_forest.py 92.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
"""
Forest of trees-based ensemble methods.

Those methods include random forests and extremely randomized trees.

The module structure is the following:

- The ``BaseForest`` base class implements a common ``fit`` method for all
  the estimators in the module. The ``fit`` method of the base ``Forest``
  class calls the ``fit`` method of each sub-estimator on random samples
  (with replacement, a.k.a. bootstrap) of the training set.

  The init of the sub-estimator is further delegated to the
  ``BaseEnsemble`` constructor.

- The ``ForestClassifier`` and ``ForestRegressor`` base classes further
  implement the prediction logic by computing an average of the predicted
  outcomes of the sub-estimators.

- The ``RandomForestClassifier`` and ``RandomForestRegressor`` derived
  classes provide the user with concrete implementations of
  the forest ensemble method using classical, deterministic
  ``DecisionTreeClassifier`` and ``DecisionTreeRegressor`` as
  sub-estimator implementations.

- The ``ExtraTreesClassifier`` and ``ExtraTreesRegressor`` derived
  classes provide the user with concrete implementations of the
  forest ensemble method using the extremely randomized trees
  ``ExtraTreeClassifier`` and ``ExtraTreeRegressor`` as
  sub-estimator implementations.

Single and multi-output problems are both handled.
"""

# Authors: Gilles Louppe <g.louppe@gmail.com>
#          Brian Holt <bdholt1@gmail.com>
#          Joly Arnaud <arnaud.v.joly@gmail.com>
#          Fares Hedayati <fares.hedayati@gmail.com>
#
# License: BSD 3 clause


import numbers
from warnings import catch_warnings, simplefilter, warn
import threading

from abc import ABCMeta, abstractmethod
import numpy as np
from scipy.sparse import issparse
from scipy.sparse import hstack as sparse_hstack
from joblib import Parallel, delayed

from ..base import ClassifierMixin, RegressorMixin, MultiOutputMixin
from ..metrics import r2_score
from ..preprocessing import OneHotEncoder
from ..tree import (DecisionTreeClassifier, DecisionTreeRegressor,
                    ExtraTreeClassifier, ExtraTreeRegressor)
from ..tree._tree import DTYPE, DOUBLE
from ..utils import check_random_state, check_array, compute_sample_weight
from ..exceptions import DataConversionWarning
from ._base import BaseEnsemble, _partition_estimators
from ..utils.fixes import _joblib_parallel_args
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted, _check_sample_weight
from ..utils.validation import _deprecate_positional_args


__all__ = ["RandomForestClassifier",
           "RandomForestRegressor",
           "ExtraTreesClassifier",
           "ExtraTreesRegressor",
           "RandomTreesEmbedding"]

MAX_INT = np.iinfo(np.int32).max


def _get_n_samples_bootstrap(n_samples, max_samples):
    """
    Get the number of samples in a bootstrap sample.

    Parameters
    ----------
    n_samples : int
        Number of samples in the dataset.
    max_samples : int or float
        The maximum number of samples to draw from the total available:
            - if float, this indicates a fraction of the total and should be
              the interval `(0, 1)`;
            - if int, this indicates the exact number of samples;
            - if None, this indicates the total number of samples.

    Returns
    -------
    n_samples_bootstrap : int
        The total number of samples to draw for the bootstrap sample.
    """
    if max_samples is None:
        return n_samples

    if isinstance(max_samples, numbers.Integral):
        if not (1 <= max_samples <= n_samples):
            msg = "`max_samples` must be in range 1 to {} but got value {}"
            raise ValueError(msg.format(n_samples, max_samples))
        return max_samples

    if isinstance(max_samples, numbers.Real):
        if not (0 < max_samples < 1):
            msg = "`max_samples` must be in range (0, 1) but got value {}"
            raise ValueError(msg.format(max_samples))
        return int(round(n_samples * max_samples))

    msg = "`max_samples` should be int or float, but got type '{}'"
    raise TypeError(msg.format(type(max_samples)))


def _generate_sample_indices(random_state, n_samples, n_samples_bootstrap):
    """
    Private function used to _parallel_build_trees function."""

    random_instance = check_random_state(random_state)
    sample_indices = random_instance.randint(0, n_samples, n_samples_bootstrap)

    return sample_indices


def _generate_unsampled_indices(random_state, n_samples, n_samples_bootstrap):
    """
    Private function used to forest._set_oob_score function."""
    sample_indices = _generate_sample_indices(random_state, n_samples,
                                              n_samples_bootstrap)
    sample_counts = np.bincount(sample_indices, minlength=n_samples)
    unsampled_mask = sample_counts == 0
    indices_range = np.arange(n_samples)
    unsampled_indices = indices_range[unsampled_mask]

    return unsampled_indices


def _parallel_build_trees(tree, forest, X, y, sample_weight, tree_idx, n_trees,
                          verbose=0, class_weight=None,
                          n_samples_bootstrap=None):
    """
    Private function used to fit a single tree in parallel."""
    if verbose > 1:
        print("building tree %d of %d" % (tree_idx + 1, n_trees))

    if forest.bootstrap:
        n_samples = X.shape[0]
        if sample_weight is None:
            curr_sample_weight = np.ones((n_samples,), dtype=np.float64)
        else:
            curr_sample_weight = sample_weight.copy()

        indices = _generate_sample_indices(tree.random_state, n_samples,
                                           n_samples_bootstrap)
        sample_counts = np.bincount(indices, minlength=n_samples)
        curr_sample_weight *= sample_counts

