_fastica.py
20.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
"""
Python implementation of the fast ICA algorithms.
Reference: Tables 8.3 and 8.4 page 196 in the book:
Independent Component Analysis, by Hyvarinen et al.
"""
# Authors: Pierre Lafaye de Micheaux, Stefan van der Walt, Gael Varoquaux,
# Bertrand Thirion, Alexandre Gramfort, Denis A. Engemann
# License: BSD 3 clause
import warnings
import numpy as np
from scipy import linalg
from ..base import BaseEstimator, TransformerMixin
from ..exceptions import ConvergenceWarning
from ..utils import check_array, as_float_array, check_random_state
from ..utils.validation import check_is_fitted
from ..utils.validation import FLOAT_DTYPES
from ..utils.validation import _deprecate_positional_args
__all__ = ['fastica', 'FastICA']
def _gs_decorrelation(w, W, j):
"""
Orthonormalize w wrt the first j rows of W
Parameters
----------
w : ndarray of shape(n)
Array to be orthogonalized
W : ndarray of shape(p, n)
Null space definition
j : int < p
The no of (from the first) rows of Null space W wrt which w is
orthogonalized.
Notes
-----
Assumes that W is orthogonal
w changed in place
"""
w -= np.dot(np.dot(w, W[:j].T), W[:j])
return w
def _sym_decorrelation(W):
""" Symmetric decorrelation
i.e. W <- (W * W.T) ^{-1/2} * W
"""
s, u = linalg.eigh(np.dot(W, W.T))
# u (resp. s) contains the eigenvectors (resp. square roots of
# the eigenvalues) of W * W.T
return np.dot(np.dot(u * (1. / np.sqrt(s)), u.T), W)
def _ica_def(X, tol, g, fun_args, max_iter, w_init):
"""Deflationary FastICA using fun approx to neg-entropy function
Used internally by FastICA.
"""
n_components = w_init.shape[0]
W = np.zeros((n_components, n_components), dtype=X.dtype)
n_iter = []
# j is the index of the extracted component
for j in range(n_components):
w = w_init[j, :].copy()
w /= np.sqrt((w ** 2).sum())
for i in range(max_iter):
gwtx, g_wtx = g(np.dot(w.T, X), fun_args)
w1 = (X * gwtx).mean(axis=1) - g_wtx.mean() * w
_gs_decorrelation(w1, W, j)
w1 /= np.sqrt((w1 ** 2).sum())
lim = np.abs(np.abs((w1 * w).sum()) - 1)
w = w1
if lim < tol:
break
n_iter.append(i + 1)
W[j, :] = w
return W, max(n_iter)
def _ica_par(X, tol, g, fun_args, max_iter, w_init):
"""Parallel FastICA.
Used internally by FastICA --main loop
"""
W = _sym_decorrelation(w_init)
del w_init
p_ = float(X.shape[1])
for ii in range(max_iter):
gwtx, g_wtx = g(np.dot(W, X), fun_args)
W1 = _sym_decorrelation(np.dot(gwtx, X.T) / p_
- g_wtx[:, np.newaxis] * W)
del gwtx, g_wtx
# builtin max, abs are faster than numpy counter parts.
lim = max(abs(abs(np.diag(np.dot(W1, W.T))) - 1))
W = W1
if lim < tol:
break
else:
warnings.warn('FastICA did not converge. Consider increasing '
'tolerance or the maximum number of iterations.',
ConvergenceWarning)
return W, ii + 1
# Some standard non-linear functions.
# XXX: these should be optimized, as they can be a bottleneck.
def _logcosh(x, fun_args=None):
alpha = fun_args.get('alpha', 1.0) # comment it out?
x *= alpha
gx = np.tanh(x, x) # apply the tanh inplace
g_x = np.empty(x.shape[0])
# XXX compute in chunks to avoid extra allocation
for i, gx_i in enumerate(gx): # please don't vectorize.
g_x[i] = (alpha * (1 - gx_i ** 2)).mean()
return gx, g_x
def _exp(x, fun_args):
exp = np.exp(-(x ** 2) / 2)
gx = x * exp
g_x = (1 - x ** 2) * exp
return gx, g_x.mean(axis=-1)
def _cube(x, fun_args):
return x ** 3, (3 * x ** 2).mean(axis=-1)
@_deprecate_positional_args
def fastica(X, n_components=None, *, algorithm="parallel", whiten=True,
fun="logcosh", fun_args=None, max_iter=200, tol=1e-04, w_init=None,
random_state=None, return_X_mean=False, compute_sources=True,
return_n_iter=False):
"""Perform Fast Independent Component Analysis.
