_gpr.py 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
"""Gaussian processes regression. """

# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# Modified by: Pete Green <p.l.green@liverpool.ac.uk>
# License: BSD 3 clause

import warnings
from operator import itemgetter

import numpy as np
from scipy.linalg import cholesky, cho_solve, solve_triangular
import scipy.optimize

from ..base import BaseEstimator, RegressorMixin, clone
from ..base import MultiOutputMixin
from .kernels import RBF, ConstantKernel as C
from ..utils import check_random_state
from ..utils.validation import check_array
from ..utils.optimize import _check_optimize_result
from ..utils.validation import _deprecate_positional_args


class GaussianProcessRegressor(MultiOutputMixin,
                               RegressorMixin, BaseEstimator):
    """Gaussian process regression (GPR).

    The implementation is based on Algorithm 2.1 of Gaussian Processes
    for Machine Learning (GPML) by Rasmussen and Williams.

    In addition to standard scikit-learn estimator API,
    GaussianProcessRegressor:

       * allows prediction without prior fitting (based on the GP prior)
       * provides an additional method sample_y(X), which evaluates samples
         drawn from the GPR (prior or posterior) at given inputs
       * exposes a method log_marginal_likelihood(theta), which can be used
         externally for other ways of selecting hyperparameters, e.g., via
         Markov chain Monte Carlo.

    Read more in the :ref:`User Guide <gaussian_process>`.

    .. versionadded:: 0.18

    Parameters
    ----------
    kernel : kernel instance, default=None
        The kernel specifying the covariance function of the GP. If None is
        passed, the kernel "1.0 * RBF(1.0)" is used as default. Note that
        the kernel's hyperparameters are optimized during fitting.

    alpha : float or array-like of shape (n_samples), default=1e-10
        Value added to the diagonal of the kernel matrix during fitting.
        Larger values correspond to increased noise level in the observations.
        This can also prevent a potential numerical issue during fitting, by
        ensuring that the calculated values form a positive definite matrix.
        If an array is passed, it must have the same number of entries as the
        data used for fitting and is used as datapoint-dependent noise level.
        Note that this is equivalent to adding a WhiteKernel with c=alpha.
        Allowing to specify the noise level directly as a parameter is mainly
        for convenience and for consistency with Ridge.

    optimizer : "fmin_l_bfgs_b" or callable, default="fmin_l_bfgs_b"
        Can either be one of the internally supported optimizers for optimizing
        the kernel's parameters, specified by a string, or an externally
        defined optimizer passed as a callable. If a callable is passed, it
        must have the signature::

            def optimizer(obj_func, initial_theta, bounds):
                # * 'obj_func' is the objective function to be minimized, which
                #   takes the hyperparameters theta as parameter and an
                #   optional flag eval_gradient, which determines if the
                #   gradient is returned additionally to the function value
                # * 'initial_theta': the initial value for theta, which can be
                #   used by local optimizers
                # * 'bounds': the bounds on the values of theta
                ....
                # Returned are the best found hyperparameters theta and
                # the corresponding value of the target function.
                return theta_opt, func_min

        Per default, the 'L-BGFS-B' algorithm from scipy.optimize.minimize
        is used. If None is passed, the kernel's parameters are kept fixed.
        Available internal optimizers are::

            'fmin_l_bfgs_b'

    n_restarts_optimizer : int, default=0
        The number of restarts of the optimizer for finding the kernel's
        parameters which maximize the log-marginal likelihood. The first run
        of the optimizer is performed from the kernel's initial parameters,
        the remaining ones (if any) from thetas sampled log-uniform randomly
        from the space of allowed theta-values. If greater than 0, all bounds
        must be finite. Note that n_restarts_optimizer == 0 implies that one
        run is performed.

    normalize_y : boolean, optional (default: False)
        Whether the target values y are normalized, the mean and variance of
        the target values are set equal to 0 and 1 respectively. This is
        recommended for cases where zero-mean, unit-variance priors are used.
        Note that, in this implementation, the normalisation is reversed
        before the GP predictions are reported.

        .. versionchanged:: 0.23

    copy_X_train : bool, default=True
        If True, a persistent copy of the training data is stored in the
        object. Otherwise, just a reference to the training data is stored,
        which might cause predictions to change if the data is modified
        externally.

    random_state : int or RandomState, default=None
        Determines random number generation used to initialize the centers.
        Pass an int for reproducible results across multiple function calls.
        See :term: `Glossary <random_state>`.