        if class_weight == 'subsample':
            with catch_warnings():
                simplefilter('ignore', DeprecationWarning)
                curr_sample_weight *= compute_sample_weight('auto', y,
                                                            indices=indices)
        elif class_weight == 'balanced_subsample':
            curr_sample_weight *= compute_sample_weight('balanced', y,
                                                        indices=indices)

        tree.fit(X, y, sample_weight=curr_sample_weight, check_input=False)
    else:
        tree.fit(X, y, sample_weight=sample_weight, check_input=False)

    return tree


class BaseForest(MultiOutputMixin, BaseEnsemble, metaclass=ABCMeta):
    """
    Base class for forests of trees.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=100, *,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None,
                 max_samples=None):
        super().__init__(
            base_estimator=base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params)

        self.bootstrap = bootstrap
        self.oob_score = oob_score
        self.n_jobs = n_jobs
        self.random_state = random_state
        self.verbose = verbose
        self.warm_start = warm_start
        self.class_weight = class_weight
        self.max_samples = max_samples

    def apply(self, X):
        """
        Apply trees in the forest to X, return leaf indices.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        X_leaves : ndarray of shape (n_samples, n_estimators)
            For each datapoint x in X and for each tree in the forest,
            return the index of the leaf x ends up in.
        """
        X = self._validate_X_predict(X)
        results = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                           **_joblib_parallel_args(prefer="threads"))(
            delayed(tree.apply)(X, check_input=False)
            for tree in self.estimators_)

        return np.array(results).T

    def decision_path(self, X):
        """
        Return the decision path in the forest.

        .. versionadded:: 0.18

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        indicator : sparse matrix of shape (n_samples, n_nodes)
            Return a node indicator matrix where non zero elements indicates
            that the samples goes through the nodes. The matrix is of CSR
            format.

        n_nodes_ptr : ndarray of shape (n_estimators + 1,)
            The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
            gives the indicator value for the i-th estimator.

        """
        X = self._validate_X_predict(X)
        indicators = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                              **_joblib_parallel_args(prefer='threads'))(
            delayed(tree.decision_path)(X, check_input=False)
            for tree in self.estimators_)

        n_nodes = [0]
        n_nodes.extend([i.shape[1] for i in indicators])
        n_nodes_ptr = np.array(n_nodes).cumsum()

        return sparse_hstack(indicators).tocsr(), n_nodes_ptr

    def fit(self, X, y, sample_weight=None):
        """
        Build a forest of trees from the training set (X, y).

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, its dtype will be converted
            to ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
        """
        # Validate or convert input data
        if issparse(y):
            raise ValueError(
                "sparse multilabel-indicator for y is not supported."
            )
        X, y = self._validate_data(X, y, multi_output=True,
                                   accept_sparse="csc", dtype=DTYPE)
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)

        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        # Remap output
        self.n_features_ = X.shape[1]

        y = np.atleast_1d(y)
        if y.ndim == 2 and y.shape[1] == 1:
            warn("A column-vector y was passed when a 1d array was"
                 " expected. Please change the shape of y to "
                 "(n_samples,), for example using ravel().",
                 DataConversionWarning, stacklevel=2)

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        y, expanded_class_weight = self._validate_y_class_weight(y)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Get bootstrap sample size
        n_samples_bootstrap = _get_n_samples_bootstrap(
            n_samples=X.shape[0],
            max_samples=self.max_samples
        )

        # Check parameters
        self._validate_estimator()

        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available"
                             " if bootstrap=True")

        random_state = check_random_state(self.random_state)

        if not self.warm_start or not hasattr(self, "estimators_"):
            # Free allocated memory, if any
            self.estimators_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError('n_estimators=%d must be larger or equal to '
                             'len(estimators_)=%d when warm_start==True'
                             % (self.n_estimators, len(self.estimators_)))

        elif n_more_estimators == 0:
            warn("Warm-start fitting without increasing n_estimators does not "
                 "fit new trees.")
        else:
            if self.warm_start and len(self.estimators_) > 0:
                # We draw from the random state to get the random state we
                # would have got if we hadn't used a warm_start.
                random_state.randint(MAX_INT, size=len(self.estimators_))

            trees = [self._make_estimator(append=False,
                                          random_state=random_state)
                     for i in range(n_more_estimators)]

            # Parallel loop: we prefer the threading backend as the Cython code
            # for fitting the trees is internally releasing the Python GIL
            # making threading more efficient than multiprocessing in
            # that case. However, for joblib 0.12+ we respect any
            # parallel_backend contexts set at a higher level,
            # since correctness does not rely on using threads.
            trees = Parallel(n_jobs=self.n_jobs, verbose=self.verbose,
                             **_joblib_parallel_args(prefer='threads'))(
                delayed(_parallel_build_trees)(
                    t, self, X, y, sample_weight, i, len(trees),
                    verbose=self.verbose, class_weight=self.class_weight,
                    n_samples_bootstrap=n_samples_bootstrap)
                for i, t in enumerate(trees))

            # Collect newly grown trees
            self.estimators_.extend(trees)

        if self.oob_score:
            self._set_oob_score(X, y)

        # Decapsulate classes_ attributes
        if hasattr(self, "classes_") and self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self

    @abstractmethod
    def _set_oob_score(self, X, y):
        """
        Calculate out of bag predictions and score."""

    def _validate_y_class_weight(self, y):
        # Default implementation
        return y, None

    def _validate_X_predict(self, X):
        """
        Validate X whenever one tries to predict, apply, predict_proba."""
        check_is_fitted(self)

        return self.estimators_[0]._validate_X_predict(X, check_input=True)

    @property
    def feature_importances_(self):
        """
        The impurity-based feature importances.