Read more in the :ref:`User Guide <ICA>`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training vector, where n_samples is the number of samples and
n_features is the number of features.
n_components : int, optional
Number of components to extract. If None no dimension reduction
is performed.
algorithm : {'parallel', 'deflation'}, optional
Apply a parallel or deflational FASTICA algorithm.
whiten : boolean, optional
If True perform an initial whitening of the data.
If False, the data is assumed to have already been
preprocessed: it should be centered, normed and white.
Otherwise you will get incorrect results.
In this case the parameter n_components will be ignored.
fun : string or function, optional. Default: 'logcosh'
The functional form of the G function used in the
approximation to neg-entropy. Could be either 'logcosh', 'exp',
or 'cube'.
You can also provide your own function. It should return a tuple
containing the value of the function, and of its derivative, in the
point. The derivative should be averaged along its last dimension.
Example:
def my_g(x):
return x ** 3, np.mean(3 * x ** 2, axis=-1)
fun_args : dictionary, optional
Arguments to send to the functional form.
If empty or None and if fun='logcosh', fun_args will take value
{'alpha' : 1.0}
max_iter : int, optional
Maximum number of iterations to perform.
tol : float, optional
A positive scalar giving the tolerance at which the
un-mixing matrix is considered to have converged.
w_init : (n_components, n_components) array, optional
Initial un-mixing array of dimension (n.comp,n.comp).
If None (default) then an array of normal r.v.'s is used.
random_state : int, RandomState instance, default=None
Used to initialize ``w_init`` when not specified, with a
normal distribution. Pass an int, for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
return_X_mean : bool, optional
If True, X_mean is returned too.
compute_sources : bool, optional
If False, sources are not computed, but only the rotation matrix.
This can save memory when working with big data. Defaults to True.
return_n_iter : bool, optional
Whether or not to return the number of iterations.
Returns
-------
K : array, shape (n_components, n_features) | None.
If whiten is 'True', K is the pre-whitening matrix that projects data
onto the first n_components principal components. If whiten is 'False',
K is 'None'.
W : array, shape (n_components, n_components)
The square matrix that unmixes the data after whitening.
The mixing matrix is the pseudo-inverse of matrix ``W K``
if K is not None, else it is the inverse of W.
S : array, shape (n_samples, n_components) | None
Estimated source matrix
X_mean : array, shape (n_features, )
The mean over features. Returned only if return_X_mean is True.
n_iter : int
If the algorithm is "deflation", n_iter is the
maximum number of iterations run across all components. Else
they are just the number of iterations taken to converge. This is
returned only when return_n_iter is set to `True`.
Notes
-----
The data matrix X is considered to be a linear combination of
non-Gaussian (independent) components i.e. X = AS where columns of S
contain the independent components and A is a linear mixing
matrix. In short ICA attempts to `un-mix' the data by estimating an
un-mixing matrix W where ``S = W K X.``
While FastICA was proposed to estimate as many sources
as features, it is possible to estimate less by setting
n_components < n_features. It this case K is not a square matrix
and the estimated A is the pseudo-inverse of ``W K``.
This implementation was originally made for data of shape
[n_features, n_samples]. Now the input is transposed
before the algorithm is applied. This makes it slightly
faster for Fortran-ordered input.
Implemented using FastICA:
*A. Hyvarinen and E. Oja, Independent Component Analysis:
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
pp. 411-430*
"""
est = FastICA(n_components=n_components, algorithm=algorithm,
whiten=whiten, fun=fun, fun_args=fun_args,
max_iter=max_iter, tol=tol, w_init=w_init,
random_state=random_state)
sources = est._fit(X, compute_sources=compute_sources)
if whiten:
if return_X_mean:
if return_n_iter:
return (est.whitening_, est._unmixing, sources, est.mean_,
est.n_iter_)
else:
return est.whitening_, est._unmixing, sources, est.mean_
else:
if return_n_iter:
return est.whitening_, est._unmixing, sources, est.n_iter_
else:
return est.whitening_, est._unmixing, sources
else:
if return_X_mean:
if return_n_iter:
return None, est._unmixing, sources, None, est.n_iter_
else:
return None, est._unmixing, sources, None
else:
if return_n_iter:
return None, est._unmixing, sources, est.n_iter_
else:
return None, est._unmixing, sources
class FastICA(TransformerMixin, BaseEstimator):
"""FastICA: a fast algorithm for Independent Component Analysis.