    Attributes
    ----------
    X_train_ : array-like of shape (n_samples, n_features) or list of object
        Feature vectors or other representations of training data (also
        required for prediction).

    y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets)
        Target values in training data (also required for prediction)

    kernel_ : kernel instance
        The kernel used for prediction. The structure of the kernel is the
        same as the one passed as parameter but with optimized hyperparameters

    L_ : array-like of shape (n_samples, n_samples)
        Lower-triangular Cholesky decomposition of the kernel in ``X_train_``

    alpha_ : array-like of shape (n_samples,)
        Dual coefficients of training data points in kernel space

    log_marginal_likelihood_value_ : float
        The log-marginal-likelihood of ``self.kernel_.theta``

    Examples
    --------
    >>> from sklearn.datasets import make_friedman2
    >>> from sklearn.gaussian_process import GaussianProcessRegressor
    >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel
    >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0)
    >>> kernel = DotProduct() + WhiteKernel()
    >>> gpr = GaussianProcessRegressor(kernel=kernel,
    ...         random_state=0).fit(X, y)
    >>> gpr.score(X, y)
    0.3680...
    >>> gpr.predict(X[:2,:], return_std=True)
    (array([653.0..., 592.1...]), array([316.6..., 316.6...]))

    """
    @_deprecate_positional_args
    def __init__(self, kernel=None, *, alpha=1e-10,
                 optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0,
                 normalize_y=False, copy_X_train=True, random_state=None):
        self.kernel = kernel
        self.alpha = alpha
        self.optimizer = optimizer
        self.n_restarts_optimizer = n_restarts_optimizer
        self.normalize_y = normalize_y
        self.copy_X_train = copy_X_train
        self.random_state = random_state

    def fit(self, X, y):
        """Fit Gaussian process regression model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Feature vectors or other representations of training data.

        y : array-like of shape (n_samples,) or (n_samples, n_targets)
            Target values

        Returns
        -------
        self : returns an instance of self.
        """
        if self.kernel is None:  # Use an RBF kernel as default
            self.kernel_ = C(1.0, constant_value_bounds="fixed") \
                * RBF(1.0, length_scale_bounds="fixed")
        else:
            self.kernel_ = clone(self.kernel)

        self._rng = check_random_state(self.random_state)

        if self.kernel_.requires_vector_input:
            X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
                                       ensure_2d=True, dtype="numeric")
        else:
            X, y = self._validate_data(X, y, multi_output=True, y_numeric=True,
                                       ensure_2d=False, dtype=None)

        # Normalize target value
        if self.normalize_y:
            self._y_train_mean = np.mean(y, axis=0)
            self._y_train_std = np.std(y, axis=0)

            # Remove mean and make unit variance
            y = (y - self._y_train_mean) / self._y_train_std

        else:
            self._y_train_mean = np.zeros(1)
            self._y_train_std = 1

        if np.iterable(self.alpha) \
           and self.alpha.shape[0] != y.shape[0]:
            if self.alpha.shape[0] == 1:
                self.alpha = self.alpha[0]
            else:
                raise ValueError("alpha must be a scalar or an array"
                                 " with same number of entries as y.(%d != %d)"
                                 % (self.alpha.shape[0], y.shape[0]))

        self.X_train_ = np.copy(X) if self.copy_X_train else X
        self.y_train_ = np.copy(y) if self.copy_X_train else y

        if self.optimizer is not None and self.kernel_.n_dims > 0:
            # Choose hyperparameters based on maximizing the log-marginal
            # likelihood (potentially starting from several initial values)
            def obj_func(theta, eval_gradient=True):
                if eval_gradient:
                    lml, grad = self.log_marginal_likelihood(
                        theta, eval_gradient=True, clone_kernel=False)
                    return -lml, -grad
                else:
                    return -self.log_marginal_likelihood(theta,
                                                         clone_kernel=False)

            # First optimize starting from theta specified in kernel
            optima = [(self._constrained_optimization(obj_func,
                                                      self.kernel_.theta,
                                                      self.kernel_.bounds))]

            # Additional runs are performed from log-uniform chosen initial
            # theta
            if self.n_restarts_optimizer > 0:
                if not np.isfinite(self.kernel_.bounds).all():
                    raise ValueError(
                        "Multiple optimizer restarts (n_restarts_optimizer>0) "
                        "requires that all bounds are finite.")
                bounds = self.kernel_.bounds
                for iteration in range(self.n_restarts_optimizer):
                    theta_initial = \
                        self._rng.uniform(bounds[:, 0], bounds[:, 1])
                    optima.append(
                        self._constrained_optimization(obj_func, theta_initial,
                                                       bounds))
            # Select result from run with minimal (negative) log-marginal
            # likelihood
            lml_values = list(map(itemgetter(1), optima))
            self.kernel_.theta = optima[np.argmin(lml_values)][0]
            self.log_marginal_likelihood_value_ = -np.min(lml_values)
        else:
            self.log_marginal_likelihood_value_ = \
                self.log_marginal_likelihood(self.kernel_.theta,
                                             clone_kernel=False)