        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

        Returns
        -------
        feature_importances_ : ndarray of shape (n_features,)
            The values of this array sum to 1, unless all trees are single node
            trees consisting of only the root node, in which case it will be an
            array of zeros.
        """
        check_is_fitted(self)

        all_importances = Parallel(n_jobs=self.n_jobs,
                                   **_joblib_parallel_args(prefer='threads'))(
            delayed(getattr)(tree, 'feature_importances_')
            for tree in self.estimators_ if tree.tree_.node_count > 1)

        if not all_importances:
            return np.zeros(self.n_features_, dtype=np.float64)

        all_importances = np.mean(all_importances,
                                  axis=0, dtype=np.float64)
        return all_importances / np.sum(all_importances)


def _accumulate_prediction(predict, X, out, lock):
    """
    This is a utility function for joblib's Parallel.

    It can't go locally in ForestClassifier or ForestRegressor, because joblib
    complains that it cannot pickle it when placed there.
    """
    prediction = predict(X, check_input=False)
    with lock:
        if len(out) == 1:
            out[0] += prediction
        else:
            for i in range(len(out)):
                out[i] += prediction[i]


class ForestClassifier(ClassifierMixin, BaseForest, metaclass=ABCMeta):
    """
    Base class for forest of trees-based classifiers.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=100, *,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None,
                 max_samples=None):
        super().__init__(
            base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples)

    def _set_oob_score(self, X, y):
        """
        Compute out-of-bag score."""
        X = check_array(X, dtype=DTYPE, accept_sparse='csr')

        n_classes_ = self.n_classes_
        n_samples = y.shape[0]

        oob_decision_function = []
        oob_score = 0.0
        predictions = [np.zeros((n_samples, n_classes_[k]))
                       for k in range(self.n_outputs_)]

        n_samples_bootstrap = _get_n_samples_bootstrap(
            n_samples, self.max_samples
        )

        for estimator in self.estimators_:
            unsampled_indices = _generate_unsampled_indices(
                estimator.random_state, n_samples, n_samples_bootstrap)
            p_estimator = estimator.predict_proba(X[unsampled_indices, :],
                                                  check_input=False)

            if self.n_outputs_ == 1:
                p_estimator = [p_estimator]

            for k in range(self.n_outputs_):
                predictions[k][unsampled_indices, :] += p_estimator[k]

        for k in range(self.n_outputs_):
            if (predictions[k].sum(axis=1) == 0).any():
                warn("Some inputs do not have OOB scores. "
                     "This probably means too few trees were used "
                     "to compute any reliable oob estimates.")

            decision = (predictions[k] /
                        predictions[k].sum(axis=1)[:, np.newaxis])
            oob_decision_function.append(decision)
            oob_score += np.mean(y[:, k] ==
                                 np.argmax(predictions[k], axis=1), axis=0)

        if self.n_outputs_ == 1:
            self.oob_decision_function_ = oob_decision_function[0]
        else:
            self.oob_decision_function_ = oob_decision_function

        self.oob_score_ = oob_score / self.n_outputs_

    def _validate_y_class_weight(self, y):
        check_classification_targets(y)

        y = np.copy(y)
        expanded_class_weight = None

        if self.class_weight is not None:
            y_original = np.copy(y)

        self.classes_ = []
        self.n_classes_ = []

        y_store_unique_indices = np.zeros(y.shape, dtype=np.int)
        for k in range(self.n_outputs_):
            classes_k, y_store_unique_indices[:, k] = \
                np.unique(y[:, k], return_inverse=True)
            self.classes_.append(classes_k)
            self.n_classes_.append(classes_k.shape[0])
        y = y_store_unique_indices

        if self.class_weight is not None:
            valid_presets = ('balanced', 'balanced_subsample')
            if isinstance(self.class_weight, str):
                if self.class_weight not in valid_presets:
                    raise ValueError('Valid presets for class_weight include '
                                     '"balanced" and "balanced_subsample".'
                                     'Given "%s".'
                                     % self.class_weight)
                if self.warm_start:
                    warn('class_weight presets "balanced" or '
                         '"balanced_subsample" are '
                         'not recommended for warm_start if the fitted data '
                         'differs from the full dataset. In order to use '
                         '"balanced" weights, use compute_class_weight '
                         '("balanced", classes, y). In place of y you can use '
                         'a large enough sample of the full training set '
                         'target to properly estimate the class frequency '
                         'distributions. Pass the resulting weights as the '
                         'class_weight parameter.')

            if (self.class_weight != 'balanced_subsample' or
                    not self.bootstrap):
                if self.class_weight == "balanced_subsample":
                    class_weight = "balanced"
                else:
                    class_weight = self.class_weight
                expanded_class_weight = compute_sample_weight(class_weight,
                                                              y_original)

        return y, expanded_class_weight

    def predict(self, X):
        """
        Predict class for X.

        The predicted class of an input sample is a vote by the trees in
        the forest, weighted by their probability estimates. That is,
        the predicted class is the one with highest mean probability
        estimate across the trees.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The predicted classes.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return self.classes_.take(np.argmax(proba, axis=1), axis=0)

        else:
            n_samples = proba[0].shape[0]
            # all dtypes should be the same, so just take the first
            class_type = self.classes_[0].dtype
            predictions = np.empty((n_samples, self.n_outputs_),
                                   dtype=class_type)

            for k in range(self.n_outputs_):
                predictions[:, k] = self.classes_[k].take(np.argmax(proba[k],
                                                                    axis=1),
                                                          axis=0)

            return predictions

    def predict_proba(self, X):
        """
        Predict class probabilities for X.

