test_bagging.py 33.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
"""
Testing for the bagging ensemble module (sklearn.ensemble.bagging).
"""

# Author: Gilles Louppe
# License: BSD 3 clause

import numpy as np
import joblib

from sklearn.base import BaseEstimator

from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_raises
from sklearn.utils._testing import assert_warns
from sklearn.utils._testing import assert_warns_message
from sklearn.utils._testing import assert_raise_message
from sklearn.utils._testing import ignore_warnings

from sklearn.dummy import DummyClassifier, DummyRegressor
from sklearn.model_selection import GridSearchCV, ParameterGrid
from sklearn.ensemble import BaggingClassifier, BaggingRegressor
from sklearn.linear_model import Perceptron, LogisticRegression
from sklearn.neighbors import KNeighborsClassifier, KNeighborsRegressor
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.svm import SVC, SVR
from sklearn.random_projection import SparseRandomProjection
from sklearn.pipeline import make_pipeline
from sklearn.feature_selection import SelectKBest
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_diabetes, load_iris, make_hastie_10_2
from sklearn.utils import check_random_state
from sklearn.preprocessing import FunctionTransformer

from scipy.sparse import csc_matrix, csr_matrix

rng = check_random_state(0)

# also load the iris dataset
# and randomly permute it
iris = load_iris()
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]

# also load the diabetes dataset
# and randomly permute it
diabetes = load_diabetes()
perm = rng.permutation(diabetes.target.size)
diabetes.data = diabetes.data[perm]
diabetes.target = diabetes.target[perm]


# TODO: Remove in 0.24 when DummyClassifier's `strategy` default updates
@ignore_warnings(category=FutureWarning)
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC()]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test)


def test_sparse_classification():
    # Check classification for various parameter settings on sparse input.

    class CustomSVC(SVC):
        """SVC variant that records the nature of the training set"""

        def fit(self, X, y):
            super().fit(X, y)
            self.data_type_ = type(X)
            return self

    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    parameter_sets = [
        {"max_samples": 0.5,
         "max_features": 2,
         "bootstrap": True,
         "bootstrap_features": True},
        {"max_samples": 1.0,
         "max_features": 4,
         "bootstrap": True,
         "bootstrap_features": True},
        {"max_features": 2,
         "bootstrap": False,
         "bootstrap_features": True},
        {"max_samples": 0.5,
         "bootstrap": True,
         "bootstrap_features": False},
    ]

    for sparse_format in [csc_matrix, csr_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)
        for params in parameter_sets:
            for f in ['predict', 'predict_proba', 'predict_log_proba', 'decision_function']:
                # Trained on sparse format
                sparse_classifier = BaggingClassifier(
                    base_estimator=CustomSVC(decision_function_shape='ovr'),
                    random_state=1,
                    **params
                ).fit(X_train_sparse, y_train)
                sparse_results = getattr(sparse_classifier, f)(X_test_sparse)

                # Trained on dense format
                dense_classifier = BaggingClassifier(
                    base_estimator=CustomSVC(decision_function_shape='ovr'),
                    random_state=1,
                    **params
                ).fit(X_train, y_train)
                dense_results = getattr(dense_classifier, f)(X_test)
                assert_array_almost_equal(sparse_results, dense_results)

            sparse_type = type(X_train_sparse)
            types = [i.data_type_ for i in sparse_classifier.estimators_]

            assert all([t == sparse_type for t in types])


def test_regression():
    # Check regression for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data[:50],
                                                        diabetes.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [0.5, 1.0],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyRegressor(),
                           DecisionTreeRegressor(),
                           KNeighborsRegressor(),
                           SVR()]:
        for params in grid:
            BaggingRegressor(base_estimator=base_estimator,
                             random_state=rng,
                             **params).fit(X_train, y_train).predict(X_test)


def test_sparse_regression():
    # Check regression for various parameter settings on sparse input.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data[:50],
                                                        diabetes.target[:50],
                                                        random_state=rng)

    class CustomSVR(SVR):
        """SVC variant that records the nature of the training set"""

        def fit(self, X, y):
            super().fit(X, y)
            self.data_type_ = type(X)
            return self

    parameter_sets = [
        {"max_samples": 0.5,
         "max_features": 2,
         "bootstrap": True,
         "bootstrap_features": True},
        {"max_samples": 1.0,
         "max_features": 4,
         "bootstrap": True,
         "bootstrap_features": True},
        {"max_features": 2,
         "bootstrap": False,
         "bootstrap_features": True},
        {"max_samples": 0.5,
         "bootstrap": True,
         "bootstrap_features": False},
    ]

    for sparse_format in [csc_matrix, csr_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)
        for params in parameter_sets:

            # Trained on sparse format
            sparse_classifier = BaggingRegressor(
                base_estimator=CustomSVR(),
                random_state=1,
                **params
            ).fit(X_train_sparse, y_train)
            sparse_results = sparse_classifier.predict(X_test_sparse)

            # Trained on dense format
            dense_results = BaggingRegressor(
                base_estimator=CustomSVR(),
                random_state=1,
                **params
            ).fit(X_train, y_train).predict(X_test)

            sparse_type = type(X_train_sparse)
            types = [i.data_type_ for i in sparse_classifier.estimators_]

            assert_array_almost_equal(sparse_results, dense_results)
            assert all([t == sparse_type for t in types])
            assert_array_almost_equal(sparse_results, dense_results)


class DummySizeEstimator(BaseEstimator):

    def fit(self, X, y):
        self.training_size_ = X.shape[0]
        self.training_hash_ = joblib.hash(X)


def test_bootstrap_samples():
    # Test that bootstrapping samples generate non-perfect base estimators.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    base_estimator = DecisionTreeRegressor().fit(X_train, y_train)

    # without bootstrap, all trees are perfect on the training set
    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_samples=1.0,
                                bootstrap=False,
                                random_state=rng).fit(X_train, y_train)

    assert (base_estimator.score(X_train, y_train) ==
                 ensemble.score(X_train, y_train))

    # with bootstrap, trees are no longer perfect on the training set
    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_samples=1.0,
                                bootstrap=True,
                                random_state=rng).fit(X_train, y_train)

    assert (base_estimator.score(X_train, y_train) >
                   ensemble.score(X_train, y_train))

    # check that each sampling correspond to a complete bootstrap resample.
    # the size of each bootstrap should be the same as the input data but
    # the data should be different (checked using the hash of the data).
    ensemble = BaggingRegressor(base_estimator=DummySizeEstimator(),
                                bootstrap=True).fit(X_train, y_train)
    training_hash = []
    for estimator in ensemble.estimators_:
        assert estimator.training_size_ == X_train.shape[0]
        training_hash.append(estimator.training_hash_)
    assert len(set(training_hash)) == len(training_hash)


def test_bootstrap_features():
    # Test that bootstrapping features may generate duplicate features.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=False,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert diabetes.data.shape[1] == np.unique(features).shape[0]

    ensemble = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                max_features=1.0,
                                bootstrap_features=True,
                                random_state=rng).fit(X_train, y_train)

    for features in ensemble.estimators_features_:
        assert diabetes.data.shape[1] > np.unique(features).shape[0]


def test_probability():
    # Predict probabilities.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    with np.errstate(divide="ignore", invalid="ignore"):
        # Normal case
        ensemble = BaggingClassifier(base_estimator=DecisionTreeClassifier(),
                                     random_state=rng).fit(X_train, y_train)

        assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test),
                                         axis=1),
                                  np.ones(len(X_test)))

        assert_array_almost_equal(ensemble.predict_proba(X_test),
                                  np.exp(ensemble.predict_log_proba(X_test)))