        # Precompute quantities required for predictions which are independent
        # of actual query points
        K = self.kernel_(self.X_train_)
        K[np.diag_indices_from(K)] += self.alpha
        try:
            self.L_ = cholesky(K, lower=True)  # Line 2
            # self.L_ changed, self._K_inv needs to be recomputed
            self._K_inv = None
        except np.linalg.LinAlgError as exc:
            exc.args = ("The kernel, %s, is not returning a "
                        "positive definite matrix. Try gradually "
                        "increasing the 'alpha' parameter of your "
                        "GaussianProcessRegressor estimator."
                        % self.kernel_,) + exc.args
            raise
        self.alpha_ = cho_solve((self.L_, True), self.y_train_)  # Line 3
        return self

    def predict(self, X, return_std=False, return_cov=False):
        """Predict using the Gaussian process regression model

        We can also predict based on an unfitted model by using the GP prior.
        In addition to the mean of the predictive distribution, also its
        standard deviation (return_std=True) or covariance (return_cov=True).
        Note that at most one of the two can be requested.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Query points where the GP is evaluated.

        return_std : bool, default=False
            If True, the standard-deviation of the predictive distribution at
            the query points is returned along with the mean.

        return_cov : bool, default=False
            If True, the covariance of the joint predictive distribution at
            the query points is returned along with the mean

        Returns
        -------
        y_mean : ndarray of shape (n_samples, [n_output_dims])
            Mean of predictive distribution a query points

        y_std : ndarray of shape (n_samples,), optional
            Standard deviation of predictive distribution at query points.
            Only returned when `return_std` is True.

        y_cov : ndarray of shape (n_samples, n_samples), optional
            Covariance of joint predictive distribution a query points.
            Only returned when `return_cov` is True.
        """
        if return_std and return_cov:
            raise RuntimeError(
                "Not returning standard deviation of predictions when "
                "returning full covariance.")

        if self.kernel is None or self.kernel.requires_vector_input:
            X = check_array(X, ensure_2d=True, dtype="numeric")
        else:
            X = check_array(X, ensure_2d=False, dtype=None)

        if not hasattr(self, "X_train_"):  # Unfitted;predict based on GP prior
            if self.kernel is None:
                kernel = (C(1.0, constant_value_bounds="fixed") *
                          RBF(1.0, length_scale_bounds="fixed"))
            else:
                kernel = self.kernel
            y_mean = np.zeros(X.shape[0])
            if return_cov:
                y_cov = kernel(X)
                return y_mean, y_cov
            elif return_std:
                y_var = kernel.diag(X)
                return y_mean, np.sqrt(y_var)
            else:
                return y_mean
        else:  # Predict based on GP posterior
            K_trans = self.kernel_(X, self.X_train_)
            y_mean = K_trans.dot(self.alpha_)  # Line 4 (y_mean = f_star)

            # undo normalisation
            y_mean = self._y_train_std * y_mean + self._y_train_mean

            if return_cov:
                v = cho_solve((self.L_, True), K_trans.T)  # Line 5
                y_cov = self.kernel_(X) - K_trans.dot(v)  # Line 6

                # undo normalisation
                y_cov = y_cov * self._y_train_std**2

                return y_mean, y_cov
            elif return_std:
                # cache result of K_inv computation
                if self._K_inv is None:
                    # compute inverse K_inv of K based on its Cholesky
                    # decomposition L and its inverse L_inv
                    L_inv = solve_triangular(self.L_.T,
                                             np.eye(self.L_.shape[0]))
                    self._K_inv = L_inv.dot(L_inv.T)

                # Compute variance of predictive distribution
                y_var = self.kernel_.diag(X)
                y_var -= np.einsum("ij,ij->i",
                                   np.dot(K_trans, self._K_inv), K_trans)

                # Check if any of the variances is negative because of
                # numerical issues. If yes: set the variance to 0.
                y_var_negative = y_var < 0
                if np.any(y_var_negative):
                    warnings.warn("Predicted variances smaller than 0. "
                                  "Setting those variances to 0.")
                    y_var[y_var_negative] = 0.0

                # undo normalisation
                y_var = y_var * self._y_train_std**2

                return y_mean, np.sqrt(y_var)
            else:
                return y_mean

    def sample_y(self, X, n_samples=1, random_state=0):
        """Draw samples from Gaussian process and evaluate at X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features) or list of object
            Query points where the GP is evaluated.

        n_samples : int, default=1
            The number of samples drawn from the Gaussian process

        random_state : int, RandomState, default=0
            Determines random number generation to randomly draw samples.
            Pass an int for reproducible results across multiple function
            calls.
            See :term: `Glossary <random_state>`.