        The predicted class probabilities of an input sample are computed as
        the mean predicted class probabilities of the trees in the forest.
        The class probability of a single tree is the fraction of samples of
        the same class in a leaf.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes), or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # avoid storing the output of every estimator by summing them here
        all_proba = [np.zeros((X.shape[0], j), dtype=np.float64)
                     for j in np.atleast_1d(self.n_classes_)]
        lock = threading.Lock()
        Parallel(n_jobs=n_jobs, verbose=self.verbose,
                 **_joblib_parallel_args(require="sharedmem"))(
            delayed(_accumulate_prediction)(e.predict_proba, X, all_proba,
                                            lock)
            for e in self.estimators_)

        for proba in all_proba:
            proba /= len(self.estimators_)

        if len(all_proba) == 1:
            return all_proba[0]
        else:
            return all_proba

    def predict_log_proba(self, X):
        """
        Predict class log-probabilities for X.

        The predicted class log-probabilities of an input sample is computed as
        the log of the mean predicted class probabilities of the trees in the
        forest.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        p : ndarray of shape (n_samples, n_classes), or a list of n_outputs
            such arrays if n_outputs > 1.
            The class probabilities of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        proba = self.predict_proba(X)

        if self.n_outputs_ == 1:
            return np.log(proba)

        else:
            for k in range(self.n_outputs_):
                proba[k] = np.log(proba[k])

            return proba


class ForestRegressor(RegressorMixin, BaseForest, metaclass=ABCMeta):
    """
    Base class for forest of trees-based regressors.

    Warning: This class should not be used directly. Use derived classes
    instead.
    """

    @abstractmethod
    def __init__(self,
                 base_estimator,
                 n_estimators=100, *,
                 estimator_params=tuple(),
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 max_samples=None):
        super().__init__(
            base_estimator,
            n_estimators=n_estimators,
            estimator_params=estimator_params,
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples)

    def predict(self, X):
        """
        Predict regression target for X.

        The predicted regression target of an input sample is computed as the
        mean predicted regression targets of the trees in the forest.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Internally, its dtype will be converted to
            ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csr_matrix``.

        Returns
        -------
        y : ndarray of shape (n_samples,) or (n_samples, n_outputs)
            The predicted values.
        """
        check_is_fitted(self)
        # Check data
        X = self._validate_X_predict(X)

        # Assign chunk of trees to jobs
        n_jobs, _, _ = _partition_estimators(self.n_estimators, self.n_jobs)

        # avoid storing the output of every estimator by summing them here
        if self.n_outputs_ > 1:
            y_hat = np.zeros((X.shape[0], self.n_outputs_), dtype=np.float64)
        else:
            y_hat = np.zeros((X.shape[0]), dtype=np.float64)

        # Parallel loop
        lock = threading.Lock()
        Parallel(n_jobs=n_jobs, verbose=self.verbose,
                 **_joblib_parallel_args(require="sharedmem"))(
            delayed(_accumulate_prediction)(e.predict, X, [y_hat], lock)
            for e in self.estimators_)

        y_hat /= len(self.estimators_)

        return y_hat

    def _set_oob_score(self, X, y):
        """
        Compute out-of-bag scores."""
        X = check_array(X, dtype=DTYPE, accept_sparse='csr')

        n_samples = y.shape[0]

        predictions = np.zeros((n_samples, self.n_outputs_))
        n_predictions = np.zeros((n_samples, self.n_outputs_))

        n_samples_bootstrap = _get_n_samples_bootstrap(
            n_samples, self.max_samples
        )

        for estimator in self.estimators_:
            unsampled_indices = _generate_unsampled_indices(
                estimator.random_state, n_samples, n_samples_bootstrap)
            p_estimator = estimator.predict(
                X[unsampled_indices, :], check_input=False)

            if self.n_outputs_ == 1:
                p_estimator = p_estimator[:, np.newaxis]

            predictions[unsampled_indices, :] += p_estimator
            n_predictions[unsampled_indices, :] += 1

        if (n_predictions == 0).any():
            warn("Some inputs do not have OOB scores. "
                 "This probably means too few trees were used "
                 "to compute any reliable oob estimates.")
            n_predictions[n_predictions == 0] = 1

        predictions /= n_predictions
        self.oob_prediction_ = predictions

        if self.n_outputs_ == 1:
            self.oob_prediction_ = \
                self.oob_prediction_.reshape((n_samples, ))

        self.oob_score_ = 0.0

        for k in range(self.n_outputs_):
            self.oob_score_ += r2_score(y[:, k],
                                        predictions[:, k])

        self.oob_score_ /= self.n_outputs_

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray of shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray of shape (n_target_features)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray of shape (n_samples,)
            The value of the partial dependence function on each grid point.
        """
        grid = np.asarray(grid, dtype=DTYPE, order='C')
        averaged_predictions = np.zeros(shape=grid.shape[0],
                                        dtype=np.float64, order='C')

        for tree in self.estimators_:
            # Note: we don't sum in parallel because the GIL isn't released in
            # the fast method.
            tree.tree_.compute_partial_dependence(
                grid, target_features, averaged_predictions)
        # Average over the forest
        averaged_predictions /= len(self.estimators_)

        return averaged_predictions

class RandomForestClassifier(ForestClassifier):
    """
    A random forest classifier.

