image.py 20.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
"""
The :mod:`sklearn.feature_extraction.image` submodule gathers utilities to
extract features from images.
"""

# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Olivier Grisel
#          Vlad Niculae
# License: BSD 3 clause

from itertools import product
import numbers
import numpy as np
from scipy import sparse
from numpy.lib.stride_tricks import as_strided

from ..utils import check_array, check_random_state, deprecated
from ..utils.validation import _deprecate_positional_args
from ..base import BaseEstimator

__all__ = ['PatchExtractor',
           'extract_patches_2d',
           'grid_to_graph',
           'img_to_graph',
           'reconstruct_from_patches_2d']

###############################################################################
# From an image to a graph


def _make_edges_3d(n_x, n_y, n_z=1):
    """Returns a list of edges for a 3D image.

    Parameters
    ----------
    n_x : int
        The size of the grid in the x direction.
    n_y : int
        The size of the grid in the y direction.
    n_z : integer, default=1
        The size of the grid in the z direction, defaults to 1
    """
    vertices = np.arange(n_x * n_y * n_z).reshape((n_x, n_y, n_z))
    edges_deep = np.vstack((vertices[:, :, :-1].ravel(),
                            vertices[:, :, 1:].ravel()))
    edges_right = np.vstack((vertices[:, :-1].ravel(),
                             vertices[:, 1:].ravel()))
    edges_down = np.vstack((vertices[:-1].ravel(), vertices[1:].ravel()))
    edges = np.hstack((edges_deep, edges_right, edges_down))
    return edges


def _compute_gradient_3d(edges, img):
    _, n_y, n_z = img.shape
    gradient = np.abs(img[edges[0] // (n_y * n_z),
                      (edges[0] % (n_y * n_z)) // n_z,
                      (edges[0] % (n_y * n_z)) % n_z] -
                      img[edges[1] // (n_y * n_z),
                      (edges[1] % (n_y * n_z)) // n_z,
                      (edges[1] % (n_y * n_z)) % n_z])
    return gradient


# XXX: Why mask the image after computing the weights?

def _mask_edges_weights(mask, edges, weights=None):
    """Apply a mask to edges (weighted or not)"""
    inds = np.arange(mask.size)
    inds = inds[mask.ravel()]
    ind_mask = np.logical_and(np.in1d(edges[0], inds),
                              np.in1d(edges[1], inds))
    edges = edges[:, ind_mask]
    if weights is not None:
        weights = weights[ind_mask]
    if len(edges.ravel()):
        maxval = edges.max()
    else:
        maxval = 0
    order = np.searchsorted(np.unique(edges.ravel()), np.arange(maxval + 1))
    edges = order[edges]
    if weights is None:
        return edges
    else:
        return edges, weights


def _to_graph(n_x, n_y, n_z, mask=None, img=None,
              return_as=sparse.coo_matrix, dtype=None):
    """Auxiliary function for img_to_graph and grid_to_graph
    """
    edges = _make_edges_3d(n_x, n_y, n_z)

    if dtype is None:
        if img is None:
            dtype = np.int
        else:
            dtype = img.dtype

    if img is not None:
        img = np.atleast_3d(img)
        weights = _compute_gradient_3d(edges, img)
        if mask is not None:
            edges, weights = _mask_edges_weights(mask, edges, weights)
            diag = img.squeeze()[mask]
        else:
            diag = img.ravel()
        n_voxels = diag.size
    else:
        if mask is not None:
            mask = mask.astype(dtype=np.bool, copy=False)
            mask = np.asarray(mask, dtype=np.bool)
            edges = _mask_edges_weights(mask, edges)
            n_voxels = np.sum(mask)
        else:
            n_voxels = n_x * n_y * n_z
        weights = np.ones(edges.shape[1], dtype=dtype)
        diag = np.ones(n_voxels, dtype=dtype)

    diag_idx = np.arange(n_voxels)
    i_idx = np.hstack((edges[0], edges[1]))
    j_idx = np.hstack((edges[1], edges[0]))
    graph = sparse.coo_matrix((np.hstack((weights, weights, diag)),
                              (np.hstack((i_idx, diag_idx)),
                               np.hstack((j_idx, diag_idx)))),
                              (n_voxels, n_voxels),
                              dtype=dtype)
    if return_as is np.ndarray:
        return graph.toarray()
    return return_as(graph)


@_deprecate_positional_args
def img_to_graph(img, *, mask=None, return_as=sparse.coo_matrix, dtype=None):
    """Graph of the pixel-to-pixel gradient connections

    Edges are weighted with the gradient values.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    img : ndarray of shape (height, width) or (height, width, channel)
        2D or 3D image.
    mask : ndarray of shape (height, width) or \
            (height, width, channel), dtype=bool, default=None
        An optional mask of the image, to consider only part of the
        pixels.
    return_as : np.ndarray or a sparse matrix class, \
            default=sparse.coo_matrix
        The class to use to build the returned adjacency matrix.
    dtype : dtype, default=None
        The data of the returned sparse matrix. By default it is the
        dtype of img

    Notes
    -----
    For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was
    handled by returning a dense np.matrix instance.  Going forward, np.ndarray
    returns an np.ndarray, as expected.