        # Degenerate case, where some classes are missing
        ensemble = BaggingClassifier(base_estimator=LogisticRegression(),
                                     random_state=rng,
                                     max_samples=5).fit(X_train, y_train)

        assert_array_almost_equal(np.sum(ensemble.predict_proba(X_test),
                                         axis=1),
                                  np.ones(len(X_test)))

        assert_array_almost_equal(ensemble.predict_proba(X_test),
                                  np.exp(ensemble.predict_log_proba(X_test)))


def test_oob_score_classification():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    for base_estimator in [DecisionTreeClassifier(), SVC()]:
        clf = BaggingClassifier(base_estimator=base_estimator,
                                n_estimators=100,
                                bootstrap=True,
                                oob_score=True,
                                random_state=rng).fit(X_train, y_train)

        test_score = clf.score(X_test, y_test)

        assert abs(test_score - clf.oob_score_) < 0.1

        # Test with few estimators
        assert_warns(UserWarning,
                     BaggingClassifier(base_estimator=base_estimator,
                                       n_estimators=1,
                                       bootstrap=True,
                                       oob_score=True,
                                       random_state=rng).fit,
                     X_train,
                     y_train)


def test_oob_score_regression():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    clf = BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                           n_estimators=50,
                           bootstrap=True,
                           oob_score=True,
                           random_state=rng).fit(X_train, y_train)

    test_score = clf.score(X_test, y_test)

    assert abs(test_score - clf.oob_score_) < 0.1

    # Test with few estimators
    assert_warns(UserWarning,
                 BaggingRegressor(base_estimator=DecisionTreeRegressor(),
                                  n_estimators=1,
                                  bootstrap=True,
                                  oob_score=True,
                                  random_state=rng).fit,
                 X_train,
                 y_train)


def test_single_estimator():
    # Check singleton ensembles.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    clf1 = BaggingRegressor(base_estimator=KNeighborsRegressor(),
                            n_estimators=1,
                            bootstrap=False,
                            bootstrap_features=False,
                            random_state=rng).fit(X_train, y_train)

    clf2 = KNeighborsRegressor().fit(X_train, y_train)

    assert_array_almost_equal(clf1.predict(X_test), clf2.predict(X_test))


def test_error():
    # Test that it gives proper exception on deficient input.
    X, y = iris.data, iris.target
    base = DecisionTreeClassifier()

    # Test max_samples
    assert_raises(ValueError,
                  BaggingClassifier(base, max_samples=-1).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_samples=0.0).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_samples=2.0).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_samples=1000).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_samples="foobar").fit, X, y)

    # Test max_features
    assert_raises(ValueError,
                  BaggingClassifier(base, max_features=-1).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_features=0.0).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_features=2.0).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_features=5).fit, X, y)
    assert_raises(ValueError,
                  BaggingClassifier(base, max_features="foobar").fit, X, y)

    # Test support of decision_function
    assert not hasattr(BaggingClassifier(base).fit(X, y), 'decision_function')


def test_parallel_classification():
    # Check parallel classification.
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    # predict_proba
    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict_proba(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=1,
                                 random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict_proba(X_test)
    assert_array_almost_equal(y1, y3)

    # decision_function
    ensemble = BaggingClassifier(SVC(decision_function_shape='ovr'),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    decisions1 = ensemble.decision_function(X_test)
    ensemble.set_params(n_jobs=2)
    decisions2 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions2)

    X_err = np.hstack((X_test, np.zeros((X_test.shape[0], 1))))
    assert_raise_message(ValueError, "Number of features of the model "
                         "must match the input. Model n_features is {0} "
                         "and input n_features is {1} "
                         "".format(X_test.shape[1], X_err.shape[1]),
                         ensemble.decision_function, X_err)

    ensemble = BaggingClassifier(SVC(decision_function_shape='ovr'),
                                 n_jobs=1,
                                 random_state=0).fit(X_train, y_train)

    decisions3 = ensemble.decision_function(X_test)
    assert_array_almost_equal(decisions1, decisions3)


def test_parallel_regression():
    # Check parallel regression.
    rng = check_random_state(0)

    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    ensemble.set_params(n_jobs=1)
    y1 = ensemble.predict(X_test)
    ensemble.set_params(n_jobs=2)
    y2 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y2)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=1,
                                random_state=0).fit(X_train, y_train)

    y3 = ensemble.predict(X_test)
    assert_array_almost_equal(y1, y3)


def test_gridsearch():
    # Check that bagging ensembles can be grid-searched.
    # Transform iris into a binary classification task
    X, y = iris.data, iris.target
    y[y == 2] = 1

    # Grid search with scoring based on decision_function
    parameters = {'n_estimators': (1, 2),
                  'base_estimator__C': (1, 2)}