    A random forest is a meta estimator that fits a number of decision tree
    classifiers on various sub-samples of the dataset and uses averaging to
    improve the predictive accuracy and control over-fitting.
    The sub-sample size is controlled with the `max_samples` parameter if
    `bootstrap=True` (default), otherwise the whole dataset is used to build
    each tree.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"gini", "entropy"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.
        Note: this parameter is tree-specific.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=sqrt(n_features)`.
        - If "sqrt", then `max_features=sqrt(n_features)` (same as "auto").
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.


    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate
        the generalization accuracy.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int or RandomState, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`the Glossary <warm_start>`.

    class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
            default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that
        weights are computed based on the bootstrap sample for every tree
        grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1)`.

        .. versionadded:: 0.22

    Attributes
    ----------
    base_estimator_ : DecisionTreeClassifier
        The child estimator template used to create the collection of fitted
        sub-estimators.

    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : ndarray of shape (n_classes,) or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_decision_function_ : ndarray of shape (n_samples, n_classes)
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN. This attribute exists
        only when ``oob_score`` is True.

    See Also
    --------
    DecisionTreeClassifier, ExtraTreesClassifier

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    Examples
    --------
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_samples=1000, n_features=4,
    ...                            n_informative=2, n_redundant=0,
    ...                            random_state=0, shuffle=False)
    >>> clf = RandomForestClassifier(max_depth=2, random_state=0)
    >>> clf.fit(X, y)
    RandomForestClassifier(...)
    >>> print(clf.predict([[0, 0, 0, 0]]))
    [1]
    """
    @_deprecate_positional_args
    def __init__(self,
                 n_estimators=100, *,
                 criterion="gini",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 bootstrap=True,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None,
                 ccp_alpha=0.0,
                 max_samples=None):
        super().__init__(
            base_estimator=DecisionTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "min_impurity_decrease", "min_impurity_split",
                              "random_state", "ccp_alpha"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha


class RandomForestRegressor(ForestRegressor):
    """
    A random forest regressor.

    A random forest is a meta estimator that fits a number of classifying
    decision trees on various sub-samples of the dataset and uses averaging
    to improve the predictive accuracy and control over-fitting.
    The sub-sample size is controlled with the `max_samples` parameter if
    `bootstrap=True` (default), otherwise the whole dataset is used to build
    each tree.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"mse", "mae"}, default="mse"
        The function to measure the quality of a split. Supported criteria
        are "mse" for the mean squared error, which is equal to variance
        reduction as feature selection criterion, and "mae" for the mean
        absolute error.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    bootstrap : bool, default=True
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        whether to use out-of-bag samples to estimate
        the R^2 on unseen data.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int or RandomState, default=None
        Controls both the randomness of the bootstrapping of the samples used
        when building trees (if ``bootstrap=True``) and the sampling of the
        features to consider when looking for the best split at each node
        (if ``max_features < n_features``).
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`the Glossary <warm_start>`.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1)`.

        .. versionadded:: 0.22

    Attributes
    ----------
    base_estimator_ : DecisionTreeRegressor
        The child estimator template used to create the collection of fitted
        sub-estimators.

    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_prediction_ : ndarray of shape (n_samples,)
        Prediction computed with out-of-bag estimate on the training set.
        This attribute exists only when ``oob_score`` is True.

    See Also
    --------
    DecisionTreeRegressor, ExtraTreesRegressor

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    The features are always randomly permuted at each split. Therefore,
    the best found split may vary, even with the same training data,
    ``max_features=n_features`` and ``bootstrap=False``, if the improvement
    of the criterion is identical for several splits enumerated during the
    search of the best split. To obtain a deterministic behaviour during
    fitting, ``random_state`` has to be fixed.

    The default value ``max_features="auto"`` uses ``n_features``
    rather than ``n_features / 3``. The latter was originally suggested in
    [1], whereas the former was more recently justified empirically in [2].

    References
    ----------
    .. [1] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

    .. [2] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
           trees", Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.ensemble import RandomForestRegressor
    >>> from sklearn.datasets import make_regression
    >>> X, y = make_regression(n_features=4, n_informative=2,
    ...                        random_state=0, shuffle=False)
    >>> regr = RandomForestRegressor(max_depth=2, random_state=0)
    >>> regr.fit(X, y)
    RandomForestRegressor(...)
    >>> print(regr.predict([[0, 0, 0, 0]]))
    [-8.32987858]
    """
    @_deprecate_positional_args
    def __init__(self,
                 n_estimators=100, *,
                 criterion="mse",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 bootstrap=True,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 ccp_alpha=0.0,
                 max_samples=None):
        super().__init__(
            base_estimator=DecisionTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "min_impurity_decrease", "min_impurity_split",
                              "random_state", "ccp_alpha"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha


class ExtraTreesClassifier(ForestClassifier):
    """
    An extra-trees classifier.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and uses averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"gini", "entropy"}, default="gini"
        The function to measure the quality of a split. Supported criteria are
        "gini" for the Gini impurity and "entropy" for the information gain.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=sqrt(n_features)`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    bootstrap : bool, default=False
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate
        the generalization accuracy.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int, RandomState, default=None
        Controls 3 sources of randomness:

        - the bootstrapping of the samples used when building trees
          (if ``bootstrap=True``)
        - the sampling of the features to consider when looking for the best
          split at each node (if ``max_features < n_features``)
        - the draw of the splits for each of the `max_features`

        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`the Glossary <warm_start>`.

    class_weight : {"balanced", "balanced_subsample"}, dict or list of dicts, \
            default=None
        Weights associated with classes in the form ``{class_label: weight}``.
        If not given, all classes are supposed to have weight one. For
        multi-output problems, a list of dicts can be provided in the same
        order as the columns of y.