        Returns
        -------
        y_samples : ndarray of shape (n_samples_X, [n_output_dims], n_samples)
            Values of n_samples samples drawn from Gaussian process and
            evaluated at query points.
        """
        rng = check_random_state(random_state)

        y_mean, y_cov = self.predict(X, return_cov=True)
        if y_mean.ndim == 1:
            y_samples = rng.multivariate_normal(y_mean, y_cov, n_samples).T
        else:
            y_samples = \
                [rng.multivariate_normal(y_mean[:, i], y_cov,
                                         n_samples).T[:, np.newaxis]
                 for i in range(y_mean.shape[1])]
            y_samples = np.hstack(y_samples)
        return y_samples

    def log_marginal_likelihood(self, theta=None, eval_gradient=False,
                                clone_kernel=True):
        """Returns log-marginal likelihood of theta for training data.

        Parameters
        ----------
        theta : array-like of shape (n_kernel_params,) default=None
            Kernel hyperparameters for which the log-marginal likelihood is
            evaluated. If None, the precomputed log_marginal_likelihood
            of ``self.kernel_.theta`` is returned.

        eval_gradient : bool, default=False
            If True, the gradient of the log-marginal likelihood with respect
            to the kernel hyperparameters at position theta is returned
            additionally. If True, theta must not be None.

        clone_kernel : bool, default=True
            If True, the kernel attribute is copied. If False, the kernel
            attribute is modified, but may result in a performance improvement.

        Returns
        -------
        log_likelihood : float
            Log-marginal likelihood of theta for training data.

        log_likelihood_gradient : ndarray of shape (n_kernel_params,), optional
            Gradient of the log-marginal likelihood with respect to the kernel
            hyperparameters at position theta.
            Only returned when eval_gradient is True.
        """
        if theta is None:
            if eval_gradient:
                raise ValueError(
                    "Gradient can only be evaluated for theta!=None")
            return self.log_marginal_likelihood_value_

        if clone_kernel:
            kernel = self.kernel_.clone_with_theta(theta)
        else:
            kernel = self.kernel_
            kernel.theta = theta

        if eval_gradient:
            K, K_gradient = kernel(self.X_train_, eval_gradient=True)
        else:
            K = kernel(self.X_train_)

        K[np.diag_indices_from(K)] += self.alpha
        try:
            L = cholesky(K, lower=True)  # Line 2
        except np.linalg.LinAlgError:
            return (-np.inf, np.zeros_like(theta)) \
                if eval_gradient else -np.inf

        # Support multi-dimensional output of self.y_train_
        y_train = self.y_train_
        if y_train.ndim == 1:
            y_train = y_train[:, np.newaxis]

        alpha = cho_solve((L, True), y_train)  # Line 3

        # Compute log-likelihood (compare line 7)
        log_likelihood_dims = -0.5 * np.einsum("ik,ik->k", y_train, alpha)
        log_likelihood_dims -= np.log(np.diag(L)).sum()
        log_likelihood_dims -= K.shape[0] / 2 * np.log(2 * np.pi)
        log_likelihood = log_likelihood_dims.sum(-1)  # sum over dimensions

        if eval_gradient:  # compare Equation 5.9 from GPML
            tmp = np.einsum("ik,jk->ijk", alpha, alpha)  # k: output-dimension
            tmp -= cho_solve((L, True), np.eye(K.shape[0]))[:, :, np.newaxis]
            # Compute "0.5 * trace(tmp.dot(K_gradient))" without
            # constructing the full matrix tmp.dot(K_gradient) since only
            # its diagonal is required
            log_likelihood_gradient_dims = \
                0.5 * np.einsum("ijl,jik->kl", tmp, K_gradient)
            log_likelihood_gradient = log_likelihood_gradient_dims.sum(-1)

        if eval_gradient:
            return log_likelihood, log_likelihood_gradient
        else:
            return log_likelihood

    def _constrained_optimization(self, obj_func, initial_theta, bounds):
        if self.optimizer == "fmin_l_bfgs_b":
            opt_res = scipy.optimize.minimize(
                obj_func, initial_theta, method="L-BFGS-B", jac=True,
                bounds=bounds)
            _check_optimize_result("lbfgs", opt_res)
            theta_opt, func_min = opt_res.x, opt_res.fun
        elif callable(self.optimizer):
            theta_opt, func_min = \
                self.optimizer(obj_func, initial_theta, bounds=bounds)
        else:
            raise ValueError("Unknown optimizer %s." % self.optimizer)

        return theta_opt, func_min

    def _more_tags(self):
        return {'requires_fit': False}