    GridSearchCV(BaggingClassifier(SVC()),
                 parameters,
                 scoring="roc_auc").fit(X, y)


def test_base_estimator():
    # Check base_estimator and its default values.
    rng = check_random_state(0)

    # Classification
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    ensemble = BaggingClassifier(None,
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeClassifier)

    ensemble = BaggingClassifier(DecisionTreeClassifier(),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeClassifier)

    ensemble = BaggingClassifier(Perceptron(),
                                 n_jobs=3,
                                 random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, Perceptron)

    # Regression
    X_train, X_test, y_train, y_test = train_test_split(diabetes.data,
                                                        diabetes.target,
                                                        random_state=rng)

    ensemble = BaggingRegressor(None,
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeRegressor)

    ensemble = BaggingRegressor(DecisionTreeRegressor(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)

    assert isinstance(ensemble.base_estimator_, DecisionTreeRegressor)

    ensemble = BaggingRegressor(SVR(),
                                n_jobs=3,
                                random_state=0).fit(X_train, y_train)
    assert isinstance(ensemble.base_estimator_, SVR)


def test_bagging_with_pipeline():
    estimator = BaggingClassifier(make_pipeline(SelectKBest(k=1),
                                                DecisionTreeClassifier()),
                                  max_features=2)
    estimator.fit(iris.data, iris.target)
    assert isinstance(estimator[0].steps[-1][1].random_state, int)


class DummyZeroEstimator(BaseEstimator):

    def fit(self, X, y):
        self.classes_ = np.unique(y)
        return self

    def predict(self, X):
        return self.classes_[np.zeros(X.shape[0], dtype=int)]


def test_bagging_sample_weight_unsupported_but_passed():
    estimator = BaggingClassifier(DummyZeroEstimator())
    rng = check_random_state(0)

    estimator.fit(iris.data, iris.target).predict(iris.data)
    assert_raises(ValueError, estimator.fit, iris.data, iris.target,
                  sample_weight=rng.randint(10, size=(iris.data.shape[0])))


def test_warm_start(random_state=42):
    # Test if fitting incrementally with warm start gives a forest of the
    # right size and the same results as a normal fit.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)

    clf_ws = None
    for n_estimators in [5, 10]:
        if clf_ws is None:
            clf_ws = BaggingClassifier(n_estimators=n_estimators,
                                       random_state=random_state,
                                       warm_start=True)
        else:
            clf_ws.set_params(n_estimators=n_estimators)
        clf_ws.fit(X, y)
        assert len(clf_ws) == n_estimators

    clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state,
                                  warm_start=False)
    clf_no_ws.fit(X, y)

    assert (set([tree.random_state for tree in clf_ws]) ==
                 set([tree.random_state for tree in clf_no_ws]))


def test_warm_start_smaller_n_estimators():
    # Test if warm start'ed second fit with smaller n_estimators raises error.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    clf = BaggingClassifier(n_estimators=5, warm_start=True)
    clf.fit(X, y)
    clf.set_params(n_estimators=4)
    assert_raises(ValueError, clf.fit, X, y)


def test_warm_start_equal_n_estimators():
    # Test that nothing happens when fitting without increasing n_estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83)
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    # modify X to nonsense values, this should not change anything
    X_train += 1.

    assert_warns_message(UserWarning,
                         "Warm-start fitting without increasing n_estimators does not",
                         clf.fit, X_train, y_train)
    assert_array_equal(y_pred, clf.predict(X_test))


def test_warm_start_equivalence():
    # warm started classifier with 5+5 estimators should be equivalent to
    # one classifier with 10 estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf_ws = BaggingClassifier(n_estimators=5, warm_start=True,
                               random_state=3141)
    clf_ws.fit(X_train, y_train)
    clf_ws.set_params(n_estimators=10)
    clf_ws.fit(X_train, y_train)
    y1 = clf_ws.predict(X_test)

    clf = BaggingClassifier(n_estimators=10, warm_start=False,
                            random_state=3141)
    clf.fit(X_train, y_train)
    y2 = clf.predict(X_test)

    assert_array_almost_equal(y1, y2)