        Note that for multioutput (including multilabel) weights should be
        defined for each class of every column in its own dict. For example,
        for four-class multilabel classification weights should be
        [{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}] instead of
        [{1:1}, {2:5}, {3:1}, {4:1}].

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``

        The "balanced_subsample" mode is the same as "balanced" except that
        weights are computed based on the bootstrap sample for every tree
        grown.

        For multi-output, the weights of each column of y will be multiplied.

        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if sample_weight is specified.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1)`.

        .. versionadded:: 0.22

    Attributes
    ----------
    base_estimator_ : ExtraTreesClassifier
        The child estimator template used to create the collection of fitted
        sub-estimators.

    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    classes_ : ndarray of shape (n_classes,) or a list of such arrays
        The classes labels (single output problem), or a list of arrays of
        class labels (multi-output problem).

    n_classes_ : int or list
        The number of classes (single output problem), or a list containing the
        number of classes for each output (multi-output problem).

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_ : int
        The number of features when ``fit`` is performed.

    n_outputs_ : int
        The number of outputs when ``fit`` is performed.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_decision_function_ : ndarray of shape (n_samples, n_classes)
        Decision function computed with out-of-bag estimate on the training
        set. If n_estimators is small it might be possible that a data point
        was never left out during the bootstrap. In this case,
        `oob_decision_function_` might contain NaN. This attribute exists
        only when ``oob_score`` is True.

    See Also
    --------
    sklearn.tree.ExtraTreeClassifier : Base classifier for this ensemble.
    RandomForestClassifier : Ensemble Classifier based on trees with optimal
        splits.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
           trees", Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.ensemble import ExtraTreesClassifier
    >>> from sklearn.datasets import make_classification
    >>> X, y = make_classification(n_features=4, random_state=0)
    >>> clf = ExtraTreesClassifier(n_estimators=100, random_state=0)
    >>> clf.fit(X, y)
    ExtraTreesClassifier(random_state=0)
    >>> clf.predict([[0, 0, 0, 0]])
    array([1])
    """
    @_deprecate_positional_args
    def __init__(self,
                 n_estimators=100, *,
                 criterion="gini",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 class_weight=None,
                 ccp_alpha=0.0,
                 max_samples=None):
        super().__init__(
            base_estimator=ExtraTreeClassifier(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "min_impurity_decrease", "min_impurity_split",
                              "random_state", "ccp_alpha"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            class_weight=class_weight,
            max_samples=max_samples)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha


class ExtraTreesRegressor(ForestRegressor):
    """
    An extra-trees regressor.

    This class implements a meta estimator that fits a number of
    randomized decision trees (a.k.a. extra-trees) on various sub-samples
    of the dataset and uses averaging to improve the predictive accuracy
    and control over-fitting.

    Read more in the :ref:`User Guide <forest>`.

    Parameters
    ----------
    n_estimators : int, default=100
        The number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    criterion : {"mse", "mae"}, default="mse"
        The function to measure the quality of a split. Supported criteria
        are "mse" for the mean squared error, which is equal to variance
        reduction as feature selection criterion, and "mae" for the mean
        absolute error.

        .. versionadded:: 0.18
           Mean Absolute Error (MAE) criterion.

    max_depth : int, default=None
        The maximum depth of the tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` are the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` are the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_features : {"auto", "sqrt", "log2"} int or float, default="auto"
        The number of features to consider when looking for the best split:

        - If int, then consider `max_features` features at each split.
        - If float, then `max_features` is a fraction and
          `int(max_features * n_features)` features are considered at each
          split.
        - If "auto", then `max_features=n_features`.
        - If "sqrt", then `max_features=sqrt(n_features)`.
        - If "log2", then `max_features=log2(n_features)`.
        - If None, then `max_features=n_features`.

        Note: the search for a split does not stop until at least one
        valid partition of the node samples is found, even if it requires to
        effectively inspect more than ``max_features`` features.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    bootstrap : bool, default=False
        Whether bootstrap samples are used when building trees. If False, the
        whole dataset is used to build each tree.

    oob_score : bool, default=False
        Whether to use out-of-bag samples to estimate the R^2 on unseen data.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int or RandomState, default=None
        Controls 3 sources of randomness:

        - the bootstrapping of the samples used when building trees
          (if ``bootstrap=True``)
        - the sampling of the features to consider when looking for the best
          split at each node (if ``max_features < n_features``)
        - the draw of the splits for each of the `max_features`

        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`the Glossary <warm_start>`.

    ccp_alpha : non-negative float, default=0.0
        Complexity parameter used for Minimal Cost-Complexity Pruning. The
        subtree with the largest cost complexity that is smaller than
        ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
        :ref:`minimal_cost_complexity_pruning` for details.

        .. versionadded:: 0.22

    max_samples : int or float, default=None
        If bootstrap is True, the number of samples to draw from X
        to train each base estimator.

        - If None (default), then draw `X.shape[0]` samples.
        - If int, then draw `max_samples` samples.
        - If float, then draw `max_samples * X.shape[0]` samples. Thus,
          `max_samples` should be in the interval `(0, 1)`.