Read more in the :ref:`User Guide <ICA>`.
Parameters
----------
n_components : int, optional
Number of components to use. If none is passed, all are used.
algorithm : {'parallel', 'deflation'}
Apply parallel or deflational algorithm for FastICA.
whiten : boolean, optional
If whiten is false, the data is already considered to be
whitened, and no whitening is performed.
fun : string or function, optional. Default: 'logcosh'
The functional form of the G function used in the
approximation to neg-entropy. Could be either 'logcosh', 'exp',
or 'cube'.
You can also provide your own function. It should return a tuple
containing the value of the function, and of its derivative, in the
point. Example:
def my_g(x):
return x ** 3, (3 * x ** 2).mean(axis=-1)
fun_args : dictionary, optional
Arguments to send to the functional form.
If empty and if fun='logcosh', fun_args will take value
{'alpha' : 1.0}.
max_iter : int, optional
Maximum number of iterations during fit.
tol : float, optional
Tolerance on update at each iteration.
w_init : None of an (n_components, n_components) ndarray
The mixing matrix to be used to initialize the algorithm.
random_state : int, RandomState instance, default=None
Used to initialize ``w_init`` when not specified, with a
normal distribution. Pass an int, for reproducible results
across multiple function calls.
See :term:`Glossary <random_state>`.
Attributes
----------
components_ : 2D array, shape (n_components, n_features)
The linear operator to apply to the data to get the independent
sources. This is equal to the unmixing matrix when ``whiten`` is
False, and equal to ``np.dot(unmixing_matrix, self.whitening_)`` when
``whiten`` is True.
mixing_ : array, shape (n_features, n_components)
The pseudo-inverse of ``components_``. It is the linear operator
that maps independent sources to the data.
mean_ : array, shape(n_features)
The mean over features. Only set if `self.whiten` is True.
n_iter_ : int
If the algorithm is "deflation", n_iter is the
maximum number of iterations run across all components. Else
they are just the number of iterations taken to converge.
whitening_ : array, shape (n_components, n_features)
Only set if whiten is 'True'. This is the pre-whitening matrix
that projects data onto the first `n_components` principal components.
Examples
--------
>>> from sklearn.datasets import load_digits
>>> from sklearn.decomposition import FastICA
>>> X, _ = load_digits(return_X_y=True)
>>> transformer = FastICA(n_components=7,
... random_state=0)
>>> X_transformed = transformer.fit_transform(X)
>>> X_transformed.shape
(1797, 7)
Notes
-----
Implementation based on
*A. Hyvarinen and E. Oja, Independent Component Analysis:
Algorithms and Applications, Neural Networks, 13(4-5), 2000,
pp. 411-430*
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, algorithm='parallel', whiten=True,
fun='logcosh', fun_args=None, max_iter=200, tol=1e-4,
w_init=None, random_state=None):
super().__init__()
if max_iter < 1:
raise ValueError("max_iter should be greater than 1, got "
"(max_iter={})".format(max_iter))
self.n_components = n_components
self.algorithm = algorithm
self.whiten = whiten
self.fun = fun
self.fun_args = fun_args
self.max_iter = max_iter
self.tol = tol
self.w_init = w_init
self.random_state = random_state
def _fit(self, X, compute_sources=False):
"""Fit the model
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
compute_sources : bool
If False, sources are not computes but only the rotation matrix.