def test_warm_start_with_oob_score_fails():
    # Check using oob_score and warm_start simultaneously fails
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    clf = BaggingClassifier(n_estimators=5, warm_start=True, oob_score=True)
    assert_raises(ValueError, clf.fit, X, y)


def test_oob_score_removed_on_warm_start():
    X, y = make_hastie_10_2(n_samples=2000, random_state=1)

    clf = BaggingClassifier(n_estimators=50, oob_score=True)
    clf.fit(X, y)

    clf.set_params(warm_start=True, oob_score=False, n_estimators=100)
    clf.fit(X, y)

    assert_raises(AttributeError, getattr, clf, "oob_score_")


def test_oob_score_consistency():
    # Make sure OOB scores are identical when random_state, estimator, and
    # training data are fixed and fitting is done twice
    X, y = make_hastie_10_2(n_samples=200, random_state=1)
    bagging = BaggingClassifier(KNeighborsClassifier(), max_samples=0.5,
                                max_features=0.5, oob_score=True,
                                random_state=1)
    assert bagging.fit(X, y).oob_score_ == bagging.fit(X, y).oob_score_


def test_estimators_samples():
    # Check that format of estimators_samples_ is correct and that results
    # generated at fit time can be identically reproduced at a later time
    # using data saved in object attributes.
    X, y = make_hastie_10_2(n_samples=200, random_state=1)
    bagging = BaggingClassifier(LogisticRegression(), max_samples=0.5,
                                max_features=0.5, random_state=1,
                                bootstrap=False)
    bagging.fit(X, y)

    # Get relevant attributes
    estimators_samples = bagging.estimators_samples_
    estimators_features = bagging.estimators_features_
    estimators = bagging.estimators_

    # Test for correct formatting
    assert len(estimators_samples) == len(estimators)
    assert len(estimators_samples[0]) == len(X) // 2
    assert estimators_samples[0].dtype.kind == 'i'

    # Re-fit single estimator to test for consistent sampling
    estimator_index = 0
    estimator_samples = estimators_samples[estimator_index]
    estimator_features = estimators_features[estimator_index]
    estimator = estimators[estimator_index]

    X_train = (X[estimator_samples])[:, estimator_features]
    y_train = y[estimator_samples]

    orig_coefs = estimator.coef_
    estimator.fit(X_train, y_train)
    new_coefs = estimator.coef_

    assert_array_almost_equal(orig_coefs, new_coefs)


def test_estimators_samples_deterministic():
    # This test is a regression test to check that with a random step
    # (e.g. SparseRandomProjection) and a given random state, the results
    # generated at fit time can be identically reproduced at a later time using
    # data saved in object attributes. Check issue #9524 for full discussion.

    iris = load_iris()
    X, y = iris.data, iris.target

    base_pipeline = make_pipeline(SparseRandomProjection(n_components=2),
                                  LogisticRegression())
    clf = BaggingClassifier(base_estimator=base_pipeline,
                            max_samples=0.5,
                            random_state=0)
    clf.fit(X, y)
    pipeline_estimator_coef = clf.estimators_[0].steps[-1][1].coef_.copy()

    estimator = clf.estimators_[0]
    estimator_sample = clf.estimators_samples_[0]
    estimator_feature = clf.estimators_features_[0]

    X_train = (X[estimator_sample])[:, estimator_feature]
    y_train = y[estimator_sample]

    estimator.fit(X_train, y_train)
    assert_array_equal(estimator.steps[-1][1].coef_, pipeline_estimator_coef)


def test_max_samples_consistency():
    # Make sure validated max_samples and original max_samples are identical
    # when valid integer max_samples supplied by user
    max_samples = 100
    X, y = make_hastie_10_2(n_samples=2*max_samples, random_state=1)
    bagging = BaggingClassifier(KNeighborsClassifier(),
                                max_samples=max_samples,
                                max_features=0.5, random_state=1)
    bagging.fit(X, y)
    assert bagging._max_samples == max_samples