        .. versionadded:: 0.22

    Attributes
    ----------
    base_estimator_ : ExtraTreeRegressor
        The child estimator template used to create the collection of fitted
        sub-estimators.

    estimators_ : list of DecisionTreeRegressor
        The collection of fitted sub-estimators.

    feature_importances_ : ndarray of shape (n_features,)
        The impurity-based feature importances.
        The higher, the more important the feature.
        The importance of a feature is computed as the (normalized)
        total reduction of the criterion brought by that feature.  It is also
        known as the Gini importance.

        Warning: impurity-based feature importances can be misleading for
        high cardinality features (many unique values). See
        :func:`sklearn.inspection.permutation_importance` as an alternative.

    n_features_ : int
        The number of features.

    n_outputs_ : int
        The number of outputs.

    oob_score_ : float
        Score of the training dataset obtained using an out-of-bag estimate.
        This attribute exists only when ``oob_score`` is True.

    oob_prediction_ : ndarray of shape (n_samples,)
        Prediction computed with out-of-bag estimate on the training set.
        This attribute exists only when ``oob_score`` is True.

    See Also
    --------
    sklearn.tree.ExtraTreeRegressor: Base estimator for this ensemble.
    RandomForestRegressor: Ensemble regressor using trees with optimal splits.

    Notes
    -----
    The default values for the parameters controlling the size of the trees
    (e.g. ``max_depth``, ``min_samples_leaf``, etc.) lead to fully grown and
    unpruned trees which can potentially be very large on some data sets. To
    reduce memory consumption, the complexity and size of the trees should be
    controlled by setting those parameter values.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.

    Examples
    --------
    >>> from sklearn.datasets import load_diabetes
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.ensemble import ExtraTreesRegressor
    >>> X, y = load_diabetes(return_X_y=True)
    >>> X_train, X_test, y_train, y_test = train_test_split(
    ...     X, y, random_state=0)
    >>> reg = ExtraTreesRegressor(n_estimators=100, random_state=0).fit(
    ...    X_train, y_train)
    >>> reg.score(X_test, y_test)
    0.2708...
    """
    @_deprecate_positional_args
    def __init__(self,
                 n_estimators=100, *,
                 criterion="mse",
                 max_depth=None,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_features="auto",
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 bootstrap=False,
                 oob_score=False,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False,
                 ccp_alpha=0.0,
                 max_samples=None):
        super().__init__(
            base_estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "min_impurity_decrease", "min_impurity_split",
                              "random_state", "ccp_alpha"),
            bootstrap=bootstrap,
            oob_score=oob_score,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=max_samples)

        self.criterion = criterion
        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_features = max_features
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.ccp_alpha = ccp_alpha


class RandomTreesEmbedding(BaseForest):
    """
    An ensemble of totally random trees.

    An unsupervised transformation of a dataset to a high-dimensional
    sparse representation. A datapoint is coded according to which leaf of
    each tree it is sorted into. Using a one-hot encoding of the leaves,
    this leads to a binary coding with as many ones as there are trees in
    the forest.

    The dimensionality of the resulting representation is
    ``n_out <= n_estimators * max_leaf_nodes``. If ``max_leaf_nodes == None``,
    the number of leaf nodes is at most ``n_estimators * 2 ** max_depth``.

    Read more in the :ref:`User Guide <random_trees_embedding>`.

    Parameters
    ----------
    n_estimators : int, default=100
        Number of trees in the forest.

        .. versionchanged:: 0.22
           The default value of ``n_estimators`` changed from 10 to 100
           in 0.22.

    max_depth : int, default=5
        The maximum depth of each tree. If None, then nodes are expanded until
        all leaves are pure or until all leaves contain less than
        min_samples_split samples.

    min_samples_split : int or float, default=2
        The minimum number of samples required to split an internal node:

        - If int, then consider `min_samples_split` as the minimum number.
        - If float, then `min_samples_split` is a fraction and
          `ceil(min_samples_split * n_samples)` is the minimum
          number of samples for each split.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_samples_leaf : int or float, default=1
        The minimum number of samples required to be at a leaf node.
        A split point at any depth will only be considered if it leaves at
        least ``min_samples_leaf`` training samples in each of the left and
        right branches.  This may have the effect of smoothing the model,
        especially in regression.

        - If int, then consider `min_samples_leaf` as the minimum number.
        - If float, then `min_samples_leaf` is a fraction and
          `ceil(min_samples_leaf * n_samples)` is the minimum
          number of samples for each node.

        .. versionchanged:: 0.18
           Added float values for fractions.

    min_weight_fraction_leaf : float, default=0.0
        The minimum weighted fraction of the sum total of weights (of all
        the input samples) required to be at a leaf node. Samples have
        equal weight when sample_weight is not provided.

    max_leaf_nodes : int, default=None
        Grow trees with ``max_leaf_nodes`` in best-first fashion.
        Best nodes are defined as relative reduction in impurity.
        If None then unlimited number of leaf nodes.

    min_impurity_decrease : float, default=0.0
        A node will be split if this split induces a decrease of the impurity
        greater than or equal to this value.

        The weighted impurity decrease equation is the following::

            N_t / N * (impurity - N_t_R / N_t * right_impurity
                                - N_t_L / N_t * left_impurity)

        where ``N`` is the total number of samples, ``N_t`` is the number of
        samples at the current node, ``N_t_L`` is the number of samples in the
        left child, and ``N_t_R`` is the number of samples in the right child.

        ``N``, ``N_t``, ``N_t_R`` and ``N_t_L`` all refer to the weighted sum,
        if ``sample_weight`` is passed.