This can save memory when working with big data. Defaults to False.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
X = self._validate_data(X, copy=self.whiten, dtype=FLOAT_DTYPES,
ensure_min_samples=2).T
fun_args = {} if self.fun_args is None else self.fun_args
random_state = check_random_state(self.random_state)
alpha = fun_args.get('alpha', 1.0)
if not 1 <= alpha <= 2:
raise ValueError('alpha must be in [1,2]')
if self.fun == 'logcosh':
g = _logcosh
elif self.fun == 'exp':
g = _exp
elif self.fun == 'cube':
g = _cube
elif callable(self.fun):
def g(x, fun_args):
return self.fun(x, **fun_args)
else:
exc = ValueError if isinstance(self.fun, str) else TypeError
raise exc(
"Unknown function %r;"
" should be one of 'logcosh', 'exp', 'cube' or callable"
% self.fun
)
n_samples, n_features = X.shape
n_components = self.n_components
if not self.whiten and n_components is not None:
n_components = None
warnings.warn('Ignoring n_components with whiten=False.')
if n_components is None:
n_components = min(n_samples, n_features)
if (n_components > min(n_samples, n_features)):
n_components = min(n_samples, n_features)
warnings.warn(
'n_components is too large: it will be set to %s'
% n_components
)
if self.whiten:
# Centering the columns (ie the variables)
X_mean = X.mean(axis=-1)
X -= X_mean[:, np.newaxis]
# Whitening and preprocessing by PCA
u, d, _ = linalg.svd(X, full_matrices=False)
del _
K = (u / d).T[:n_components] # see (6.33) p.140
del u, d
X1 = np.dot(K, X)
# see (13.6) p.267 Here X1 is white and data
# in X has been projected onto a subspace by PCA
X1 *= np.sqrt(n_features)
else:
# X must be casted to floats to avoid typing issues with numpy
# 2.0 and the line below
X1 = as_float_array(X, copy=False) # copy has been taken care of
w_init = self.w_init
if w_init is None:
w_init = np.asarray(random_state.normal(
size=(n_components, n_components)), dtype=X1.dtype)
else:
w_init = np.asarray(w_init)
if w_init.shape != (n_components, n_components):
raise ValueError(
'w_init has invalid shape -- should be %(shape)s'
% {'shape': (n_components, n_components)})
kwargs = {'tol': self.tol,
'g': g,
'fun_args': fun_args,
'max_iter': self.max_iter,
'w_init': w_init}
if self.algorithm == 'parallel':
W, n_iter = _ica_par(X1, **kwargs)
elif self.algorithm == 'deflation':
W, n_iter = _ica_def(X1, **kwargs)
else:
raise ValueError('Invalid algorithm: must be either `parallel` or'
' `deflation`.')
del X1
if compute_sources:
if self.whiten:
S = np.dot(np.dot(W, K), X).T
else:
S = np.dot(W, X).T
else:
S = None
self.n_iter_ = n_iter
if self.whiten:
self.components_ = np.dot(W, K)
self.mean_ = X_mean
self.whitening_ = K
else:
self.components_ = W
self.mixing_ = linalg.pinv(self.components_)
self._unmixing = W
if compute_sources:
self.__sources = S
return S
def fit_transform(self, X, y=None):
"""Fit the model and recover the sources from X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
return self._fit(X, compute_sources=True)
def fit(self, X, y=None):
"""Fit the model to X.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Training data, where n_samples is the number of samples
and n_features is the number of features.
y : Ignored
Returns
-------
self
"""
self._fit(X, compute_sources=False)
return self
def transform(self, X, copy=True):
"""Recover the sources from X (apply the unmixing matrix).
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data to transform, where n_samples is the number of samples
and n_features is the number of features.
copy : bool (optional)
If False, data passed to fit are overwritten. Defaults to True.
Returns
-------
X_new : array-like, shape (n_samples, n_components)
"""
check_is_fitted(self)
X = check_array(X, copy=copy, dtype=FLOAT_DTYPES)
if self.whiten:
X -= self.mean_
return np.dot(X, self.components_.T)
def inverse_transform(self, X, copy=True):
"""Transform the sources back to the mixed data (apply mixing matrix).
Parameters
----------
X : array-like, shape (n_samples, n_components)
Sources, where n_samples is the number of samples
and n_components is the number of components.
copy : bool (optional)
If False, data passed to fit are overwritten. Defaults to True.
Returns
-------
X_new : array-like, shape (n_samples, n_features)
"""
check_is_fitted(self)
X = check_array(X, copy=(copy and self.whiten), dtype=FLOAT_DTYPES)
X = np.dot(X, self.mixing_.T)
if self.whiten:
X += self.mean_
return X