    For compatibility, user code relying on this method should wrap its
    calls in ``np.asarray`` to avoid type issues.
    """
    img = np.atleast_3d(img)
    n_x, n_y, n_z = img.shape
    return _to_graph(n_x, n_y, n_z, mask, img, return_as, dtype)


@_deprecate_positional_args
def grid_to_graph(n_x, n_y, n_z=1, *, mask=None, return_as=sparse.coo_matrix,
                  dtype=np.int):
    """Graph of the pixel-to-pixel connections

    Edges exist if 2 voxels are connected.

    Parameters
    ----------
    n_x : int
        Dimension in x axis
    n_y : int
        Dimension in y axis
    n_z : int, default=1
        Dimension in z axis
    mask : ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None
        An optional mask of the image, to consider only part of the
        pixels.
    return_as : np.ndarray or a sparse matrix class, \
            default=sparse.coo_matrix
        The class to use to build the returned adjacency matrix.
    dtype : dtype, default=int
        The data of the returned sparse matrix. By default it is int

    Notes
    -----
    For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was
    handled by returning a dense np.matrix instance.  Going forward, np.ndarray
    returns an np.ndarray, as expected.

    For compatibility, user code relying on this method should wrap its
    calls in ``np.asarray`` to avoid type issues.
    """
    return _to_graph(n_x, n_y, n_z, mask=mask, return_as=return_as,
                     dtype=dtype)


###############################################################################
# From an image to a set of small image patches

def _compute_n_patches(i_h, i_w, p_h, p_w, max_patches=None):
    """Compute the number of patches that will be extracted in an image.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    i_h : int
        The image height
    i_w : int
        The image with
    p_h : int
        The height of a patch
    p_w : int
        The width of a patch
    max_patches : int or float, default=None
        The maximum number of patches to extract. If max_patches is a float
        between 0 and 1, it is taken to be a proportion of the total number
        of patches.
    """
    n_h = i_h - p_h + 1
    n_w = i_w - p_w + 1
    all_patches = n_h * n_w

    if max_patches:
        if (isinstance(max_patches, (numbers.Integral))
                and max_patches < all_patches):
            return max_patches
        elif (isinstance(max_patches, (numbers.Integral))
              and max_patches >= all_patches):
            return all_patches
        elif (isinstance(max_patches, (numbers.Real))
                and 0 < max_patches < 1):
            return int(max_patches * all_patches)
        else:
            raise ValueError("Invalid value for max_patches: %r" % max_patches)
    else:
        return all_patches


def _extract_patches(arr, patch_shape=8, extraction_step=1):
    """Extracts patches of any n-dimensional array in place using strides.

    Given an n-dimensional array it will return a 2n-dimensional array with
    the first n dimensions indexing patch position and the last n indexing
    the patch content. This operation is immediate (O(1)). A reshape
    performed on the first n dimensions will cause numpy to copy data, leading
    to a list of extracted patches.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    arr : ndarray
        n-dimensional array of which patches are to be extracted

    patch_shape : int or tuple of length arr.ndim.default=8
        Indicates the shape of the patches to be extracted. If an
        integer is given, the shape will be a hypercube of
        sidelength given by its value.

    extraction_step : int or tuple of length arr.ndim, default=1
        Indicates step size at which extraction shall be performed.
        If integer is given, then the step is uniform in all dimensions.


    Returns
    -------
    patches : strided ndarray
        2n-dimensional array indexing patches on first n dimensions and
        containing patches on the last n dimensions. These dimensions
        are fake, but this way no data is copied. A simple reshape invokes
        a copying operation to obtain a list of patches:
        result.reshape([-1] + list(patch_shape))
    """

    arr_ndim = arr.ndim

    if isinstance(patch_shape, numbers.Number):
        patch_shape = tuple([patch_shape] * arr_ndim)
    if isinstance(extraction_step, numbers.Number):
        extraction_step = tuple([extraction_step] * arr_ndim)

    patch_strides = arr.strides

    slices = tuple(slice(None, None, st) for st in extraction_step)
    indexing_strides = arr[slices].strides

    patch_indices_shape = ((np.array(arr.shape) - np.array(patch_shape)) //
                           np.array(extraction_step)) + 1

    shape = tuple(list(patch_indices_shape) + list(patch_shape))
    strides = tuple(list(indexing_strides) + list(patch_strides))

    patches = as_strided(arr, shape=shape, strides=strides)
    return patches


@deprecated("The function feature_extraction.image.extract_patches has been "
            "deprecated in 0.22 and will be removed in 0.24.")
def extract_patches(arr, patch_shape=8, extraction_step=1):
    """Extracts patches of any n-dimensional array in place using strides.