def test_set_oob_score_label_encoding():
    # Make sure the oob_score doesn't change when the labels change
    # See: https://github.com/scikit-learn/scikit-learn/issues/8933
    random_state = 5
    X = [[-1], [0], [1]] * 5
    Y1 = ['A', 'B', 'C'] * 5
    Y2 = [-1, 0, 1] * 5
    Y3 = [0, 1, 2] * 5
    x1 = BaggingClassifier(oob_score=True,
                           random_state=random_state).fit(X, Y1).oob_score_
    x2 = BaggingClassifier(oob_score=True,
                           random_state=random_state).fit(X, Y2).oob_score_
    x3 = BaggingClassifier(oob_score=True,
                           random_state=random_state).fit(X, Y3).oob_score_
    assert [x1, x2] == [x3, x3]


def replace(X):
    X = X.astype('float', copy=True)
    X[~np.isfinite(X)] = 0
    return X


def test_bagging_regressor_with_missing_inputs():
    # Check that BaggingRegressor can accept X with missing/infinite data
    X = np.array([
        [1, 3, 5],
        [2, None, 6],
        [2, np.nan, 6],
        [2, np.inf, 6],
        [2, np.NINF, 6],
    ])
    y_values = [
        np.array([2, 3, 3, 3, 3]),
        np.array([
            [2, 1, 9],
            [3, 6, 8],
            [3, 6, 8],
            [3, 6, 8],
            [3, 6, 8],
        ])
    ]
    for y in y_values:
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(
            FunctionTransformer(replace), regressor
        )
        pipeline.fit(X, y).predict(X)
        bagging_regressor = BaggingRegressor(pipeline)
        y_hat = bagging_regressor.fit(X, y).predict(X)
        assert y.shape == y_hat.shape

        # Verify that exceptions can be raised by wrapper regressor
        regressor = DecisionTreeRegressor()
        pipeline = make_pipeline(regressor)
        assert_raises(ValueError, pipeline.fit, X, y)
        bagging_regressor = BaggingRegressor(pipeline)
        assert_raises(ValueError, bagging_regressor.fit, X, y)


def test_bagging_classifier_with_missing_inputs():
    # Check that BaggingClassifier can accept X with missing/infinite data
    X = np.array([
        [1, 3, 5],
        [2, None, 6],
        [2, np.nan, 6],
        [2, np.inf, 6],
        [2, np.NINF, 6],
    ])
    y = np.array([3, 6, 6, 6, 6])
    classifier = DecisionTreeClassifier()
    pipeline = make_pipeline(
        FunctionTransformer(replace), classifier
    )
    pipeline.fit(X, y).predict(X)
    bagging_classifier = BaggingClassifier(pipeline)
    bagging_classifier.fit(X, y)
    y_hat = bagging_classifier.predict(X)
    assert y.shape == y_hat.shape
    bagging_classifier.predict_log_proba(X)
    bagging_classifier.predict_proba(X)

    # Verify that exceptions can be raised by wrapper classifier
    classifier = DecisionTreeClassifier()
    pipeline = make_pipeline(classifier)
    assert_raises(ValueError, pipeline.fit, X, y)
    bagging_classifier = BaggingClassifier(pipeline)
    assert_raises(ValueError, bagging_classifier.fit, X, y)


def test_bagging_small_max_features():
    # Check that Bagging estimator can accept low fractional max_features

    X = np.array([[1, 2], [3, 4]])
    y = np.array([1, 0])

    bagging = BaggingClassifier(LogisticRegression(),
                                max_features=0.3, random_state=1)
    bagging.fit(X, y)


def test_bagging_get_estimators_indices():
    # Check that Bagging estimator can generate sample indices properly
    # Non-regression test for:
    # https://github.com/scikit-learn/scikit-learn/issues/16436

    rng = np.random.RandomState(0)
    X = rng.randn(13, 4)
    y = np.arange(13)

    class MyEstimator(DecisionTreeRegressor):
        """An estimator which stores y indices information at fit."""
        def fit(self, X, y):
            self._sample_indices = y

    clf = BaggingRegressor(base_estimator=MyEstimator(),
                           n_estimators=1, random_state=0)
    clf.fit(X, y)

    assert_array_equal(clf.estimators_[0]._sample_indices,
                       clf.estimators_samples_[0])