missing = np.sum(mask, axis=0)
values = np.repeat(valid_statistics, n_missing)
coordinates = np.where(mask.transpose())[::-1]
X[coordinates] = values
return super()._concatenate_indicator(X, X_indicator)
class MissingIndicator(TransformerMixin, BaseEstimator):
"""Binary indicators for missing values.
Note that this component typically should not be used in a vanilla
:class:`Pipeline` consisting of transformers and a classifier, but rather
could be added using a :class:`FeatureUnion` or :class:`ColumnTransformer`.
Read more in the :ref:`User Guide <impute>`.
.. versionadded:: 0.20
Parameters
----------
missing_values : number, string, np.nan (default) or None
The placeholder for the missing values. All occurrences of
`missing_values` will be imputed. For pandas' dataframes with
nullable integer dtypes with missing values, `missing_values`
should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
features : str, default=None
Whether the imputer mask should represent all or a subset of
features.
- If "missing-only" (default), the imputer mask will only represent
features containing missing values during fit time.
- If "all", the imputer mask will represent all features.
sparse : boolean or "auto", default=None
Whether the imputer mask format should be sparse or dense.
- If "auto" (default), the imputer mask will be of same type as
input.
- If True, the imputer mask will be a sparse matrix.
- If False, the imputer mask will be a numpy array.
error_on_new : boolean, default=None
If True (default), transform will raise an error when there are
features with missing values in transform that have no missing values
in fit. This is applicable only when ``features="missing-only"``.
Attributes
----------
features_ : ndarray, shape (n_missing_features,) or (n_features,)
The features indices which will be returned when calling ``transform``.
They are computed during ``fit``. For ``features='all'``, it is
to ``range(n_features)``.
Examples
--------
>>> import numpy as np
>>> from sklearn.impute import MissingIndicator
>>> X1 = np.array([[np.nan, 1, 3],
... [4, 0, np.nan],
... [8, 1, 0]])
>>> X2 = np.array([[5, 1, np.nan],
... [np.nan, 2, 3],
... [2, 4, 0]])
>>> indicator = MissingIndicator()
>>> indicator.fit(X1)
MissingIndicator()
>>> X2_tr = indicator.transform(X2)
>>> X2_tr
array([[False, True],
[ True, False],
[False, False]])
"""
@_deprecate_positional_args
def __init__(self, *, missing_values=np.nan, features="missing-only",
sparse="auto", error_on_new=True):
self.missing_values = missing_values
self.features = features
self.sparse = sparse
self.error_on_new = error_on_new
def _get_missing_features_info(self, X):
"""Compute the imputer mask and the indices of the features
containing missing values.
Parameters
----------
X : {ndarray or sparse matrix}, shape (n_samples, n_features)
The input data with missing values. Note that ``X`` has been
checked in ``fit`` and ``transform`` before to call this function.
Returns
-------
imputer_mask : {ndarray or sparse matrix}, shape \
(n_samples, n_features)
The imputer mask of the original data.
features_with_missing : ndarray, shape (n_features_with_missing)
The features containing missing values.
"""
if sparse.issparse(X):
mask = _get_mask(X.data, self.missing_values)
# The imputer mask will be constructed with the same sparse format
# as X.
sparse_constructor = (sparse.csr_matrix if X.format == 'csr'
else sparse.csc_matrix)
imputer_mask = sparse_constructor(
(mask, X.indices.copy(), X.indptr.copy()),
shape=X.shape, dtype=bool)
imputer_mask.eliminate_zeros()
if self.features == 'missing-only':
n_missing = imputer_mask.getnnz(axis=0)
if self.sparse is False:
imputer_mask = imputer_mask.toarray()
elif imputer_mask.format == 'csr':
imputer_mask = imputer_mask.tocsc()
else:
imputer_mask = _get_mask(X, self.missing_values)
if self.features == 'missing-only':
n_missing = imputer_mask.sum(axis=0)
if self.sparse is True:
imputer_mask = sparse.csc_matrix(imputer_mask)
if self.features == 'all':
features_indices = np.arange(X.shape[1])
else:
features_indices = np.flatnonzero(n_missing)
return imputer_mask, features_indices
def _validate_input(self, X, in_fit):
if not is_scalar_nan(self.missing_values):
force_all_finite = True
else:
force_all_finite = "allow-nan"
X = self._validate_data(X, reset=in_fit,
accept_sparse=('csc', 'csr'), dtype=None,
force_all_finite=force_all_finite)
_check_inputs_dtype(X, self.missing_values)
if X.dtype.kind not in ("i", "u", "f", "O"):
raise ValueError("MissingIndicator does not support data with "
"dtype {0}. Please provide either a numeric array"
" (with a floating point or integer dtype) or "
"categorical data represented either as an array "
"with integer dtype or an array of string values "
"with an object dtype.".format(X.dtype))
if sparse.issparse(X) and self.missing_values == 0:
# missing_values = 0 not allowed with sparse data as it would
# force densification
raise ValueError("Sparse input with missing_values=0 is "
"not supported. Provide a dense "
"array instead.")
return X
def _fit(self, X, y=None):
"""Fit the transformer on X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Input data, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
Returns
-------
imputer_mask : {ndarray or sparse matrix}, shape (n_samples, \
n_features)
The imputer mask of the original data.
"""
X = self._validate_input(X, in_fit=True)
self._n_features = X.shape[1]
if self.features not in ('missing-only', 'all'):
raise ValueError("'features' has to be either 'missing-only' or "
"'all'. Got {} instead.".format(self.features))
if not ((isinstance(self.sparse, str) and
self.sparse == "auto") or isinstance(self.sparse, bool)):
raise ValueError("'sparse' has to be a boolean or 'auto'. "
"Got {!r} instead.".format(self.sparse))
missing_features_info = self._get_missing_features_info(X)
self.features_ = missing_features_info[1]
return missing_features_info[0]
def fit(self, X, y=None):
"""Fit the transformer on X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Input data, where ``n_samples`` is the number of samples and
``n_features`` is the number of features.
Returns
-------
self : object
Returns self.
"""
self._fit(X, y)
return self
def transform(self, X):
"""Generate missing values indicator for X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data to complete.
Returns
-------
Xt : {ndarray or sparse matrix}, shape (n_samples, n_features) \
or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of ``Xt``
will be boolean.
"""
check_is_fitted(self)
X = self._validate_input(X, in_fit=False)
if X.shape[1] != self._n_features:
raise ValueError("X has a different number of features "
"than during fitting.")
imputer_mask, features = self._get_missing_features_info(X)
if self.features == "missing-only":
features_diff_fit_trans = np.setdiff1d(features, self.features_)
if (self.error_on_new and features_diff_fit_trans.size > 0):
raise ValueError("The features {} have missing values "
"in transform but have no missing values "
"in fit.".format(features_diff_fit_trans))
if self.features_.size < self._n_features:
imputer_mask = imputer_mask[:, self.features_]
return imputer_mask
def fit_transform(self, X, y=None):
"""Generate missing values indicator for X.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data to complete.
Returns
-------
Xt : {ndarray or sparse matrix}, shape (n_samples, n_features) \
or (n_samples, n_features_with_missing)
The missing indicator for input data. The data type of ``Xt``
will be boolean.
"""
imputer_mask = self._fit(X, y)
if self.features_.size < self._n_features:
imputer_mask = imputer_mask[:, self.features_]
return imputer_mask
def _more_tags(self):
return {'allow_nan': True,
'X_types': ['2darray', 'string']}