    Given an n-dimensional array it will return a 2n-dimensional array with
    the first n dimensions indexing patch position and the last n indexing
    the patch content. This operation is immediate (O(1)). A reshape
    performed on the first n dimensions will cause numpy to copy data, leading
    to a list of extracted patches.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    arr : ndarray
        n-dimensional array of which patches are to be extracted

    patch_shape : int or tuple of length arr.ndim, default=8
        Indicates the shape of the patches to be extracted. If an
        integer is given, the shape will be a hypercube of
        sidelength given by its value.

    extraction_step : int or tuple of length arr.ndim, default=1
        Indicates step size at which extraction shall be performed.
        If integer is given, then the step is uniform in all dimensions.


    Returns
    -------
    patches : strided ndarray
        2n-dimensional array indexing patches on first n dimensions and
        containing patches on the last n dimensions. These dimensions
        are fake, but this way no data is copied. A simple reshape invokes
        a copying operation to obtain a list of patches:
        result.reshape([-1] + list(patch_shape))
    """
    return _extract_patches(arr, patch_shape=patch_shape,
                            extraction_step=extraction_step)


@_deprecate_positional_args
def extract_patches_2d(image, patch_size, *, max_patches=None,
                       random_state=None):
    """Reshape a 2D image into a collection of patches

    The resulting patches are allocated in a dedicated array.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    image : ndarray of shape (image_height, image_width) or \
        (image_height, image_width, n_channels)
        The original image data. For color images, the last dimension specifies
        the channel: a RGB image would have `n_channels=3`.

    patch_size : tuple of int (patch_height, patch_width)
        The dimensions of one patch.

    max_patches : int or float, default=None
        The maximum number of patches to extract. If `max_patches` is a float
        between 0 and 1, it is taken to be a proportion of the total number
        of patches.

    random_state : int, RandomState instance, default=None
        Determines the random number generator used for random sampling when
        `max_patches` is not None. Use an int to make the randomness
        deterministic.
        See :term:`Glossary <random_state>`.

    Returns
    -------
    patches : array of shape (n_patches, patch_height, patch_width) or \
        (n_patches, patch_height, patch_width, n_channels)
        The collection of patches extracted from the image, where `n_patches`
        is either `max_patches` or the total number of patches that can be
        extracted.

    Examples
    --------
    >>> from sklearn.datasets import load_sample_image
    >>> from sklearn.feature_extraction import image
    >>> # Use the array data from the first image in this dataset:
    >>> one_image = load_sample_image("china.jpg")
    >>> print('Image shape: {}'.format(one_image.shape))
    Image shape: (427, 640, 3)
    >>> patches = image.extract_patches_2d(one_image, (2, 2))
    >>> print('Patches shape: {}'.format(patches.shape))
    Patches shape: (272214, 2, 2, 3)
    >>> # Here are just two of these patches:
    >>> print(patches[1])
    [[[174 201 231]
      [174 201 231]]
     [[173 200 230]
      [173 200 230]]]
    >>> print(patches[800])
    [[[187 214 243]
      [188 215 244]]
     [[187 214 243]
      [188 215 244]]]
    """
    i_h, i_w = image.shape[:2]
    p_h, p_w = patch_size

    if p_h > i_h:
        raise ValueError("Height of the patch should be less than the height"
                         " of the image.")

    if p_w > i_w:
        raise ValueError("Width of the patch should be less than the width"
                         " of the image.")

    image = check_array(image, allow_nd=True)
    image = image.reshape((i_h, i_w, -1))
    n_colors = image.shape[-1]

    extracted_patches = _extract_patches(image,
                                         patch_shape=(p_h, p_w, n_colors),
                                         extraction_step=1)

    n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches)
    if max_patches:
        rng = check_random_state(random_state)
        i_s = rng.randint(i_h - p_h + 1, size=n_patches)
        j_s = rng.randint(i_w - p_w + 1, size=n_patches)
        patches = extracted_patches[i_s, j_s, 0]
    else:
        patches = extracted_patches

    patches = patches.reshape(-1, p_h, p_w, n_colors)
    # remove the color dimension if useless
    if patches.shape[-1] == 1:
        return patches.reshape((n_patches, p_h, p_w))
    else:
        return patches


def reconstruct_from_patches_2d(patches, image_size):
    """Reconstruct the image from all of its patches.

