test_common.py
7.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import pytest
from sklearn.base import clone
from sklearn.base import ClassifierMixin
from sklearn.base import is_classifier
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression
from sklearn.linear_model import LogisticRegression, LinearRegression
from sklearn.svm import LinearSVC, LinearSVR, SVC, SVR
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import StackingClassifier, StackingRegressor
from sklearn.ensemble import VotingClassifier, VotingRegressor
@pytest.mark.parametrize(
"X, y, estimator",
[(*make_classification(n_samples=10),
StackingClassifier(estimators=[('lr', LogisticRegression()),
('svm', LinearSVC()),
('rf', RandomForestClassifier())])),
(*make_classification(n_samples=10),
VotingClassifier(estimators=[('lr', LogisticRegression()),
('svm', LinearSVC()),
('rf', RandomForestClassifier())])),
(*make_regression(n_samples=10),
StackingRegressor(estimators=[('lr', LinearRegression()),
('svm', LinearSVR()),
('rf', RandomForestRegressor())])),
(*make_regression(n_samples=10),
VotingRegressor(estimators=[('lr', LinearRegression()),
('svm', LinearSVR()),
('rf', RandomForestRegressor())]))],
ids=['stacking-classifier', 'voting-classifier',
'stacking-regressor', 'voting-regressor']
)
def test_ensemble_heterogeneous_estimators_behavior(X, y, estimator):
# check that the behavior of `estimators`, `estimators_`,
# `named_estimators`, `named_estimators_` is consistent across all
# ensemble classes and when using `set_params()`.
# before fit
assert 'svm' in estimator.named_estimators
assert estimator.named_estimators.svm is estimator.estimators[1][1]
assert estimator.named_estimators.svm is estimator.named_estimators['svm']
# check fitted attributes
estimator.fit(X, y)
assert len(estimator.named_estimators) == 3
assert len(estimator.named_estimators_) == 3
assert (sorted(list(estimator.named_estimators_.keys())) ==
sorted(['lr', 'svm', 'rf']))
# check that set_params() does not add a new attribute
estimator_new_params = clone(estimator)
svm_estimator = SVC() if is_classifier(estimator) else SVR()
estimator_new_params.set_params(svm=svm_estimator).fit(X, y)
assert not hasattr(estimator_new_params, 'svm')
assert (estimator_new_params.named_estimators.lr.get_params() ==
estimator.named_estimators.lr.get_params())
assert (estimator_new_params.named_estimators.rf.get_params() ==
estimator.named_estimators.rf.get_params())
# check the behavior when setting an dropping an estimator
estimator_dropped = clone(estimator)
estimator_dropped.set_params(svm='drop')
estimator_dropped.fit(X, y)
assert len(estimator_dropped.named_estimators) == 3
assert estimator_dropped.named_estimators.svm == 'drop'
assert len(estimator_dropped.named_estimators_) == 3
assert (sorted(list(estimator_dropped.named_estimators_.keys())) ==
sorted(['lr', 'svm', 'rf']))
for sub_est in estimator_dropped.named_estimators_:
# check that the correspondence is correct
assert not isinstance(sub_est, type(estimator.named_estimators.svm))
# check that we can set the parameters of the underlying classifier
estimator.set_params(svm__C=10.0)
estimator.set_params(rf__max_depth=5)
assert (estimator.get_params()['svm__C'] ==
estimator.get_params()['svm'].get_params()['C'])
assert (estimator.get_params()['rf__max_depth'] ==
estimator.get_params()['rf'].get_params()['max_depth'])
@pytest.mark.parametrize(
"Ensemble",
[StackingClassifier, VotingClassifier, StackingRegressor, VotingRegressor]
)
def test_ensemble_heterogeneous_estimators_type(Ensemble):
# check that ensemble will fail during validation if the underlying
# estimators are not of the same type (i.e. classifier or regressor)
if issubclass(Ensemble, ClassifierMixin):
X, y = make_classification(n_samples=10)
estimators = [('lr', LinearRegression())]
ensemble_type = 'classifier'
else:
X, y = make_regression(n_samples=10)
estimators = [('lr', LogisticRegression())]
ensemble_type = 'regressor'
ensemble = Ensemble(estimators=estimators)
err_msg = "should be a {}".format(ensemble_type)
with pytest.raises(ValueError, match=err_msg):
ensemble.fit(X, y)
@pytest.mark.parametrize(
"X, y, Ensemble",
[(*make_classification(n_samples=10), StackingClassifier),
(*make_classification(n_samples=10), VotingClassifier),
(*make_regression(n_samples=10), StackingRegressor),
(*make_regression(n_samples=10), VotingRegressor)]
)
def test_ensemble_heterogeneous_estimators_name_validation(X, y, Ensemble):
# raise an error when the name contains dunder
if issubclass(Ensemble, ClassifierMixin):
estimators = [('lr__', LogisticRegression())]
else:
estimators = [('lr__', LinearRegression())]
ensemble = Ensemble(estimators=estimators)
err_msg = r"Estimator names must not contain __: got \['lr__'\]"
with pytest.raises(ValueError, match=err_msg):
ensemble.fit(X, y)
# raise an error when the name is not unique
if issubclass(Ensemble, ClassifierMixin):
estimators = [('lr', LogisticRegression()),
('lr', LogisticRegression())]
else:
estimators = [('lr', LinearRegression()),
('lr', LinearRegression())]
ensemble = Ensemble(estimators=estimators)
err_msg = r"Names provided are not unique: \['lr', 'lr'\]"
with pytest.raises(ValueError, match=err_msg):
ensemble.fit(X, y)
# raise an error when the name conflicts with the parameters
if issubclass(Ensemble, ClassifierMixin):
estimators = [('estimators', LogisticRegression())]
else:
estimators = [('estimators', LinearRegression())]
ensemble = Ensemble(estimators=estimators)
err_msg = "Estimator names conflict with constructor arguments"
with pytest.raises(ValueError, match=err_msg):
ensemble.fit(X, y)
@pytest.mark.parametrize(
"X, y, estimator",
[(*make_classification(n_samples=10),
StackingClassifier(estimators=[('lr', LogisticRegression())])),
(*make_classification(n_samples=10),
VotingClassifier(estimators=[('lr', LogisticRegression())])),
(*make_regression(n_samples=10),
StackingRegressor(estimators=[('lr', LinearRegression())])),
(*make_regression(n_samples=10),
VotingRegressor(estimators=[('lr', LinearRegression())]))],
ids=['stacking-classifier', 'voting-classifier',
'stacking-regressor', 'voting-regressor']
)
def test_ensemble_heterogeneous_estimators_all_dropped(X, y, estimator):
# check that we raise a consistent error when all estimators are
# dropped
estimator.set_params(lr='drop')
with pytest.raises(ValueError, match="All estimators are dropped."):
estimator.fit(X, y)