        .. versionadded:: 0.19

    min_impurity_split : float, default=None
        Threshold for early stopping in tree growth. A node will split
        if its impurity is above the threshold, otherwise it is a leaf.

        .. deprecated:: 0.19
           ``min_impurity_split`` has been deprecated in favor of
           ``min_impurity_decrease`` in 0.19. The default value of
           ``min_impurity_split`` has changed from 1e-7 to 0 in 0.23 and it
           will be removed in 0.25. Use ``min_impurity_decrease`` instead.

    sparse_output : bool, default=True
        Whether or not to return a sparse CSR matrix, as default behavior,
        or to return a dense array compatible with dense pipeline operators.

    n_jobs : int, default=None
        The number of jobs to run in parallel. :meth:`fit`, :meth:`transform`,
        :meth:`decision_path` and :meth:`apply` are all parallelized over the
        trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
        context. ``-1`` means using all processors. See :term:`Glossary
        <n_jobs>` for more details.

    random_state : int or RandomState, default=None
        Controls the generation of the random `y` used to fit the trees
        and the draw of the splits for each feature at the trees' nodes.
        See :term:`Glossary <random_state>` for details.

    verbose : int, default=0
        Controls the verbosity when fitting and predicting.

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble, otherwise, just fit a whole
        new forest. See :term:`the Glossary <warm_start>`.

    Attributes
    ----------
    estimators_ : list of DecisionTreeClassifier
        The collection of fitted sub-estimators.

    References
    ----------
    .. [1] P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized trees",
           Machine Learning, 63(1), 3-42, 2006.
    .. [2] Moosmann, F. and Triggs, B. and Jurie, F.  "Fast discriminative
           visual codebooks using randomized clustering forests"
           NIPS 2007

    Examples
    --------
    >>> from sklearn.ensemble import RandomTreesEmbedding
    >>> X = [[0,0], [1,0], [0,1], [-1,0], [0,-1]]
    >>> random_trees = RandomTreesEmbedding(
    ...    n_estimators=5, random_state=0, max_depth=1).fit(X)
    >>> X_sparse_embedding = random_trees.transform(X)
    >>> X_sparse_embedding.toarray()
    array([[0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],
           [0., 1., 1., 0., 1., 0., 0., 1., 1., 0.],
           [0., 1., 0., 1., 0., 1., 0., 1., 0., 1.],
           [1., 0., 1., 0., 1., 0., 1., 0., 1., 0.],
           [0., 1., 1., 0., 1., 0., 0., 1., 1., 0.]])
    """

    criterion = 'mse'
    max_features = 1

    @_deprecate_positional_args
    def __init__(self,
                 n_estimators=100, *,
                 max_depth=5,
                 min_samples_split=2,
                 min_samples_leaf=1,
                 min_weight_fraction_leaf=0.,
                 max_leaf_nodes=None,
                 min_impurity_decrease=0.,
                 min_impurity_split=None,
                 sparse_output=True,
                 n_jobs=None,
                 random_state=None,
                 verbose=0,
                 warm_start=False):
        super().__init__(
            base_estimator=ExtraTreeRegressor(),
            n_estimators=n_estimators,
            estimator_params=("criterion", "max_depth", "min_samples_split",
                              "min_samples_leaf", "min_weight_fraction_leaf",
                              "max_features", "max_leaf_nodes",
                              "min_impurity_decrease", "min_impurity_split",
                              "random_state"),
            bootstrap=False,
            oob_score=False,
            n_jobs=n_jobs,
            random_state=random_state,
            verbose=verbose,
            warm_start=warm_start,
            max_samples=None)

        self.max_depth = max_depth
        self.min_samples_split = min_samples_split
        self.min_samples_leaf = min_samples_leaf
        self.min_weight_fraction_leaf = min_weight_fraction_leaf
        self.max_leaf_nodes = max_leaf_nodes
        self.min_impurity_decrease = min_impurity_decrease
        self.min_impurity_split = min_impurity_split
        self.sparse_output = sparse_output

    def _set_oob_score(self, X, y):
        raise NotImplementedError("OOB score not supported by tree embedding")

    def fit(self, X, y=None, sample_weight=None):
        """
        Fit estimator.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The input samples. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csc_matrix`` for maximum efficiency.

        y : Ignored
            Not used, present for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object

        """
        self.fit_transform(X, y, sample_weight=sample_weight)
        return self

    def fit_transform(self, X, y=None, sample_weight=None):
        """
        Fit estimator and transform dataset.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input data used to build forests. Use ``dtype=np.float32`` for
            maximum efficiency.

        y : Ignored
            Not used, present for API consistency by convention.

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        X_transformed : sparse matrix of shape (n_samples, n_out)
            Transformed dataset.
        """
        X = check_array(X, accept_sparse=['csc'])
        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        rnd = check_random_state(self.random_state)
        y = rnd.uniform(size=X.shape[0])
        super().fit(X, y, sample_weight=sample_weight)

        self.one_hot_encoder_ = OneHotEncoder(sparse=self.sparse_output)
        return self.one_hot_encoder_.fit_transform(self.apply(X))

    def transform(self, X):
        """
        Transform dataset.

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            Input data to be transformed. Use ``dtype=np.float32`` for maximum
            efficiency. Sparse matrices are also supported, use sparse
            ``csr_matrix`` for maximum efficiency.

        Returns
        -------
        X_transformed : sparse matrix of shape (n_samples, n_out)
            Transformed dataset.
        """
        check_is_fitted(self)
        return self.one_hot_encoder_.transform(self.apply(X))