    Patches are assumed to overlap and the image is constructed by filling in
    the patches from left to right, top to bottom, averaging the overlapping
    regions.

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    Parameters
    ----------
    patches : ndarray of shape (n_patches, patch_height, patch_width) or \
        (n_patches, patch_height, patch_width, n_channels)
        The complete set of patches. If the patches contain colour information,
        channels are indexed along the last dimension: RGB patches would
        have `n_channels=3`.

    image_size : tuple of int (image_height, image_width) or \
        (image_height, image_width, n_channels)
        The size of the image that will be reconstructed.

    Returns
    -------
    image : ndarray of shape image_size
        The reconstructed image.
    """
    i_h, i_w = image_size[:2]
    p_h, p_w = patches.shape[1:3]
    img = np.zeros(image_size)
    # compute the dimensions of the patches array
    n_h = i_h - p_h + 1
    n_w = i_w - p_w + 1
    for p, (i, j) in zip(patches, product(range(n_h), range(n_w))):
        img[i:i + p_h, j:j + p_w] += p

    for i in range(i_h):
        for j in range(i_w):
            # divide by the amount of overlap
            # XXX: is this the most efficient way? memory-wise yes, cpu wise?
            img[i, j] /= float(min(i + 1, p_h, i_h - i) *
                               min(j + 1, p_w, i_w - j))
    return img


class PatchExtractor(BaseEstimator):
    """Extracts patches from a collection of images

    Read more in the :ref:`User Guide <image_feature_extraction>`.

    .. versionadded:: 0.9

    Parameters
    ----------
    patch_size : tuple of int (patch_height, patch_width)
        The dimensions of one patch.

    max_patches : int or float, default=None
        The maximum number of patches per image to extract. If max_patches is a
        float in (0, 1), it is taken to mean a proportion of the total number
        of patches.

    random_state : int, RandomState instance, default=None
        Determines the random number generator used for random sampling when
        `max_patches` is not None. Use an int to make the randomness
        deterministic.
        See :term:`Glossary <random_state>`.

    Examples
    --------
    >>> from sklearn.datasets import load_sample_images
    >>> from sklearn.feature_extraction import image
    >>> # Use the array data from the second image in this dataset:
    >>> X = load_sample_images().images[1]
    >>> print('Image shape: {}'.format(X.shape))
    Image shape: (427, 640, 3)
    >>> pe = image.PatchExtractor(patch_size=(2, 2))
    >>> pe_fit = pe.fit(X)
    >>> pe_trans = pe.transform(X)
    >>> print('Patches shape: {}'.format(pe_trans.shape))
    Patches shape: (545706, 2, 2)
    """
    @_deprecate_positional_args
    def __init__(self, *, patch_size=None, max_patches=None,
                 random_state=None):
        self.patch_size = patch_size
        self.max_patches = max_patches
        self.random_state = random_state

    def fit(self, X, y=None):
        """Do nothing and return the estimator unchanged.

        This method is just there to implement the usual API and hence
        work in pipelines.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data.
        """
        return self

    def transform(self, X):
        """Transforms the image samples in X into a matrix of patch data.

        Parameters
        ----------
        X : ndarray of shape (n_samples, image_height, image_width) or \
            (n_samples, image_height, image_width, n_channels)
            Array of images from which to extract patches. For color images,
            the last dimension specifies the channel: a RGB image would have
            `n_channels=3`.

        Returns
        -------
        patches : array of shape (n_patches, patch_height, patch_width) or \
             (n_patches, patch_height, patch_width, n_channels)
             The collection of patches extracted from the images, where
             `n_patches` is either `n_samples * max_patches` or the total
             number of patches that can be extracted.
        """
        self.random_state = check_random_state(self.random_state)
        n_images, i_h, i_w = X.shape[:3]
        X = np.reshape(X, (n_images, i_h, i_w, -1))
        n_channels = X.shape[-1]
        if self.patch_size is None:
            patch_size = i_h // 10, i_w // 10
        else:
            patch_size = self.patch_size

        # compute the dimensions of the patches array
        p_h, p_w = patch_size
        n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, self.max_patches)
        patches_shape = (n_images * n_patches,) + patch_size
        if n_channels > 1:
            patches_shape += (n_channels,)

        # extract the patches
        patches = np.empty(patches_shape)
        for ii, image in enumerate(X):
            patches[ii * n_patches:(ii + 1) * n_patches] = extract_patches_2d(
                image, patch_size, max_patches=self.max_patches,
                random_state=self.random_state)
        return patches

    def _more_tags(self):
        return {'X_types': ['3darray']}